Malawi 2000

Nutrition of Young Children and Mothers
This chartbook was produced by the MEASURE DHS+ program, which is funded by the U.S. Agency for International Development (USAID) through the Global Bureau Office of Health and Nutrition. The chartbook benefited from funds provided by the USAID Bureau for Africa Office of Sustainable Development's Health and Human Resources Analysis for Africa project (HHRAA). Copies of this chartbook may be obtained by contacting the MEASURE DHS+ program, ORC Macro, at the above address, or by telephone at (301) 572-0200, or by fax at (301) 572-0999.
TABLE OF CONTENTS

INTRODUCTION

Figure 1:	Infant and Child Mortality, Malawi Compared with Other Sub-Saharan Countries	2
Figure 2:	Contribution of Malnutrition to Under-Five Mortality, Malawi	4
Figure 3:	Survival and Nutritional Status of Children, Malawi	6

Malnutrition in Malawi

Figure 4:	Malnutrition Among Children Under Five Years, Malawi	9
Figure 5:	Changes in Undernutrition Rates Among Children Under Five Years, Malawi 1992 and 2000	12
Figure 6:	Stunting, Wasting, and Underweight by Age, Malawi	14
Figure 7:	Undernutrition Among Children Under Five Years Who Do Not Reside with Their Mother, Malawi	16
Figure 8:	Underweight Among Children Under Three Years, Malawi Compared with Other Sub-Saharan Countries	18
Figure 9:	Stunting Among Children Under Three Years, Malawi Compared with Other Sub-Saharan Countries	20

Conceptual Framework for Nutritional Status

| Conceptual Framework for Nutritional Status | 22 |

Immediate Causes of Malnutrition

Figure 10:	Use of Iodized Salt Among Households with Children Under Five Years by Region, Malawi	25
Figure 11:	Night Blindness Among Mothers of Children Under Five Years, Malawi	28
Figure 12:	Vitamin A Supplementation Among Mothers of Children Under Five Years by Region, Malawi	30
Figure 13:	Vitamin A Supplementation Among Children Under Five Years by Region, Malawi	32
Figure 14:	Iron Supplementation Among Mothers of Children Under Five Years, Malawi	34
Figure 15:	Diarrhea and Cough with Rapid Breathing Among Children Under Five Years Compared with Malnutrition Rates, Malawi	36

Underlying Biological and Behavioral Causes of Malnutrition

Figure 16:	Fertility and Birth Intervals, Malawi Compared with Other Sub-Saharan Countries	39
Figure 17:	Malnutrition Among Children Age 12-23 Months by Measles Vaccination Status, Malawi	42
Figure 18:	Measles Vaccination Coverage Among Children Age 12-23 Months, Malawi Compared with Other Sub-Saharan Countries	44
Figure 19:	Feeding Practices for Infants Under Six Months, Malawi	46
Figure 20:	Infants Under Four Months Who Are Exclusively Breastfed and Those Who Receive a Bottle, Malawi Compared with Other Sub-Saharan Countries	48
Introduction

Malnutrition\(^1\) is one of the most important health and welfare problems among infants and young children in Malawi. It is a result of both inadequate food intake and illness. Inadequate food intake is a consequence of insufficient food available at the household level, improper feeding practices, or both. Improper feeding practices include both the quality and quantity of foods offered to young children as well as the timing of their introduction. Poor sanitation puts young children at increased risk of illness, in particular diarrheal disease, which adversely affects their nutritional status. Both inadequate food intake and poor environmental sanitation reflect underlying social and economic conditions.

Malnutrition has significant health and economic consequences, the most serious of which is an increased risk of death. Other outcomes include an increased risk of illness and a lower level of cognitive development, which results in lower educational attainment. In adulthood, the accumulated effects of long-term malnutrition can be a reduction in workers’ productivity and increased absenteeism in the workplace; these may reduce a person’s lifetime earning potential and ability to contribute to the national economy. Furthermore, malnutrition can result in adverse pregnancy outcomes.

The data presented here are from the 2000 Malawi Demographic and Health Survey (Malawi DHS 2000), a nationally representative survey of 15,421 households conducted by the National Statistical Office. ORC Macro provided technical assistance through its MEASURE DHS+ program. Financial assistance was provided by the U. S. Agency for International Development (USAID)/Malawi and the British Department of International Development (DFID). Important logistical support for the survey was also provided by UNICEF/Malawi.

Of the 12,201 children age 0-59 months who were part of the study, 10,560 were alive at the time of the survey and, of these, 9,318 have complete anthropometric data and are therefore included in the nutrition analyses. Nutritional data collected on these children include height, weight, age, breastfeeding history, and feeding patterns. Information was also collected on the prevalence of diarrhea and acute respiratory infection (ARI) in the two weeks prior to the survey and on relevant sociodemographic characteristics. For comparison, data are presented from DHS surveys conducted in other sub-Saharan countries.

\(^1\) The technical method of determining a *malnourished* population as defined by the U.S. National Center for Health Statistics (NCHS), the Centers for Disease Control and Prevention (CDC), and the World Health Organization (WHO) is presented in Appendix 2.
Figure 1: Infant and Child Mortality, Malawi Compared with Other Sub-Saharan Countries

Malnutrition compromises child health, making children susceptible to illness and death. Infectious diseases such as acute respiratory infections, diarrhea, and malaria account for the greatest proportion of infant and under-five mortality. The infant mortality rate (under-one-year rate) is a commonly used measure of infant health and is a sensitive indicator of the socioeconomic conditions of a country. The under-five mortality rate is another informative indicator of infant and child survival.

