
Geospatial Modelling of Changes and Inequality
in Nutrition Status among Children in Mali

DHS Further Analysis Reports No. 137

April 2020

This publication was produced for review by the United States Agency for International Development. 
It was prepared by Rukundo K. Benedict, Ben Mayala, Jean de Dieu Bizimana, Ibrahima Cissé,
Idrissa Diabaté, and Kissia Sidibe.

Further Analysis of the Mali Demographic and Health Surveys 2006-2018





DHS Further Analysis Reports No. 137 

Geospatial Modelling of Changes and Inequality 
in Nutrition Status among Children in Mali: 

Further Analysis of the Mali Demographic and 
Health Surveys 2006-2018 

 
 
 

Rukundo K. Benedict1 
Benjamin K. Mayala1 

Jean de Dieu Bizimana2 
Ibrahima Cisse3 
Idrissa Diabaté4 
Kissia Sidibe4 

 
ICF 

Rockville, Maryland, USA 
 

April 2020 
 
 
 
 
 

1 The DHS Program, ICF 
2 The DHS Program, Vysnova 
3 Direction Générale de la Santé – Département de la Nutrition 
4 Institut National de la Statistique (INSTAT) 

 
 

Corresponding authors: Rukundo K. Benedict and Benjamin K. Mayala, The DHS Program, ICF, 
530 Gaither Road, Suite 500, Rockville, MD 20850, USA; phone: 301-572-0537; email: 
Rukundo.benedict@icf.com 



 

Acknowledgments: The authors wish to thank Trinadh Dontamsetti for assisting with data preparation.  

Editor: Diane Stoy 
Document Production: Natalie Shattuck 

This report present findings from a further analysis of the 2018 Mali Demographic and Health Survey. The 
report is a publication of The DHS Program, which collects, analyses, and disseminates data on fertility, 
family planning, maternal and child health, nutrition, and HIV/AIDS. Funding was provided by the U.S. 
Agency for International Development (USAID) through the DHS Program (#720-0AA-18C-00083). The 
opinions expressed here are those of the authors and do not necessarily reflect the views of USAID and 
other cooperating agencies. 

Recommended citation: 

Benedict, Rukundo K., Benjamin K. Mayala, Jean de Dieu Bizimana, Ibrahima Cisse, Idrissa Diabaté, 
Kissia Sidibe. 2019. Geospatial Modelling of Changes and Inequality in Nutrition Status among Children 
in Mali: Further Analysis of the Mali Demographic and Health Surveys 2006-2018. DHS Further 
Analysis Reports No. 137. Rockville, Maryland, USA: ICF. 



 

iii 

CONTENTS 

TABLES ........................................................................................................................................................ v 
FIGURES .................................................................................................................................................... vii 
ABSTRACT ................................................................................................................................................. ix 
ACRONYMS AND ABBREVIATIONS ........................................................................................................ xi 

1 INTRODUCTION .............................................................................................................................. 1 
1.1 Programmatic Context ........................................................................................................ 2 

2 DATA AND METHODS ................................................................................................................... 3 
2.1 Variables included in the Spatial Models ............................................................................ 3 

2.1.1 DHS covariates constructed for this analysis ........................................................ 3 
2.1.2 Pre-existing geospatial covariates ......................................................................... 4 

2.2 Geostatistical Model ............................................................................................................ 4 
2.2.1 Overview of the modelling approach...................................................................... 4 
2.2.2 Covariate modelling using stacked generalisation ................................................. 5 
2.2.3 Model specification and development .................................................................... 6 
2.2.4 Pixel-level model estimates ................................................................................... 8 
2.2.5 Model estimates at administrative level 2 .............................................................. 8 
2.2.6 Model validation ..................................................................................................... 9 

3  RESULTS ...................................................................................................................................... 11 
3.1 Model Estimates for Select Covariates ............................................................................. 11 
3.2 Cercles-level Estimates of Stunting and Wasting among Children .................................. 12 

3.2.1 Prevalence of stunting and wasting in 2018 ........................................................ 12 
3.2.2 Prevalence of stunting and wasting in 2006 ........................................................ 14 

3.3 Change in Prevalence of Stunting and Wasting between 2006 and2018 ........................ 15 
3.3.1 Relative importance of determinants of stunting and wasting ............................. 16 

4 DISCUSSION ................................................................................................................................. 19 

5 CONCLUSION ............................................................................................................................... 21 

REFERENCES ............................................................................................................................................ 23 

APPENDIX .................................................................................................................................................. 29 
 





 

v 

TABLES 

Table 1 Definition of DHS indicators in the study ................................................................... 3 

Table 2 Definition of geospatial variables in the study............................................................ 4 

 

Appendix Table 1 Prevalence of stunting, 95% confidence intervals, and change in stunting 
prevalence by cercles .............................................................................................. 31 

Appendix Table 2 Prevalence of wasting, 95% confidence intervals, and change in wasting 
prevalence by cercles .............................................................................................. 32 

Appendix Table 3 Prediction metrics for each indicator aggregated at cercles-level ........................... 33 

 





 

vii 

FIGURES 

Figure 1 Geospatial modelling flowchart .................................................................................. 5 

Figure 2 INLA mesh triangulation for Mali ................................................................................ 8 

Figure 3 Cercles level estimates of select covariates ............................................................ 11 

Figure 4 Prevalence of stunting (A) and the width of 95% credible interval (B) at the  
cercles level, 2018 ................................................................................................... 12 

Figure 5 Prevalence of wasting (A) and the width of 95% credible interval (B) at the  
cercles level, 2018 ................................................................................................... 13 

Figure 6 Prevalence of stunting (A) and the width of 95% credible interval (B) at the  
cercles level, 2006 ................................................................................................... 14 

Figure 7 Prevalence of wasting (A) and the width of 95% credible interval (B) at the  
cercles level, 2006 ................................................................................................... 14 

Figure 8 Cercles-level percent change in stunting prevalence between 2006 and 2018 ...... 15 

Figure 9 Cercles-level percent change in wasting prevalence between 2006 and 2018 ....... 15 

Figure 10 Percentage contribution of covariates to the stunting models in (A) 2006 and  
(B) 2018 ................................................................................................................... 16 

Figure 11 Percentage contribution of covariates to the wasting models in (A) 2006 and  
(B) 2018 ................................................................................................................... 17 

 

Appendix Figure 1 DHS covariates maps at the pixel level ................................................................... 29 

Appendix Figure 2 Comparison of stunting predictions for (A) 2006 and (B) 2018, aggregated at 
cercles-level with 95% uncertainty intervals, plotted against data observations  
from the same area aggregated to the cercles-level ............................................... 33 

Appendix Figure 3 Comparison of wasting predictions for (A) 2006 and (B) 2018, aggregated at 
cercles-level with 95% uncertainty intervals, plotted against data observations  
from the same area aggregated to the cercles-level ............................................... 33 





 

ix 

ABSTRACT 

Background: Strengthening Mali’s multisectoral nutrition policies is key to achieving the Sustainable 
Development Goals for child malnutrition by 2030. Although the decline in stunting and wasting prevalence 
over the last decade is promising, we need to understand the reasons for the decline in order to create future 
policies and programmes. The aim of this study was to examine factors associated with stunting and wasting 
in Mali in 2006 and 2018 by using geospatial modelling techniques.  