- **Malawi’s under-one mortality rate (104 deaths per 1,000 births) indicates that over 10 percent of children born in Malawi will die before their first birthday.** This rate is in the upper third of the sub-Saharan countries surveyed.

- **Malawi’s under-five mortality rate (189 deaths per 1,000 births) indicates that about 19 percent of children born in Malawi will die before their fifth birthday.** Again, this rate places Malawi in the upper third of the sub-Saharan countries surveyed.
Figure 1
Infant and Child Mortality, Malawi Compared with Other Sub-Saharan Countries

Deaths per 1,000 Births

- Under-One Mortality Rate
- Under-Five Mortality Rate

Source: DHS Surveys 1995-2000
Malnutrition is an important factor in the death of many young children. Even if a child is only mildly malnourished, the mortality risk is increased. Under-five mortality is largely a result of infectious diseases and neonatal deaths in developing countries. Respiratory infections, diarrhea, malaria, measles, and other infectious diseases take their toll on children.

Formulas developed by Pelletier et al.¹ are used to quantify the contributions of moderate and severe malnutrition to under-five mortality.

In Malawi,

- Thirty-seven percent of all deaths that occur before age five are related to malnutrition (severe and moderate malnutrition).

- Because of its extensive prevalence, moderate malnutrition (31 percent) contributes to more deaths than severe malnutrition (6 percent) does.

- Moderate malnutrition is implicated in 84 percent of deaths associated with malnutrition.

Figure 2
Contribution of Malnutrition to Under-Five Mortality, Malawi

How malnutrition contributes to death

Severe malnutrition 6%
Moderate malnutrition 31%

Pathway to Death

Neonatal deaths
Malaria deaths
Measles deaths
Diarrhea deaths
AIDS deaths
Deaths from other causes

Note: Calculation based on Pelletier et al., 1994.
Source: Malawi DHS 2000
Malnutrition and mortality both take a tremendous toll on young children. This figure illustrates the proportion of children who have died or are malnourished at each month of age.

In Malawi,

- **Between birth and 19 months of age, the percentage of children who are alive and not malnourished drops rapidly from 80 to 24 percent.** Then from age 24 months through 59 months, this percentage remains fairly constant between 30 and 35 percent.

- **Between birth and 19 months of age, the percentage of children who are moderately or severely malnourished increases dramatically from 10 to 64 percent.** After 24 months, this percentage levels off, ranging between 45 and 55 percent through age 59 months.

- **From birth until month 59, the percentage of children who have died increases gradually, ranging from 7 to 21 percent.**

1 A child with a Z-score below minus three standard deviations (-3 SD) based on the NCHS/CDC/WHO reference population is considered severely malnourished, while one with a Z-score between -3 SD and -2 SD is considered moderately malnourished.
Figure 3
Survival and Nutritional Status of Children, Malawi

Note: A child with a Z-score below -3 SD on the reference standard is considered severely malnourished (stunted, wasted, or underweight) while a child with a Z-score between -3 SD and -2 SD is considered moderately malnourished. Values have been smoothed using a five-month rolling average.

Source: Malawi DHS 2000
Malnutrition in Malawi
Figure 4: Malnutrition among Children under Five Years, Malawi

In Malawi,

- **Forty-nine percent of children age 0-59 months are chronically malnourished.** In other words, they are too short for their age, or *stunted*.\(^1\) The proportion of children who are stunted is almost 25 times the level expected in a healthy, well-nourished population.

- **Acute malnutrition**, manifested by *wasting*,\(^2\) results in a child being too thin for his or her height. In Malawi, it affects *6 percent of children*, which is three times the level expected in a healthy population.

- **Twenty-five percent of children under five years are underweight\(^3\)** for their age. This is more than 12 times the level expected in a healthy, well-nourished population.

- **Eighteen percent of children under five are overweight\(^4\)**. This is slightly more than the level expected in a healthy, well-nourished population.

\(^1\) A stunted child has a height-for-age Z-score that is below -2 SD based on the NCHS/CDC/WHO reference population. Chronic malnutrition is the result of an inadequate intake of food over a long period and may be exacerbated by chronic illness.

\(^2\) A wasted child has a weight-for-height Z-score that is below -2 SD based on the NCHS/CDC/WHO reference population. Acute malnutrition is the result of a recent failure to receive adequate nutrition and may be affected by acute illness, especially diarrhea.

\(^3\) An underweight child has a weight-for-age Z-score that is below -2 SD based on the NCHS/CDC/WHO reference population. This condition can result from either chronic or acute malnutrition or a combination of both.

\(^4\) An overweight child has a weight-for-height Z-score that is above 1 SD based on the NCHS/CDC/WHO reference population.
Figure 4
Malnutrition among Children under Five Years, Malawi

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition; underweight reflects chronic or acute malnutrition or a combination of both.

Source: Malawi DHS 2000
The findings of the 2000 MDHS suggest that undernutrition rates in Malawi have not appreciably changed since the 1992 survey.

Stunting rates have remained the same (49 percent), wasting rates have gone up slightly (from 5 percent in 1992 to 6 percent in 2000) and underweight rates have decreased slightly (from 27 percent in 1999 to 25 percent in 2000).
Figure 5
Changes in Undernutrition Rates among Children under Five Years, Malawi 1992 and 2000

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition; underweight reflects chronic or acute malnutrition or a combination of both.

Sources: MDHS 1992 and MDHS 2000
Figure 6: Stunting, Wasting, and Underweight by Age, Malawi

In Malawi, the time between 2 months and 21 months of age is a vulnerable period.