Methods: We used Demographic and Health Survey data from 2006 and 2018, and converted key child, 
maternal, and household variables into geospatial covariates. These variables, together with selected 
environmental and demographic geospatial covariates, were used in a Bayesian geospatial model to provide 
estimates for stunting and wasting at the subnational level for 2006 and 2018, respectively. We computed 
the difference in malnutrition estimates between 2006 and 2018 and then determined the covariates 
associated with stunting and wasting. 

Results: The cercles-level maps show how stunting and wasting estimates varied across Mali and how the 
estimates changed between the two survey years. Results from the stunting models in 2006 and 2018 
showed that children’s minimum dietary diversity, mother’s education, and mother’s body mass index were 
the leading factors associated with stunting. Children’s minimum dietary diversity and aridity were 
associated with wasting in both years.  

Conclusions: With a Bayesian geospatial modelling approach, this study generated subnational estimates 
of stunting and wasting in Mali, and identified key factors associated with undernutrition. This approach 
allows the Government of Mali to target programmatic efforts at lower administrative levels and to focus 
resources on complementary feeding, women’s nutrition, and environmental factors related to child 
undernutrition.  

Key words: Mali, stunting, wasting, geospatial modelling
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1 INTRODUCTION 

Optimal nutrition is critical to the health, economic, and social development of nations. Globally, 
undernutrition in children under age 5 contributes to almost half of all child deaths through a series of 
interconnected pathways that involve the food and healthcare environment, care practices, infection, and 
poor nutrient intake (Black et al. 2013; United Nations Children’s Fund 2015). Progress on addressing 
undernutrition has been slow, with over 140 million children stunted and over 45 million children wasted 
(Development Initiatives 2018; UNICEF/WHO/World Bank Group 2020). Although countries have 
implemented strategies that address stunting and wasting, evidence suggests that many countries may not 
be doing enough to meet the global nutrition targets of reducing the number of stunted children by 40% and 
wasting to less than 5% (Development Initiatives 2018; WHO 2014b; WHO/UNICEF/WFP 2014).  

The Government of Mali (GoM) has made under age 5 undernutrition a clear priority. During the last 
decade, the country experienced an 11% decline in stunting prevalence and a 6% decline in wasting 
prevalence at the national level (INSTAT, CPS/SS-DS-PF, and ICF 2019). This decline is also found at the 
regional level, although there is variation in the extent of the decrease across regions (INSTAT, CPS/SS-
DS-PF, and ICF 2019).  

Mali joined the Scaling Up Nutrition (SUN) movement in 2011 to address malnutrition through coordinated 
multisectoral responses (Scaling Up Nutrition 2020). In 2013, the country adopted its 10-year National 
Nutrition Policy that emphasises the importance of the multisectoral nature of nutrition and includes 
technical and financial partners, civil society, and the private sector (Gouvernement du Mali 2013). To 
support the implementation of the nutrition policy, the 2014-2018 Multisectoral Nutrition Action Plan was 
developed to ensure access to adequate food and the population’s well-being, and to guarantee sustainable 
national development (Gouvernement du Mali 2014). The plan also includes several World Health 
Assembly targets for improving maternal, infant, and young child nutrition (WHO 2014a). 

Despite the government’s commitment to improving malnutrition, the country may not be able to meet the 
Sustainable Development Goal (SDG) targets for stunting and wasting among children under age 5 
(Osgood-Zimmerman et al. 2018). There is a paucity of literature on the predictors of stunting and wasting 
in Mali that may be hampering efforts to further improve undernutrition. One 2018 study by Sobgui et al. 
examined child, household, and community-level variables associated with wasting and stunting. The 
authors identified several predictors of wasting and stunting such as household diet diversity, livestock 
ownership, child’s age, child’s sex, and diarrhoea (Sobgui et al. 2018). However, since the study only 
focused on rural areas in the Sikasso and Mopti regions, the findings are not generalizable to the entire 
country (Sobgui et al. 2018).  

To support efficient programme implementation, both national and disaggregated data are needed for Mali 
to continue to combat undernutrition in children. Although national level data are useful for policymakers 
(Li et al. 2019), analyses at this level do not provide comprehensive estimates at the lower administrative 
levels where health programmes are designed and implemented. Through the use of geospatial modelling 
techniques that leverage existing global positioning system coordinates in Demographic and Health Survey 
(DHS) survey clusters and relationships with geospatial covariates, high resolution maps can be developed 
that provide estimates of indicators at the lower levels (Gething and Burgert-Brucker 2017; Utazi et al. 
2018). 
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Geospatial modelling techniques can be used to examine changes in health and demographic indicators 
over time (Cooper et al. 2019; Kinyoki et al. 2020; Osgood-Zimmerman et al. 2018). Much of this research 
has focused on very large geographical areas, although the techniques can also be applied to individual 
countries. The purpose of this study is to use geospatial modelling techniques to estimate the prevalence of 
stunting and wasting at the national and sub-national administrative levels in Mali at two different time 
points and to compute the change in these estimates over time. The study also aims to explore the child, 
maternal, household, and environmental factors that are associated with the undernutrition indicators 
between 2006 and 2018. 

1.1 Programmatic Context 

The GoM has made concerted efforts over the last decade to end malnutrition and has developed multisector 
nutrition policies and programmes that ensure coherent, coordinated actions at all levels. Beginning in 2010 
with the National Nutrition Forum, the GoM committed to and joined the SUN movement in 2011 and 
subsequently developed the 10-year National Nutrition Policy in 2013. The success of the National 
Nutrition Policy has relied on strong, effective, multisectoral coordination at all levels, from the central 
level to the community level. 

At the national level, the GoM introduced the National Nutrition Council (CNN), which includes all 
ministries involved in nutrition at the highest level, the Food Security Commission, and local authorities, 
as well as representatives of civil society and the private sector. The CNN’s role is to ensure that nutrition 
is considered in all national strategies, to approve the intersectoral strategic plan for nutrition, and to 
advocate for nutrition. The GoM also introduced the Intersectoral Technical Committee for Nutrition 
(CTIN), which is responsible for coordinating multisector plans and implementing, monitoring and 
evaluating the 2014-2018 Multisectoral Nutrition Action Plan (PAMN). Both the CNN and CTIN are 
chaired by the Ministry of Health and their work is conducted through the National Coordination Unit. 

At the decentralised level, the activities of CNN and CTIN are implemented through existing structures. 
These include the Regional Orientation, Coordination and Monitoring of Development Actions Committees 
(CROCSAD); Local Orientation, Coordination and Monitoring of Development Actions Committees 
(CLOCSAD); and the Communal Orientation, Coordination and Monitoring Development Actions 
(CCOCSAD). Together, these institutions work to ensure implementation of the National Nutrition Policy 
throughout the country. 

In alignment with the GoM’s focus on a multisectoral approach to nutrition, Mali has adopted several other 
policies and strategies and has implemented nutrition programmes and projects in recent years. One 
example is the 2017 National Policy for Food and Nutrition Security (PolNSAN). The PolNSAN aligns 
with Mali’s economic and social development priorities, as defined by the Economic Recovery and 
Sustainable Development Framework (CREDD). The main objective is to improve coordination of sectoral 
policies, strengthen governance in the areas of food security and nutrition, and promote regional and 
subregional integration processes (Gouvernement du Mali 2017). Another example is the National Strategy 
for Feeding Infants and Young Children that aims to improve, through optimal nutrition, the nutritional 
status, growth, development and health of infants and young children, and is aligned with health sector 
programming (Gouvernement of Mali 2014). 
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2 DATA AND METHODS 

2.1 Variables included in the Spatial Models 

2.1.1 DHS covariates constructed for this analysis 

The DHS indicators included in spatial models were taken from the Mali 2006 and 2018 DHS surveys. 
Selection of the indicators was based on the known associations of these indicators to stunting and wasting, 
based on the UNICEF conceptual framework for undernutrition and related literature (Frongillo, de Onis, 
and Hanson 1997; United Nations Children’s Fund 2015). We obtained 404 and 345 point clusters with the 
coordinates of their geographical locations for the 2006 and 2018 surveys, respectively. For this analysis, 
the DHS covariates were estimated by using the same modelling approach described in Section 2.2.3. Table 
1 describes the 17 DHS indicators included in the model, grouped into child, maternal, household, and 
environmental levels. Table 1 also describes the coding of the geospatial covariates in the model. 

Table 1 Definition of DHS indicators in the study 

DHS indicator Definition 
Geospatial DHS  

indicator codinga 

Child-level factors 
  

Anaemia  Children age 6-59 months with any anaemia (haemoglobin < 11g/dL) Yes/No 
Current breastfeeding Children age 0-23 months who were breastfed the day before the survey Yes/No 
Diarrhoea in the past 2 weeks Children under age 5 with diarrhoea at any time in the 2 weeks before the 

survey 
Yes/No 

Minimum Diet Diversity (MDD)b Children age 6-23 months who consumed foods belonging to at least 5 
food groups out of the 8 groups the day before the survey 

Yes/No 

Minimum Meal Frequency 
(MMF)b 

Children age 6-23 months who ate solid, semi-solid, or soft foods (including 
milk foods for non-breastfed children) the previous day the minimum 
number of times or more often 

Yes/No 

Vaccination coverage Children age 12-23 months who received all age appropriate vaccinations 
(diphtheria-tetanus-pertussis (DPT) 1-3, measles 1, polio 1-3, BCG) 

Yes/No 

Vitamin A supplementation Children age 6-59 months who received vitamin A supplements Yes/No 
Maternal-level factors 

  

Antenatal care (ANC) 
attendance  

Women age 15-49 who had a live birth in the 5 years before the survey and 
who had 4+ ANC visits 

Yes/No 

Education Women age 15-49 by highest level of education completed No education/ 
Any education 

Employment status Women age 15-49 by employment status Not employed/ 
Employed 

Parity Number of children born to women age 15-49. (Population mean of 4 
children was used as cut-off for coding.) 

1-3 children/  
4+ children 

Short stature Women age 15-19 with a height-for-age z-score less than -2SD and 
women age 20-49 with height <145cm 

Yes/No 

Overweight/obese body mass 
index (BMI) 

Women age 15-19 with a BMI-for-age z-score greater than +1SD and 
women age 20-49 with a BMI ≥25.0kg/m2 

Yes/No 

Underweight BMI  Women age 15-19 with a BMI-for-age z-score less than -2SD and women 
age 20-49 with a BMI <18.5kg/m2  

Yes/No 

Household-level factors 
  

Improved water source De jure households whose main source of drinking water is an improved 
water source (tap water, standpipes, pump wells, boreholes, dug wells, 
protected sources, rainwater, water delivered by a tank truck or by cart 
with a small tank, and bottled or sachet water) 

Yes/No 

Open defecation/no toilet facility Households with no toilet facility or that use a bush/field Yes/No 
Wealth index Household wealth index is based on household size, water source, type of 

toilet, primary cooking methods, materials used for housing construction, 
and ownership of assets 

Lower (quintiles 1-2)/ 
Higher (quintiles 3-5) 

a The DHS variables are transformed into binary interpolated geospatial variables before being entered into the models.  
b Indicators for MMF and MDD in 2006 and 2018 are not fully comparable because the food lists included in surveys prior to the 2008 
WHO Infant and Young Child Feeding guidelines were different.  
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2.1.2 Pre-existing geospatial covariates 

In addition to the DHS covariates, we assembled geospatial covariates data layers, which were obtained 
from publicly available remote sensing sources. The geospatial covariates were selected for their potential 
to predict the stunting and wasting outcomes and because they have previously been shown to correlate 
with the development of indicators in different settings (Alegana et al. 2015; Gething et al. 2015; Osgood-
Zimmerman et al. 2018). Table 2 describes the geospatial covariates. 

Table 2 Definition of geospatial variables in the study 

Indicator Definition 
Spatial 

Resolution 

Aridity Index The ratio of annual precipitation to annual potential evapotranspiration 10x10 km 
Elevation Global elevation above earth’s sea level 1x1 km 
Enhanced Vegetation Index 

(EVI)  
The average vegetation index value  

5x5 km 
Daytime Land Surface 

Temperature (LST) 
The average annual land surface temperature during the day 

5x5 km 
Under 5 population count Annual population census estimates for males and females in 5-year age groups 1x1 km 

 
The geospatial covariate data layers used in this analysis were acquired from a myriad of data sources, and 
have different spatial references, projections, extents, and dimensions. We used the ‘raster’ and ‘shapefiles’ 
packages in the R software (R Core Team 2019) to (1) re-project to the same coordinate reference system 
(the standard-based World Geodetic System 1984), (2) crop and mask to an extent that encompassed the 
boundaries of the study area, and (3) resample with bilinear interpolation to the same spatial resolution used 
in the modelling. 