- **The proportion of children stunted rises sharply between age 2 months and 21 months, peaking at 67 percent.** The proportion of stunted children then drops to 55 percent by 26 months of age and remains fairly constant through age 59 months, ranging between 55 and 62 percent.

- **The proportion of children wasted rises to 12 percent at 11 months and continues to be over 10 percent through age 19 months.** The proportion then steadily declines to under 4 percent at 28 months and under 2 percent by 46 months.

- **The proportion of children underweight rises sharply between age 3 months and 17 months, when it reaches 40 percent.** This proportion subsequently declines to 17 percent by month 48. However, the figure rises again to 24 percent at month 55 before declining again to 18 percent at 59 months.
Figure 6
Stunting, Wasting, and Underweight by Age, Malawi

Note: *Stunting* reflects chronic malnutrition; *wasting* reflects acute malnutrition; *underweight* reflects chronic or acute malnutrition or a combination of both. Plotted values are smoothed by a five-month moving average.

Source: Malawi DHS 2000
Figure 7: Undernutrition among Children under Five Years Who Do Not Reside with Their Mother, Malawi

Previously, anthropometric data from DHS surveys excluded children whose mothers did not live in the household or were not interviewed. Currently, all children in the household are measured despite their mother’s residence status. In the 2000 MDHS, 633 children did not reside with their mother.

In Malawi,

- **Fifty-five percent of children age 0-59 months who do not reside with their mothers are stunted**, compared with 49 percent of children who do reside with their mother.

- **Three percent of children who do not reside with their mother are wasted.** This is lower than the 6 percent of children who do reside with their mother.

- **There is no difference in underweight status between children who reside with their mother and those who do not.**
Figure 7
Undernutrition among Children under 5 Years who do not Reside with Their Mothers, Malawi

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition; underweight reflects chronic or acute malnutrition or a combination of both.

Source: Malawi DHS 2000
Figure 8: Underweight among Children under Three Years, Malawi Compared with Other Sub-Saharan Countries

Among the sub-Saharan countries surveyed,

- The percentage of children under three years who are underweight ranges from 14 to 50 percent. With 28 percent of children underweight, Malawi is in the midrange of the sub-Saharan countries surveyed. Underweight status is indicative of children who suffer from chronic or acute malnutrition, or both, and may be influenced by both short- and long-term determinants of malnutrition. Underweight is often used as a general indicator of a population’s health status.
Figure 8
Underweight among Children under Three Years, Malawi Compared with Other Sub-Saharan Countries

Note: Underweight reflects chronic or acute malnutrition or a combination of both.

Source: DHS Surveys 1995-2000
Among the sub-Saharan countries surveyed,

- The percentage of children under three years who are stunted ranges from 20 to 48 percent. At 44 percent, the proportion of stunted children in Malawi is the third highest in sub-Saharan Africa. Stunting is a good long-term indicator of the nutritional status of a population because it is not markedly affected by short-term factors such as season of data collection, epidemic illnesses, acute food shortages, and recent shifts in social or economic policies.
Figure 9
Stunting among Children under Three Years, Malawi Compared with Other Sub-Saharan Countries

Note: Stunting reflects chronic malnutrition.

Source: DHS Surveys 1995-2000
Nutrition is directly related to food intake and infectious diseases such as diarrhea, acute respiratory infection, malaria, and measles. Both food intake and infectious diseases reflect underlying social and economic conditions at the household, community, and national levels that are supported by political, economic, and ideological structures within a country.

The following diagram is a conceptual framework for nutrition adapted from UNICEF 1990. It reflects relationships among factors and their influences on children’s nutritional status. Although political, socioeconomic, environmental, and cultural factors (at the national and community levels) and poverty (at the household level) affect the nutritional status of women and children, the only variables included in this chartbook are those that can be collected as part of a national household survey. The highlighted areas of the framework depict selected factors.

These factors are

- **Immediate influences**, such as food intake (micronutrient status and supplementation) and infectious diseases (diarrhea and respiratory infections)

- **Underlying biological and behavioral influences**, such as maternal fertility, measles vaccinations, and feeding patterns of children under two years

- **Underlying social and economic influences**, such as maternal education, drinking water, and sanitation

- **Basic influences**, such as area of residence.
Conceptual Framework for Nutritional Status

Adapted from UNICEF 1990
Immediate Causes of Malnutrition
Iodine deficiency is known to cause goiter, cretinism (a severe form of neurological defect), spontaneous abortion, premature birth, infertility, stillbirth, and increased child mortality. One of the most serious consequences to child development is mental retardation caused by iodine deficiency disorder (IDD), which puts at stake social investments in health and education. IDD is the single most common cause of preventable mental retardation and brain damage in the world. It decreases the production of hormones vital to growth and development. Children with IDD can grow up stunted, apathetic, mentally retarded, and incapable of normal movement, speech, or hearing. IDD in pregnant women may cause miscarriage, stillbirth, and mental retardation in infants.

The remedy for IDD is relatively simple. A teaspoon of iodine is all a person requires in a lifetime. Since iodine cannot be stored for long periods by the body, tiny amounts are needed regularly. In areas of endemic iodine deficiency, where soil and therefore crops and grazing animals do not provide sufficient dietary iodine to the population, food fortification and supplementation have proven to be highly successful and sustainable interventions. The fortification of salt or oil with iodine is the most common tool to prevent IDD. Iodized salt that is commercially packaged in plastic sacks and not stored properly can lose its concentration of iodine. Proper packaging and storage of iodized salt is essential to ensure that the population benefits from iodine fortification.