2.2 Geostatistical Model 

2.2.1 Overview of the modelling approach 

Figure 1 provides a conceptual overview of the geospatial modelling framework used for modelling DHS 
indicators and the underlying covariates, and for producing the subnational level estimates. The approach 
involved the following steps: 

Step 1 We summarised the individual-level DHS survey data to the finest spatial resolution (latitude and 
longitude) that represented the location of the survey cluster. 

Step 2 The covariates and the cluster (point) level data were imported into the R environment for 
statistical computing. We then applied the ‘raster’ package to extract the corresponding covariate 
pixel values at each survey cluster point. 

Step 3 The point level data (from Step 2) and their associated covariates were used in the stacked 
generalisation ensemble model (described in Section 2.2.2). The prediction surfaces generated 
from the stacked ensemble models were then used as covariates to calibrate the final geospatial 
Bayesian model. The outputs of the final model are pixel-level mean estimates with associated 
uncertainty at the 5 x 5 km resolution. 
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Step 4 We aggregated the prediction output from the final model (Step 3) to the second subnational 
administrative level (ADMIN 2) level. 

 
Figure 1 Geospatial modelling flowchart* 
 

 
*Modified from Mayala et al. 2019. 

2.2.2 Covariate modelling using stacked generalisation 

In many applications, the generic geospatial modelling is sufficient to produce a highly predictive model. 
However, when modelling outcomes in which the underlying process is linked to the covariates and 
demographic parameters through complex non-linearities and interactions, a simple linear mean of the form 𝛽𝑋 can be insufficient. We therefore use a framework formed from a body of theory known as “stacked 
generalisation” to pre-process the covariates through a set of highly predictive machine learning methods 
(Breiman 1996; Wolpert 1992). Stacked generalisation is a general ensemble modelling approach that 
combines multiple model algorithmic methods to produce a meta-model that has equal or better predictive 
performance relative to a single modelling approach. 

We employed this approach to capture the potential complex interactions and non-linear effects among the 
geospatial covariates. The approach has been shown to improve the predictive accuracy of the geostatistical 
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models, as compared to prediction with any single method (Bhatt et al. 2017). Numerous recent studies 
have implemented the stacking approach to derive continuous estimated surfaces of indicators of interest 
from DHS household surveys. These include mapping of HIV prevalence (Dwyer-Lindgren et al. 2019), 
vaccine coverage (Mayala et al. 2019; Mosser et al. 2019), exclusive breastfeeding (Bhattacharjee et al. 
2019), child growth failure (Osgood-Zimmerman et al. 2018), education attainment (Graetz et al. 2018), 
and childhood diarrhoeal diseases (Reiner et al. 2018). 

Our choice of algorithmic methods included (1) GAM: generalised additive model (Wood 2017), (2) 
LASSO: least absolute shrinkage and selection operator regression (Zou and Hastie 2005) and (3) 
XGBOOST: gradient boosting (Friedman 2001). We fitted the three algorithmic methods (submodels) to 
each set of the selected DHS indicator survey data by using the geospatial covariates (described in Table 
2) as exploratory predictors. The submodels were implemented in R statistical for the computing 
environment by using packages ‘caret’, ‘mgcv’, ‘xgboost’, and ‘glmnet’ (R Core Team 2019).  

To make better predictions and avoid overfitting, each submodel was fit by using five-fold cross–validation, 
which generated the out-of-sample predictions that were included as exploratory geospatial covariates when 
fitting the geostatistical model. In addition, each submodel was fit with a full dataset, which produced the 
in-sample predictions that were then used as covariates when generating predictions from the full geospatial 
Bayesian model. A logit transformation of the predictions placed the out-of-sample and in-sample 
predictions on the same scale as the linear predictor in the geostatistical model. This process has been 
described in detail by Bhatt et al. (2017) and Dwyer-Lindgren et al. (2019).  

2.2.3 Model specification and development 

As described in the previous section, the stacked generalisation ensemble modelling approach allows for 
non-linear relationships and interactions between the geospatial covariates to better predict the DHS 
indicators. Since the approach does not explicitly account for spatial patterns in the data, we used the 
Bayesian geostatistical modelling framework in our analysis to account for the spatial dependence. 

For each indicator of interest, we modelled 𝑌௜, the number of ‘positive’ individuals among those sampled 
at cluster location 𝑠௜ , 𝑖 = 1, . . .𝑛, using a binomial spatial regression with a logit link function (Banerjee, 
Carlin, and Gelfand 2014; Diggle and Giorgi 2019). If 𝑁௜is the total number of individuals sampled at 
cluster 𝑠௜ , the model can be written as: 𝑌௜  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝑁௜ ,𝑝௜ሻ 𝑙𝑜𝑔𝑖𝑡( 𝑝௜) = 𝛽଴ +  𝛽Χ௜ + 𝜔௜ +  𝜀௜ 𝜔௜  ~ 𝐺𝑃(0, Σ) 

Where: 

- 𝛽଴ denotes the intercept, 

- 𝑝௜ is the probability, representing the underlying prevalence at cluster 𝑠௜, 
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- 𝑋௜ = ൫𝑋௜ଵ,𝑋௜ଶ, . . .𝑋௜௠൯ is the vector of logit-transformed covariates for location 𝑠௜ obtained from 
the submodels (GAM, LASSO, and XGBOOST), generated from the stacked generalisation 
modelling (as described in Section 2.2.2), 

- 𝛽 = (𝛽ଵ,𝛽ଶ, . . .𝛽௠) vector of regression coefficients on the submodels represent their respective 
predictive weighting and are constrained to the sum of one (Bhatt et al. 2017), 

- 𝜔௜ is a correlated spatial error term, accounting for spatial autocorrelation between data points, and 

- 𝜀௜  ~ Ν൫0,𝜎௡௨௚ଶ  ൯ is an independent error term known as the nugget effect. 

The spatial error term 𝜔௜ is modelled as Gaussian process with a zero-mean and spatially structured 
covariance matrix ∑. 

The spatial covariance ∑ was modelled using a stationary and isotropic Matérn function (Banerjee, Carlin, 
and Gelfand 2014), given by: 

∑൫𝑠௜ , 𝑠௝൯  =  𝜎ଶΓ(𝜆)2ఒିଵ ቆ𝜅𝑑൫𝑠௜ , 𝑠௝൯ఒ𝐾ఒ ቀ𝜅𝑑൫𝑠௜ , 𝑠௝൯ቁቇ 

Where 𝑑൫𝑠௜ , 𝑠௝൯ is the distance between the two locations and 𝜎ଶis the spatial process variance. The term 𝐾ఒ denotes the modified Bessel function of second kind and order 𝜆, which measures the degree of 
smoothness. Conversely, 𝜅 is a scaling parameter related to the range 𝑟, which is the distance at which the 
spatial correlation becomes almost null (smaller than 10%), and the definition for the range is given in 
equation below. See example by Lindgren (2011) for a detailed description. 

𝑟 = √8𝜆𝜅  

The Bayesian geostatistical model analysis was implemented through a stochastic partial differential 
equations (SPDE) approach in the recently developed integrated nested Laplace approximation (INLA) 
algorithm as applied in the R-INLA package (Rue, Martino, and Chopin 2009). This algorithm provides an 
effective estimation and spatial prediction strategy for spatial data by specifying a spatial data process, as 
well as a spatial covariance function depending on the locations and time points at which infection and 
covariate data are collected (Rue, Martino, and Chopin 2009). The INLA approach offers the advantage of 
accurate and fast results as compared to the Markov Chain Monte Carlo algorithms, which have problems 
of convergence and dense covariate matrices that increase the computational time. Thus, for large datasets, 
spatial and spatiotemporal estimation could require several days of computing time (Blangiardo and 
Cameletti 2015; Cameletti et al. 2012; Rue, Martino, and Chopin 2009). 

The SPDE allow us to define a grid on spatial data by creating a constrained refined Delaunay triangulation 
(usually called mesh) over the study region. The mesh needs to cover the region of study and an outer 
extension to avoid boundary effects, which would increase the variance near the boundary. To fit a mode 
with this approach, observations are treated as initial vertices for the triangulation. Further vertices are then 
added or removed to satisfy triangulation quality constraints defined by three parameters: (1) mesh offset, 



 

8 

(2) maximum edge, and (3) cutoff (Blangiardo and Cameletti 2015; Cameletti et al. 2012; Rue, Martino, 
and Chopin 2009).  

We specified a cutoff value to avoid building too many small triangles around the clustered data locations. 
An offset value defined how far the mesh should be extended in the inner part (within areas where 
predictions are required) and the outer part (outside the area where predictions are required). The maximum 
edge value specified the maximum allowed edge length of the triangle in the inner domain and the outer 
extension. The inner maximum edge value was small enough to allow the triangulation to support functions 
with small enough features, and typically smaller, than the spatial correlation range of the model (Lindgren, 
Rue, and Lindström 2011). Figure 2 provides an example of the finite mesh used for modelling. 

As opposed to the regular grid, this approach is more dense in regions where there are more observations 
and consequently generates more information. Another advantage is that this approach saves computing 
time because prediction locations are typically much lower in number than those in a regular grid. 

Figure 2 INLA mesh triangulation for Mali 

 
Note: The larger triangles show the buffer region surrounding the modelling region (maximum triangle edge length of 5.0 degrees), 
while the finer inner mesh overlays the modelling region (maximum triangle edge length of 0.1 degrees). The simplified polygon 
used to define the modelling county boundary is shown in blue. 

 
2.2.4 Pixel-level model estimates 

The prediction surfaces generated from the submodels (described in Section 2.2.2) were used as input 
covariates in the geostatistical models implemented in INLA. The final estimates (and uncertainty) for each 
indicator were generated by taking 𝑘 = 1, . . .1000 samples from the posterior predictive distribution. Pixel 
level estimates that covered the modelling country were produced at a high spatial resolution of 5 x 5 km. 

2.2.5 Model estimates at administrative level 2 

In addition to the 5 x 5 km pixel level estimates, we overlaid the prediction prevalence surfaces (from 
Section 2.2.4) with the relevant population layer (children under age 5, women age 15 to 49, and total 
population) for each indicator we modelled. We then constructed estimates of each indicator at the ADMIN 
2, or cercles level, by calculating population-weighted averages of prevalence for all grid cells within a 
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given administrative boundary. The procedure was performed for each of the 1,000 posterior predictive 
samples with final point estimates derived from the mean of these draws and uncertainty intervals from the 
2.5 and 97.5 percentiles. 

2.2.6 Model validation 

For each of the indicator model outputs, we implemented a validation procedure and calculated a set of 
performance statistics. This involved using a cross-validation with a five-fold hold-out procedure and a 
comparison of the predicted values at the locations of the hold-out data with their observed values. This 
procedure was repeated five times without replacement so that every data point was omitted one time across 
the five validation runs. Standard validation statistics were then computed as measures of the predictive 
accuracy of the modelled estimates. This included mean absolute error (MAE), mean error (ME) or bias; 
root - mean - squared - error (RMSE, which summarises the total variance); and 95% coverage of our 
predictive intervals aggregated to the spatial holdout level. Each predictive metric was calculated by first 
simulating predictive draws by using a binomial distribution. The predictive metric of interest was then 
calculated as a sample-size-weighted mean over the ADMIN 2 levels (Mayala et al. 2019; Mosser et al. 
2019).  
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3  RESULTS 

3.1 Model Estimates for Select Covariates 

The geospatial modelling approach described in Chapter 2 was used to produce covariate estimates for the 
cercles. The covariate models were built with data from the 2006 and 2018 Mali DHS. Estimates for 
selected determinants of childhood stunting and wasting from the 2018 DHS are shown in Figures 3A to 
3F. A complete presentation of 5 x 5 km pixel-level estimates for all covariates in 2018 is found in 
Appendix Figure 1. 

Figures 3A-F show the variation in estimates by cercles. More than 60% of children are anaemic in the 
East, South-East and Central regions of Mali (Figure 3A). Figure 3B shows that breastfeeding is a common 
practice in all cercles, with more than seven in ten children younger than 24 months breastfed the day before 
the survey. Among complementary feeding practices, the models show that less than 25% of children met 
the MDD requirements in most cercles (Figure 3C), but slightly more children (30% and higher) met the 
MMF requirements in many cercles, especially in the West (Figure 3D). Figure 3E shows that cercles in 
the East and North of Mali have more than 40% of households that do not have access to toilet facilities 
and practice open defection. The Northern and Eastern cercles are also associated with low level of access 
to an improved source of water (Figure 3F).  

Figure 3 Cercles level estimates of select covariates 

 
Note: (A) Anaemia, (B) Current breastfeeding, (C) Minimum Diet Diversity, (D) Minimum Meal Frequency, (E) Open defecation/No 
toilet, (F) Improved water source 
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3.2 Cercles-level Estimates of Stunting and Wasting among Children 

3.2.1 Prevalence of stunting and wasting in 2018 

Figure 4A displays cercle-level stunting estimates in 2018. Figure 4B highlights the width of 95% credible 
intervals for the estimates in each cercle. The prevalence of stunting is the lowest in Bamako (14 %) and 
ranges from 21% in Kolokani cercle (Koulikolo Region) to 34% in Mopti cercle (Mopti Region). For almost 
a quarter of the cercles, the prevalence of stunting is 30% or higher. With only a few exceptions, Figure 4A 
highlights that the high burden of stunting is concentrated in cercles located in Central and South-central 
Mali. 