- **In Malawi, 54 percent of households with children under five use salt that has an adequate level of iodine to prevent IDD.** Use of iodized salt is higher in the Northern Region (60 percent) than in either the Central (53 percent) or Southern (53 percent) regions.
Figure 10
Use of Iodized Salt among Households with Children under Five Years by Region, Malawi

Source: Malawi DHS 2000
Globally, vitamin A deficiency (VAD) is the leading cause of childhood blindness. The damage to vision (xerophthalmia) is only one of the harmful outcomes of VAD. Vitamin A is crucial for rapid growth and recovery from illness or infection. Children who are vitamin A deficient have reduced immunity and are less likely to recuperate from common childhood illnesses, such as diarrhea, ARI, and measles, and are twice as likely to die as children who are not vitamin A deficient.

A mother’s vitamin A status during pregnancy can be an indicator of the vitamin A status of her child. One such sign of VAD in women during pregnancy is night blindness.

- In Malawi, 4 percent of all women who had given birth in the previous five years reported having some form of night blindness during their last pregnancy.

- **Only 1 percent of women reported having trouble with their vision during the night but not during the day during their last pregnancy.** This figure more accurately reflects Malawi’s rate of night blindness, although it is most likely somewhat of an underestimate.

Figure 11: Night Blindness among Mothers of Children under Five Years, Malawi
Figure 11
Night Blindness among Mothers of Children under Five Years, Malawi

Four percent of all women had reported some form of night blindness during their last pregnancy.

One percent of women had trouble with their vision during the night but not during the day during their last pregnancy.

Source: Malawi DHS 2000
Recent studies show that pregnant women who are vitamin A deficient are at a greater risk of dying during or shortly after delivery of the child. Pregnancy and lactation strain women’s nutritional status and their vitamin A stores. For women who have just given birth, vitamin A supplementation helps to bring their level of vitamin A storage back to normal, aiding recovery and avoiding illness.

Vitamin A supplementation also benefits children who are breastfed. If mothers have vitamin A deficiency, their children can be born with low stores of vitamin A. Low birth weight babies are especially at risk. Additionally, infants often do not receive an adequate amount of vitamin A from breast milk when mothers are vitamin A deficient. Therefore, supplementation is important for postpartum women within the first eight weeks after childbirth.

In Malawi,

- **Forty-two percent of mothers received vitamin A supplements within two months after delivery.**

- **Vitamin A supplementation of mothers varies by region.** Fifty percent of mothers in the Northern region received vitamin A supplements, compared with 42 percent of mothers in the Southern Region and 39 percent of mothers in the Central Region.
Figure 12
Vitamin A Supplementation among Mothers of Children under Five Years by Region, Malawi

Source: Malawi DHS 2000
Vitamin A deficiency (VAD) is common in dry environments where fresh fruits and vegetables are not readily available. Vitamin A is found in breast milk, other milks, liver, eggs, fish, butter, red palm oil, mangos, papayas, carrots, pumpkin, and dark leafy greens. Unlike iron or folate, vitamin A is a fat-soluble vitamin, which means that consumption of oils or fats is necessary for its absorption into the body. The liver can store an adequate amount of the vitamin for four to six months. Periodic dosing (every four to six months) with vitamin A supplements is a rapid, low-cost method of ensuring children at risk do not develop VAD. National Immunization Days for polio or measles vaccinations are ideal for reaching a large number of children with vitamin A supplements.

In Malawi,

- Seventy-one percent of children under five received a vitamin A dose in the last six months.

- The rate of vitamin A supplementation of children is constant throughout Malawi. In the Central Region, the rate is 70 percent, in the Southern Region it is 72 percent and in the Northern Region, 73 percent of children under five have received Vitamin A supplementation.
Figure 13
Vitamin A Supplementation among Children under Five Years by Region, Malawi

Source: Malawi DHS 2000
Anemia is the lack of an adequate amount of hemoglobin in the blood. It can be caused by several different health conditions; iron and folate deficiencies are some of the most prevalent conditions related to anemia. Vitamin B\textsubscript{12} deficiency, protein deficiency, sickle cell disease, malaria, and parasite infection also cause anemia.

Iron deficiency anemia is the most common form of nutritional deficiency worldwide. This type of nutritional deficiency develops slowly and does not manifest symptoms until the anemia becomes severe. Diets that are heavily dependent on one grain or starch as the major staple often lack sufficient iron intake. Iron is found in meats, poultry, fish, grains, some cereals, and dark leafy greens (such as spinach). Foods rich in vitamin C increase absorption of iron into the blood. Tea, coffee, and whole-grain cereals can inhibit iron absorption. Anemia is common in children 6-24 months of age who consume purely a milk diet and in women during pregnancy and lactation. Iron deficiency anemia is related to decreased cognitive development in children, decreased work capacity in adults, and limited chances of child survival. Severe cases are associated with the low birth weight of babies, perinatal mortality, and maternal mortality.

In Malawi,

- Over two-thirds of all mothers received iron supplementation during their last pregnancy.

- Only 17 percent of women who received some iron supplementation took the recommended dosage during their pregnancy (90 or more pills).
Figure 14
Iron Supplementation Status of Mothers of Children under Five Years, Malawi

Of the 67% who did take supplements:

- 67% took supplements
- 33% took 1-29 pills
- 52% took 30-59 pills
- 21% took 60-89 pills
- 9% took 90+ pills (Recommended)

Source: Malawi DHS 2000
Acute respiratory infection and dehydration due to diarrhea are major causes of morbidity and mortality in most sub-Saharan countries. To estimate the prevalence of ARI, mothers were asked whether their children under five years had been ill with coughing accompanied by short, rapid breathing in the past two weeks. For diarrhea, mothers were asked whether their children under five years had symptoms of diarrhea in the past two weeks. Early diagnosis and rapid treatment can reduce the rates of illness or death caused by these conditions.