Values used to generate the figures are presented in Appendix Table 1.  

Figure 4 Prevalence of stunting (A) and the width of 95% credible interval (B) at the cercles level, 2018 

 
 
  

A B 
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Estimates for wasting in 2018 with their 95% width credible interval are displayed in Figure 5A and Figure 
5B. The prevalence of wasting varies from 7% in Dioïla cercles (Koulikoro Region) to 13% Barouéli (Segou 
Region) and Tombouctou (Tombouctou Region) cercles. Three in ten cercles have an estimated prevalence 
of wasting that is higher than 10%. Figure 5A shows that wasting tends to be higher in Central and Northern 
Mali.  

Figure 5 Prevalence of wasting (A) and the width of 95% credible interval (B) at the cercles level, 2018 

 

  

A B 
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3.2.2 Prevalence of stunting and wasting in 2006 

Figures 6A and 7A display cercles-level stunting and wasting estimates in 2006 with their respective 95% 
credible intervals (Figures 6B and 7B). Similar to 2018, the prevalence of stunting in 2006 was lowest in 
Bamako (21%) and ranged from 31% in Kolokani cercles (Koulikoro Region) to 49% in Koutiala cercles 
(Sikasso Region). The prevalence of wasting was lowest (12%) in Ségou (Ségou Region) and Diré 
(Tombouctou Region) cercles and highest (23%) in Barouéli cercles (Ségou Region) 

Values used to generate the figures are presented in Appendix Table 2.  

Figure 6 Prevalence of stunting (A) and the width of 95% credible interval (B) at the cercles level, 2006 

 

 

Figure 7 Prevalence of wasting (A) and the width of 95% credible interval (B) at the cercles level, 2006 

 

A B 
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3.3 Change in Prevalence of Stunting and Wasting between 2006 and2018 

Figures 8 and 9 show the change in prevalence for stunting and wasting, respectively, between 2006 and 
2018. The results show an overall decrease in both stunting and wasting for the 49 cercles in Mali. The 
decrease in stunting prevalence ranged from 6% in the Bamako cercles to 18% in the Koutiala cercles. The 
most notable changes in stunting by cercles were in the northern, and southern parts of the country (mostly 
in Sikasso and Koulikoro regions) and in the cercles of Bourem (Gao Region), Tenenkou and Douentza 
(Mopti Region) (Figure 8). 

Decrease in wasting prevalence ranged from 3% in Bankass cercles to 11% in the Kangaba cercles (Figure 
9). The most notable changes in wasting prevalence by cercles were in the southern and eastern parts of the 
country and in the cercles of Diema (Kayes Region), Bourem, Gao (Gao Region), and Baroueli (Segou 
Region). 

Figure 8 Cercles-level percent change in stunting 
prevalence between 2006 and 2018 

 

Figure 9 Cercles-level percent change in wasting 
prevalence between 2006 and 2018 
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3.3.1 Relative importance of determinants of stunting and wasting  

We calculated the relative importance of each covariate using the beta coefficients for each submodel in the 
final Bayesian geostatistical model as weights. Figures 10A and 10B show that three covariates (i) MDD, 
(ii) the mother’s education, and (iii) the mother’s overweight and obesity were ranked as the top three 
factors that contributed to the stunting models. Other important factors in 2018 included ANC, current 
breastfeeding, elevation, under age 5 population, and daytime LST, which were all above 5%. In 2006, the 
factors that contributed more than 5% were different and included under age 5 population, ANC, wealth, 
improved water source, and parity.  

Figure 10 Percentage contribution of covariates to the stunting models in (A) 2006 and (B) 2018 
 A B 
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Figure 11A and 11B depicts the relative covariate importance for wasting. The results indicate that MDD 
was the covariate that contributed most to the models in 2006 and 2018. Aridity was ranked third in 2006, 
but second in 2018. For most of the other covariates, their relative importance changed from 2006 to 2018. 
Other important factors that contributed more than 5% to the models in 2018 were mother’s BMI, open 
defecation, education, and parity. For 2006, the important factors included current breastfeeding, mother’s 
underweight and short stature, elevation, and vaccination coverage.  

Figure 11 Percentage contribution of covariates to the wasting models in (A) 2006 and (B) 2018 
 A B 
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4 DISCUSSION 

The declines in stunting and wasting prevalence over the last decade are evidence of Mali’s continued 
commitment to addressing child undernutrition. However, our study shows that stunting remains high in 
the Central and South-central areas of the country, while wasting is high in the Central and Northern areas, 
with much variation across cercles. Among the top factors that contributed to the stunting and wasting in 
2018 were children’s MDD, mother’s education, mother’s overweight and obesity, and aridity. These results 
suggest that improvements in women’s and children’s diets, social factors, and action on climate change to 
address the food environment could further reduce both stunting and wasting prevalence in the country.  

Our analysis on stunting revealed that the same three factors were the top factors associated with stunting 
in both 2006 and 2018. This suggests that optimal child feeding, women’s education, and women’s 
malnutrition have been and are the key underlying drivers of childhood stunting in Mali. Stunting can result 
from inadequate feeding practices and recurrent or chronic diseases, as described in UNICEF’s conceptual 
framework of child undernutrition (United Nations Children’s Fund 2015). Children’s MDD reflects overall 
diet quality and studies have linked improved diet diversity with lower stunting (Arimond and Ruel 2004; 
Ruel and Menon 2002). This result was also found study in Mali (Sobgui et al. 2018) that linked low 
household diet diversity with increased with stunting, (Low education among women in Mali may also 
contribute to poor stunting through pathways that involve child feeding and other care and health seeking 
practices (Akombi et al. 2017; Issaka et al. 2015; Pongou, Ezzati, and Salomon 2006). An important factor 
that emerged in this analysis was women’s nutrition and the double burden of malnutrition in households. 
The rising prevalence of maternal overweight and obesity in Mali is cause for concern and underscores the 
importance of dual actions that address both stunting in children and overweight and obesity in women 
(Bosu 2015; WHO 2017).  

Interestingly, in 2018, two environmental factors, daytime LST and elevation, were associated with stunting 
and contributed over 5% to the model. Among the few studies that have examined the role of temperature 
on undernutrition, one study from India reported a positive association between high average temperatures 
above 40C in districts and stunting (Bharti, Dhillon, and Narzary 2019). The authors found that for every 
1C increase in annual temperature, stunting increased by 0.1% (Bharti, Dhillon, and Narzary 2019). 
Conversely, another study of multiple countries in sub-Saharan Africa reported that in regions with average 
temperatures over 35C, children had a lower odds of stunting, but higher odds of wasting and of being both 
stunted and wasted compared to countries with average temperatures below 30C (Tusting et al. 2020). The 
role of elevation is less clear, but may be linked to temperature or other environmental conditions. In the 
literature, the common pathways for the impact of environmental factors on stunting include crop 
production, food insecurity, infection, and physiological adaption (Bharti, Dhillon, and Narzary 2019; 
Cooper et al. 2019; Lloyd, Kovats, and Chalabi 2011; Tusting et al. 2020). Given the growing focus on the 
effects of climate change on health, more studies are needed to understand the relationships and pathways 
between environmental factors and undernutrition.  

The two leading factors associated with wasting were the same in the 2006 and 2018 Mali DHS. This 
suggested that children’s diet and the environment are key to addressing wasting in Mali. Wasting is 
susceptible to seasonality and may result from inadequate food intake or recent illness (United Nations 
Children’s Fund 2015). Although some studies have reported no association between dietary diversity and 
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wasting (Frempong and Annim 2017; Jones et al. 2014; Pare et al. 2019), many of these studies have not 
accounted for the underlying environmental factors as we did in this study. High temperatures are linked to 
aridity (Quan et al. 2013) and with increasing variation in the frequency and length of dry spells in Mali, 
agricultural production patterns will be disrupted, which may lead to increased food insecurity and lower 
quality diets (Kinyoki et al. 2016; Osgood-Zimmerman et al. 2018). Reducing the agriculture sectors’ 
vulnerability to the effects of climate change will not only improve food availability, but may also help to 
address wasting in Mali.  

Women’s undernutrition and breastfeeding were also important factors associated with wasting in 2018. 
Breastfeeding protects infants from infection and promotes health growth and development (Victora et al. 
2016). Although optimal breastfeeding practices in Mali have consistently improved, fewer than 50% of 
infants are exclusively breastfed (INSTAT, CPS/SS-DS-PF, and ICF 2019). Further improvements in 
breastfeeding practices would help to address wasting by protecting infants from infection. Mother’s short 
stature and low BMI reflect the long term and more recent poor nutritional status of the mother. Studies 
from Guatemala and elsewhere have shown than being a thin mother is associated with a greater risk of 
wasting and stunting (Akombi et al. 2017; Martorell and Young 2012). Targeting interventions that can 
improve nutrition for mothers, pregnant women, and women of reproductive age may help reduce the 
generational effects of poor nutrition and decrease the prevalence of wasting in those most vulnerable. 

Our analysis approach has several strengths. The models used several DHS and geospatial covariates known 
to be associated with the outcomes and which contributed to the high validity of our models (Appendix 
Table 3). We were able to produce stunting and wasting estimates for the 49 cercles of Mali and illustrate 
the spatial variation of undernutrition in Mali that has not previously been examined. Our estimates align 
with those from a previous study that assessed stunting and wasting prevalence in rural areas of 5 cercles 
in the Sikasso and Mopti regions (Sobgui et al. 2018). Our findings also provide insights into the factors 
associated with stunting and wasting that can help policy makers address undernutrition and advance Mali’s 
progress on meeting the SDGs. It will be important for Mali to examine the factors that have and have not 
changed in their relative importance between the years, in order to help the government focus its efforts on 
addressing stunting and wasting. 

Although we have estimated the prevalence for each indicator at the cercles level, our study has some key 
limitations. Computational limitations meant that we could not quantify uncertainty in the covariates and 
submodel estimates. This may have introduced additional uncertainty into our final stunting and wasting 
estimates, although based on our validation results, we suspect the effect to be minimal. Nevertheless, more 
research is needed to develop methods that are capable of propagating uncertainty in both the covariates 
and submodel estimates (Dwyer-Lindgren et al. 2019; Wakefield et al. 2019). Although our study used 
geospatial modelling methods to create the cercles-level estimates, the results are cross-sectional and may 
be affected by confounding factors not included in our models. However, given the expanse of literature on 
the drivers of undernutrition, our findings align with the broader consensus on the contribution of these 
factors to stunting and wasting. Further work to strengthen this analysis could include regressions that also 
control for the temporal changes. The choice of covariates used in the analysis was determined by the 
availability of high-resolution spatial data for Mali. For example, exclusive breastfeeding among children 
under age 6 months is an important factor in undernutrition. However, this covariate could not be used for 
the present study because it was not available for this population at the time we conducted the analysis. 
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5 CONCLUSION 

This is one of the few studies that used the Bayesian geospatial modelling approach to model stunting and 
wasting prevalence by using both geospatial covariates and DHS underlying risk factors. We generated 
maps that show areas at high risk and estimated the change in these indicators and factors associated with 
stunting and wasting between 2006 and 2018 in Mali. The generated estimates of stunting and wasting 
prevalence and the identified factors (children’s diet diversity, mother’s education and nutrition, and 
environmental conditions) provide essential information that can help inform the allocation of resources 
and programme implementation in areas that need more attention in Mali. Interventions and programmes 
that can be implemented and directed at much smaller spatial scales by using model-based estimates such 
as the one described in our analysis could enable better programmatic decisions. 





 

23 

REFERENCES 

Akombi, B. J., K. E. Agho, J. J. Hall, N. Wali, A. M. N. Renzaho, and D. Merom. 2017. “Stunting, 
Wasting and Underweight in Sub-Saharan Africa: A Systematic Review.” Int J Environ Res Public 
Health 14 (8): 863. https://doi.org/10.3390/ijerph14080863. 

Alegana, V. A., P. M. Atkinson, C. Pezzulo, A. Sorichetta, D. Weiss, T. Bird, E. Erbach-Schoenberg, and 
A. J. Tatem. 2015. “Fine Resolution Mapping of Population Age-Structures for Health and Development 
Applications.” J R Soc Interface 12 (105): 20150073. https://doi.org/10.1098/rsif.2015.0073. 

Arimond, M., and M. T. Ruel. 2004. “Dietary Diversity is Associated with Child Nutritional Status: 
Evidence from 11 Demographic and Health Surveys.” The Journal of Nutrition 134 (10): 2579-2585. 
https://doi.org/10.1093/jn/134.10.2579.  

Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2014. Hierarchical Modeling and Analysis for Spatial Data. 
2nd edition. Boca Raton, FL, USA: CRC Press /Chapman and Hall. https://doi.org/10.1111/biom.12290. 

Bharti, R., P. Dhillon, and P. K. Narzary. 2019. “A Spatial Analysis of Childhood Stunting and Its 
Contextual Correlates in India.” Clinical Epidemiology and Global Health 7 (3): 488-495. 
https://doi.org/10.1016/j.cegh.2019.04.005. 

Bhatt, S., E. Cameron, S. R. Flaxman, D. J. Weiss, D. L. Smith, and P. W. Gething. 2017. “Improved 
Prediction Accuracy for Disease Risk Mapping using Gaussian Process Stacked Generalization.” J R Soc 
Interface 14 (134): 20170520. https://doi.org/10.1098/rsif.2017.0520. 