In Malawi,

- **Twenty-seven percent of children under five years of age experienced cough with rapid breathing in the two weeks preceding the survey.** Malawi’s prevalence of cough with rapid breathing increases from 19 to 36 percent in the first 6 months and then gradually declines to about 20 percent through 59 months of age.

- **Eighteen percent of children under five years of age had diarrhea in the two weeks preceding the survey.** The prevalence of diarrhea increases rapidly from birth to the tenth month when it peaks at 41 percent. The prevalence of diarrhea then declines steadily to 6 percent by month 45 where it remains until age 59 months.

The rapid rise in the prevalence of diarrhea during infancy reflects the increased risk of pathogen contamination associated with the early introduction of water, other liquids, and solid foods. In addition, when infants begin to crawl and move around, they tend to put objects in their mouth, again increasing the risk of pathogen contamination.
Figure 15
Diarrhea and Cough with Rapid Breathing among Children under Five Years Compared with Malnutrition Rates, Malawi

Note: Plotted values are smoothed by a five-month moving average.

Source: Malawi DHS 2000
Underlying Biological and Behavioral Causes of Malnutrition
Figure 16: Fertility and Birth Intervals, Malawi Compared with Other Sub-Saharan Countries

High fertility rates, especially when accompanied by short birth intervals, are detrimental to children’s nutritional status. In most countries in sub-Saharan Africa, families have scarce resources to provide adequate nutrition and health care for their children. As the number of children per woman increases, fewer household resources are available for each child. High fertility also has a negative impact on maternal health, thus influencing a mother’s ability to adequately care for her children. The most widely used measure of current fertility is the total fertility rate, which is defined as the number of children a woman would have by the end of her childbearing years if she were to pass through those years bearing children at the currently observed age-specific rates.

Information on the length of birth intervals provides insight into birth spacing patterns. Research has shown that children born too soon after a previous birth are at increased risk of poor nutrition and health and increased risk of mortality, particularly when that interval is less than 24 months. The odds of stunting and underweight have been shown to be higher when birth intervals are less than 36 months. Short birth intervals are associated with small birth size and low birth weight, both precursors to poor nutritional status in early childhood.

- **At the current fertility rate, a woman in Malawi will have an average of 6.4 children by the end of her childbearing years.** This rate is in the upper third of the sub-Saharan countries surveyed between 1995-2000.

- **Malawian mothers have a median birth interval of 34 months.** This rate is in the midrange of the countries surveyed.
Figure 16
Fertility and Birth Intervals, Malawi Compared with Other Sub-Saharan Countries

Source: DHS Surveys 1995-2000
Measles is estimated to kill two million children a year, all in developing countries. It is one of the most common diseases during childhood in areas without high immunization coverage. Measles not only increases the risk of death but is also an important direct cause of malnutrition. The occurrence of measles in poor environments is associated with faltering growth, vitamin A deficiency, and immune suppression. Even though infants are not protected after birth by their mother’s breast milk, they are protected by their mother’s measles antibodies while in the womb. These antibodies can last up to 15 months in an infant, but due to malnutrition, they only last up to 8 or 9 months in children in developing countries. Therefore, measles vaccination is an important child health strategy.

- **In Malawi, measles vaccination status is statistically related to malnutrition.** Of children who have not been vaccinated against measles, a 6 percent greater proportion are stunting and an 11 percent greater proportion are underweight compared with children who have been vaccinated.

- **Measles vaccination status is not statistically related to wasting levels.**
Figure 17
Malnutrition among Children Age 12-23 Months by Measles Vaccination Status, Malawi

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition; underweight reflects chronic or acute malnutrition or a combination of both.

(No Statistical Difference)

Source: Malawi DHS 2000
In Malawi,

- Eighty-four percent of children 12-23 months of age have been vaccinated against measles. This is the second highest rate of coverage in sub-Saharan Africa.
Figure 18
Measles Vaccination Coverage among Children Age 12-23 Months, Malawi Compared with Other Sub-Saharan Countries

Source: DHS Surveys 1995-2000
Improper feeding practices, in addition to diarrheal disease, are important determinants of malnutrition. UNICEF and WHO recommend that all infants be exclusively breastfed from birth until six months of age. In other words, infants should be fed only breast milk during the first six months of their lives.

In Malawi, the introduction of liquids, such as water, sugar water and juice, formula, and solid foods, takes place earlier than the recommended age of about six months. This practice has a deleterious effect on nutritional status for a number of reasons. First, the liquids and solid foods offered are nutritionally inferior to breast milk. Second, the consumption of liquids and solid foods decreases the infant’s intake of breast milk, which in turn reduces the mother’s supply of milk. (Breast milk production is determined, in part, by the frequency and intensity of suckling.) Third, feeding young infants liquids and solid foods increases their exposure to pathogens, thus putting them at greater risk of diarrheal disease.

- Fifty-three percent of children under the age of six months are exclusively breastfed, as is recommended by UNICEF and WHO.

- Thirty-seven percent of infants under six months of age are given a combination of breast milk and water, and 10 percent are given some form of liquid or solid food other than breast milk and/or water.

- No infants under six months are fully weaned.
Figure 19
Feeding Practices for Infants under Six Months, Malawi

Note: UNICEF and WHO recommend that all infants be breastfed exclusively up to six months of age.

Source: Malawi DHS 2000
The failure to exclusively breastfeed young infants and the introduction of liquids and solid foods at too early an age increases the risk of diarrheal disease, an important cause of mortality in Africa.

- In most of the sub-Saharan countries surveyed, relatively few mothers of infants even under four months follow the recommended practice of breastfeeding exclusively. **In Malawi, 68 percent of these mothers breastfeed their young infants exclusively.** This is the highest rate among all sub-Saharan African countries surveyed.

- **Bottle-feeding is practiced by 2 percent of mothers of infants under four months in Malawi.** This is one of the lowest rates among countries surveyed. **Bottle-feeding is not recommended** because improper sanitation with bottle-feeding can introduce pathogens to the infant. Additionally, infant formulas (which are often watered down) and other types of milk do not provide comparable nutrition to breast milk for infants under six months of age. For these reasons, bottle-feeding puts infants at a higher risk of illness and malnutrition.
Figure 20
Infants under Four Months Who Are Exclusively Breastfed and Those Who Receive a Bottle, Malawi Compared with Other Sub-Saharan Countries

Note: Information on feeding practices is based on the 24 hours before the survey. UNICEF and WHO recommend that all infants should receive nothing but breast milk up to six months of age.

Source: DHS Surveys 1995-2000
UNICEF and WHO recommend that solid foods be introduced to infants around the age of six months because breast milk alone is no longer sufficient to maintain a child’s optimal growth at that point. Thus, *all infants over six months of age should receive solid foods* along with breast milk.

- **In Malawi, 53 percent of infants age 6-9 months are fed solid foods in addition to breast milk.** This means that about half of infants age 6-9 months are fed according to the recommended practice.

- **Forty-six percent of infants age 6-9 months are not fed solid foods in addition to breast milk, putting these children at risk of malnutrition.**

- **Less than 1 percent of infants are fully weaned** and not receiving the additional nutritional and emotional support of breastfeeding.
Breast milk and solid foods 93%

Exclusive breastfeeding 3%

Weaned 0.1%

Breast milk and water 1%

Breast milk and liquids 1%

Recommended

Note: UNICEF and WHO recommend that by the age of six months all infants should receive solid foods and liquids in addition to breast milk.

Source: Malawi DHS 2000
Optimal infant feeding practices include the introduction of complementary foods at about six months of age. The introduction of complementary feeding is necessary because breast milk is no longer sufficient to satisfy the developing infant’s energy, protein, and micronutrient needs. All infants age 6-9 months should receive complementary foods in addition to breast milk.

In Malawi,

- **Fifty-three percent of infants age 6-9 months receive solid food in addition to breast milk.** This is in the lower third of the sub-Saharan countries surveyed. The 47 percent of infants who are not given complementary food are more susceptible to stunting and wasting.
Figure 22
Infants Age 6-9 Months Receiving Solid Foods in Addition to Breast Milk, Malawi Compared with Other Sub-Saharan Countries

Note: UNICEF and WHO recommend that by the age of six months all infants should receive solid foods and liquids in addition to breast milk.

Source: DHS Surveys 1995-2000
For older infants and toddlers, breast milk continues to be an important source of energy, protein and micronutrients. Studies have shown that, in some populations, breast milk is the most important source of vitamin A and fat among children over 12 months of age. Breastfeeding older infants also reduces their risk of infection, especially diarrhea.

Additionally, breastfeeding up to 24 months can help to reduce a woman’s fertility, especially in areas where contraception is limited. Women who breastfeed for longer periods of time have lower fertility rates than women who breastfeed for shorter periods.

In Malawi,

- Eighty-nine percent of children age 10–23 months are still given breast milk. This is in the upper quarter of the sub-Saharan countries surveyed.
Figure 23
Children 10-23 Months who Continue to be Breastfed, Malawi Compared with Other Sub-Saharan Countries

Note: Information on feeding practices is based on the 24 hours before the survey. It is recommended that all children continue to be breastfed up to 24 months of age.

Source: DHS Surveys 1995-2000
Underlying Social and Economic Causes of Malnutrition
Maternal education is related to knowledge of good child care practices and to household wealth. In Malawi, 31 percent of the mothers of children under five years of age have never attended school, while 62 percent have had some primary education and 8 percent have a secondary or higher education. There are variations in school attendance, especially between urban and rural areas. In the rural areas, 35 percent of the mothers have never attended school, 62 percent have attended primary school, and 4 percent have gone to secondary school or higher. In contrast, only 15 percent of the mothers in urban areas have never attended school, 58 percent have attended primary school, and 27 percent have gone to secondary school or higher. Mothers living in the Northern Region reported the highest percentage with at least a secondary school education (14 percent). The percentage of mothers reporting a secondary school education is much lower in the Southern Region (7 percent) and the Central Region (5 percent).

- **Maternal education has an inverse relationship with stunting in Malawi.** As the level of maternal education increases, the level of stunting decreases. There is a 5 percentage point difference in stunting rates between children of mothers with no education and those whose mothers have a primary education, and there is a 27 percentage point difference between children of mothers with no education and those whose mothers have a secondary education or higher.

- **Maternal education has an inverse relationship with wasting in Malawi.** The difference in levels of wasting is statistically significant but probably too small to be meaningful.
Figure 24
Stunting and Wasting among Children under Five Years by Mother's Education, Malawi

Note: *Stunting* reflects chronic malnutrition; *wasting* reflects acute malnutrition; Source: Malawi DHS 2000
A household’s source of drinking water is linked with its socioeconomic status. Poor households are more likely to obtain drinking water from contaminated sources such as surface water or open wells. Without an adequate supply of good-quality water, the risks of food contamination, diarrheal disease, and malnutrition rise. Infants and children from households that do not have a private tap are at greater risk of being malnourished than those from households with this amenity. Among the households surveyed with children under five years, 23 percent use piped water, 67 percent obtain their drinking water from a well, and 11 percent of households use surface water.

- Children whose drinking water is well water or surface water are more likely to be stunted (52 percent and 49 percent, respectively) than children with access to piped water (39 percent).

- Children living in households whose drinking water is well water or surface water are more likely to be wasted (6 percent and 7 percent, respectively) than children with access to piped water (4 percent).
Figure 25
Stunting and Wasting among Children under Five Years by Source of Drinking Water, Malawi

Note: *Stunting* reflects chronic malnutrition; *wasting* reflects acute malnutrition.

Source: Malawi DHS 2000
The type of toilet used by a household reflects its wealth, and poor households are less likely to have adequate toilet facilities. Inadequate sanitation facilities result in an increased risk of diarrheal disease, which contributes to malnutrition. Infants and children from households that do not have ready access to a flush toilet are at greater risk of being malnourished than children from households with this amenity. In Malawi, 80 percent of households have access to a pit latrine, 2 percent have access to a flush toilet, and 18 percent of survey households have no facilities.

- **Households that do not have any toilet facilities have the highest proportion of stunting in children under five years of age (56 percent).**

- **Households with access to flush toilets have the lowest proportion of children stunted (27 percent).**

- **Households that do not have any toilet facilities or that only have a pit latrine have a larger proportion of children under five years of age who are wasted (7 percent and 5 percent, respectively).**

- **In households with access to flush toilets, the proportion of children wasted is only 2 percent.**
Figure 26
Stunting and Wasting among Children under Five Years by Type of Toilet, Malawi

Note: *Stunting* reflects chronic malnutrition; *wasting* reflects acute malnutrition.

Source: Malawi DHS 2000
Basic Influences
Figure 27: Stunting and Wasting among Children under Five Years by Region, Malawi

In Malawi,

- **Stunting ranges from 39 to 56 percent among children in the three regions.** The highest level of stunting (56 percent) was reported in the Central Region; 45 percent of children in the Southern Region were stunted; while the lowest level of stunting (39 percent) was reported in the Northern Region.

- **In the Southern Region, 6 percent of children are wasted, while in the Northern and Central regions, 5 percent of children are wasted.**
Figure 27
Stunting and Wasting among Children under Five Years by Region, Malawi

Note: *Stunting* reflects chronic malnutrition; *wasting* reflects acute malnutrition.

Source: Malawi DHS 2000
In Malawi,

- **Fifty-one percent of rural children are stunted.** In the capital city of Lilongwe, 37 percent of children are affected by chronic malnutrition. In other urban areas (small cities or towns), the rate of stunting is 33 percent.

- **Six percent of children living in rural areas, 4 percent of children in the capital city of Lilongwe, and 5 percent of children in other urban areas are wasted.** This difference is not statistically significant.
Figure 28
Stunting and Wasting among Children under Five Years by Urban-Rural Residence, Malawi

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition.

Source: Malawi DHS 2000
Maternal Nutritional Status
Besides being of concern in its own right, a mother’s nutritional status affects her ability to successfully carry, deliver, and care for her children. There are generally accepted standards for indicators of malnutrition among adult women that can be applied.

Malnutrition in women can be assessed using the body mass index (BMI), which is defined as a woman’s weight in kilograms divided by the square of her height in meters (kg/m2). When the BMI falls below the suggested cutoff point of 18.5, this indicates chronic energy deficiency or undernutrition among non-pregnant, non-lactating women. When the BMI rises to above 25, women are considered to be overweight.

- Seven percent of all mothers of children under age five in Malawi are undernourished.

- The highest level of maternal undernutrition is in the Southern Region, where 8 percent of mothers of children under five are underweight.

- Eleven percent of all mothers of children under five are overweight.

- There is no difference in overweight status by region.
Figure 29
Malnutrition among Mothers of Children under Five Years by Region, Malawi

Note: Maternal undernutrition is the percentage of mothers whose BMI (kg/m²) is less than 18.5. Maternal overnutrition is the percentage of mothers whose BMI is greater than 25.

Source: Malawi DHS 2000
In Malawi,

- The undernutrition rate for mothers of children under five is lowest in the capital city of Lilongwe (3 percent) and is highest in rural areas (7 percent).

- The overnutrition rate for mothers of children 0-59 months is lowest (10 percent) in rural areas and highest in the capital city of Lilongwe (23 percent).
Figure 30
Malnutrition among Mothers of Children under Five Years by Residence, Malawi

Note: Maternal undernutrition is the percentage of mothers whose BMI (kg/m²) is less than 18.5. Maternal overnutrition is the percentage of mothers whose BMI is greater than 25.

Source: Malawi DHS 2000
Figure 31: Malnutrition among Mothers of Children under Five Years by Education, Malawi

In Malawi,

- There is no relationship between mother’s education and maternal undernutrition.

- The rate of maternal overnutrition is highest among women with at least a secondary school education (24 percent).
Figure 31
Malnutrition among Mothers of Children under Five Years by Education, Malawi

Note: Maternal undernutrition is the percentage of mothers whose BMI (kg/m²) is less than 18.5. Maternal overnutrition is the percentage of mothers whose BMI is greater than 25.

Source: Malawi DHS 2000
Figure 32: Malnutrition among Mothers of Children under Three Years, Malawi Compared with Other Sub-Saharan Countries

Malnutrition among mothers is likely to have a major impact on their ability to care for themselves and their children. Women less than 145 centimeters in height are considered too short. Mothers who are too short (a condition largely due to stunting during childhood and adolescence) may have difficulty during childbirth because of the small size of their pelvis. Evidence also suggests there is an association between maternal height and low birth weight. Underweight status in women is assessed using the body mass index.

In Malawi,

- **Two-and-a-half percent of mothers of children under five are too short (<145 cm).** This is the fifth highest rate among the sub-Saharan countries surveyed.

- **Approximately 7 percent of mothers of children under five are undernourished (BMI<18.5).** This is the third lowest rate among the sub-Saharan countries surveyed.
Figure 32
Malnutrition among Mothers of Children under Three Years, Malawi Compared with Other Sub-Saharan Countries

Note: Short is the percentage of mothers under 145cm; undernourished is the percentage of mothers whose BMI (kg/m²) is less than 18.5. Pregnant women and those who are less than two months postpartum are excluded from BMI calculation.

Source: DHS Surveys 1995-2000
Appendices
Appendix 1
Stunting, Wasting, and Underweight Rates by Background Characteristics
Malawi 2000

<table>
<thead>
<tr>
<th>Background characteristic</th>
<th>Stunted</th>
<th>Wasted</th>
<th>Underweight</th>
<th>Background characteristic</th>
<th>Stunted</th>
<th>Wasted</th>
<th>Underweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child’s age in months</td>
<td></td>
<td></td>
<td></td>
<td>Regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>11.4</td>
<td>9.4</td>
<td>5.9</td>
<td>Northern</td>
<td>39.0</td>
<td>4.7</td>
<td>17.4</td>
</tr>
<tr>
<td>6-11</td>
<td>28.2</td>
<td>11.9</td>
<td>25.6</td>
<td>Central</td>
<td>55.5</td>
<td>5.0</td>
<td>27.9</td>
</tr>
<tr>
<td>12-17</td>
<td>49.9</td>
<td>7.8</td>
<td>38.2</td>
<td>Southern</td>
<td>45.3</td>
<td>6.2</td>
<td>25.0</td>
</tr>
<tr>
<td>18-23</td>
<td>66.1</td>
<td>5.7</td>
<td>34.8</td>
<td>n=9,318</td>
<td>p<0.001</td>
<td>p<0.05</td>
<td>p<0.001</td>
</tr>
<tr>
<td>24-29</td>
<td>55.7</td>
<td>3.7</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>55.5</td>
<td>2.1</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-47</td>
<td>59.1</td>
<td>1.5</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-59</td>
<td>57.4</td>
<td>1.1</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=9,318</td>
<td>p<0.001</td>
<td>p<0.001</td>
<td>p<0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender of child</td>
<td></td>
<td></td>
<td></td>
<td>Urban-rural residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>50.5</td>
<td>6.0</td>
<td>25.8</td>
<td>Urban</td>
<td>34.2</td>
<td>4.9</td>
<td>12.8</td>
</tr>
<tr>
<td>Female</td>
<td>47.6</td>
<td>NS</td>
<td>25.1</td>
<td>Lilongwe</td>
<td>37.2</td>
<td>3.9</td>
<td>13.3</td>
</tr>
<tr>
<td>n=9,318</td>
<td>p<0.01</td>
<td></td>
<td>NS</td>
<td>Other urban</td>
<td>51.2</td>
<td>5.5</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rural</td>
<td>p<0.001</td>
<td>5.6</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n=9,318</td>
<td></td>
<td>NS</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Overall</td>
<td>49.0</td>
<td>5.5</td>
<td>25.4</td>
<td>Overall</td>
<td>49.0</td>
<td>5.5</td>
<td>25.4</td>
</tr>
</tbody>
</table>

Note: Level of significance is determined using the chi-square test.
NS = Not significant at p≤0.05

83
Appendix 2
WHO/CDC/NCHS International Reference Population Compared with the Distribution of Malnutrition in Malawi

The assessment of nutritional status is based on the concept that in a well-nourished population, the distributions of children’s height and weight, at a given age, will approximate a normal distribution. This means that about 68 percent of children will have a weight within one standard deviation of the mean for children of that age or height, and a height within one standard deviation of the mean for children of that age. About 14 percent of children will be between one and two standard deviations above the mean; these children are considered relatively tall or overweight for their age or relatively overweight for their height. Another 14 percent will be between one and two standard deviations below the mean; these children are considered relatively short or underweight for their age or relatively thin for their height. Of the remainder, 2 percent will be very tall or very overweight for their age or very overweight for their height; that is, they are more than two standard deviations above the mean. Another 2 percent will fall more than two standard deviations below the mean and be considered malnourished. These children are very short (stunted), very underweight for their age, or very thin for their height (wasted). For comparative purposes, nutritional status has been determined using the International Reference Population defined by the United States National Center for Health Statistics (NCHS standard) as recommended by the World Health Organization and the Centers for Disease Control and Prevention.

Appendix 2 includes four curves: weight-for-age, height-for-age, and weight-for-height graphed against the normal curve. The weight-for-height curve is closest to the normal curve. Therefore, the proportion of malnourished children according to this index is closer to that which would be seen in the reference population. Height-for-age and weight-for-age, however, are almost entirely to the left of the standard curve indicating that there is a large number of children who are malnourished for their age. The implications are that interventions are needed to address malnutrition and undernutrition to improve child health, which will result in a shift in the curves closer to the reference standard.
Appendix 2
WHO/CDC/NCHS International Reference Population Compared with the Distribution of Malnutrition in Malawi

Standard Deviations from Mean (Z-score)