Bhattacharjee, N. V., L. E. Schaeffer, L. B. Marczak, J. M. Ross, S. J. Swartz, J. Albright, W. M. 
Gardner, et al. 2019. “Mapping Exclusive Breastfeeding in Africa between 2000 and 2017.” Nat Med 25 
(8): 1205-1212. https://doi.org/10.1038/s41591-019-0525-0. 

Black, R. E., C. G. Victora, S. P. Walker, Z. A. Bhutta, P. Christian, M. de Onis, M. Ezzati, et al. 2013. 
“Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries.” The 
Lancet 382 (9890): 427-51. https://doi.org/10.1016/S0140-6736(13)60937-X. 

Blangiardo, M., and M. Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-INLA. 
West Sussex, United Kingdom: John Wiley & Sons, Ltd. https://www.wiley.com/en-
us/Spatial+and+Spatio+temporal+Bayesian+Models+with+R+INLA-p-9781118326558. 

Bosu, W. K. 2015. “An Overview of the Nutrition Transition in West Africa: Implications for Non-
Communicable Diseases.” Proceedings of the Nutrition Society 74 (4): 466-477. 
https://doi.org/10.1017/S0029665114001669. 

Breiman, L. 1996. “Stacked Regressions.” Machine Learning 24 (1): 49-64. 
https://doi.org/10.1007/BF00117832. 

https://doi.org/10.1016/S0140-6736(13)60937-X
https://www.wiley.com/en-us/Spatial+and+Spatio+temporal+Bayesian+Models+with+R+INLA-p-9781118326558
https://www.wiley.com/en-us/Spatial+and+Spatio+temporal+Bayesian+Models+with+R+INLA-p-9781118326558


 

24 

Cameletti, M., F. Lindgren, D. Simpson, and H. Rue. 2012. “Spatio-Temporal Modeling of Particulate 
Matter Concentration through the SPDE Approach.” AStA Advances in Statistical Analysis 97 (2): 109-
131. https://doi.org/10.1007/s10182-012-0196-3. 

Cooper, M. W., M. E. Brown, S. Hochrainer-Stigler, G. Pflug, I. McCallum, S. Fritz, J. Silva, and A. 
Zvoleff. 2019. “Mapping the Effects of Drought on Child Stunting.” Proc Natl Acad Sci USA 116 (35): 
17219-17224. https://doi.org/10.1073/pnas.1905228116. 

Development Initiatives. 2018. 2018 Global Nutrition Report: Shining a Light to Spur Action on 
Nutrition. Bristol, UK: Development Initiatives. https://globalnutritionreport.org/reports/global-nutrition-
report-2018/. 

Diggle, P. J., and E. Giorgi. 2019. Model-Based Geostatistics for Global Public Health: Methods and 
Applications. New York, NY, USA: CRC Press/Chapman and Hall. 
https://doi.org/10.1080/00949655.2019.1628897. 

Dwyer-Lindgren, L., M. A. Cork, A. Sligar, K. M. Steuben, K. F. Wilson, N. R. Provost, B. K. Mayala, et 
al. 2019. “Mapping HIV Prevalence in Sub-Saharan Africa between 2000 and 2017.” Nature 570 (7760): 
189-193. https://doi.org/10.1038/s41586-019-1200-9. 

Frempong, R. B., and S. K. Annim. 2017. “Dietary Diversity and Child Malnutrition in Ghana.” Heliyon 
3 (5): e00298. https://doi.org/10.1016/j.heliyon.2017.e00298. 

Friedman, J. H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of 
Statistics 29 (5): 1189-1232. https://doi.org/10.1214/aos/1013203451. 

Frongillo, E. A., Jr., M. de Onis, and K. M. Hanson. 1997. “Socioeconomic and Demographic Factors are 
Associated with Worldwide Patterns of Stunting and Wasting of Children.” J Nutr 127 (12): 2302-9. 
https://doi.org/10.1093/jn/127.12.2302. 

Gething, P. W., and C. R. Burgert-Brucker. 2017. The DHS Program Modelled Map Surfaces: 
Understanding the Utility of Spatial Interpolation for Generating Indicators at Subnational 
Administrative Levels. Rockville, MD, USA: ICF International. 
http://dhsprogram.com/pubs/pdf/SAR15/SAR15.pdf. 

Gething, P. W., A. J. Tatem, T. Bird, and C. R. Burgert-Brucker. 2015. Creating Spatial Interpolation 
Surfaces with DHS Data. Rockville, MD, USA: ICF. 
https://dhsprogram.com/pubs/pdf/SAR11/SAR11.pdf. 

Gouvernement du Mali. 2013. National Nutrition Policy 2013-2023. Bamako, Mali: Ministere de la 
Sante. 

Gouvernement du Mali. 2014. Plan D’action Multisectoriel De Nutrition 2014-2018. Ministere de la 
Sante. 

Gouvernement du Mali. 2017. Politique Nationale De Sécurité Alimentaire et Nutritionnelle (Polnsan) 
Tome 2. Commissariat à la Sécurité Alimentaire. http://extwprlegs1.fao.org/docs/pdf/Mli175839.pdf. 



 

25 

Gouvernement of Mali. 2014. Stratégie Nationale Pour L’alimentation Du Nourrisson et Du Jeune 
Enfant Bamako, Mali: Ministere de la Sante. 

Graetz, N., J. Friedman, A. Osgood-Zimmerman, R. Burstein, M. H. Biehl, C. Shields, J. F. Mosser, et al. 
2018. “Mapping Local Variation in Educational Attainment across Africa.” Nature 555 (7694): 48-53. 
https://doi.org/10.1038/nature25761. 

INSTAT, CPS/SS-DS-PF, and ICF. 2019. Enquête Démographique et De Santé Au Mali 2018. Bamako, 
Mali and Rockville, MD, USA: INSTAT, CPS/SS-DS-PF, ICF. 
https://www.dhsprogram.com/pubs/pdf/FR358/FR358.pdf. 

Issaka, A. I., K. E. Agho, A. N. Page, P. L. Burns, G. J. Stevens, and M. J. Dibley. 2015. “Determinants 
of Suboptimal Complementary Feeding Practices among Children Aged 6-23 Months in Seven 
Francophone West African Countries.” Matern Child Nutr 11 (51): 31-52. 
https://doi.org/10.1111/mcn.12193. 

Jones, A. D., S. B. Ickes, L. E. Smith, M. N. Mbuya, B. Chasekwa, R. A. Heidkamp, P. Menon, A. A. 
Zongrone, and R. J. Stoltzfus. 2014. “World Health Organization Infant and Young Child Feeding 
Indicators and Their Associations with Child Anthropometry: A Synthesis of Recent Findings.” Matern 
Child Nutr 10 (1): 1-17. https://doi.org/10.1111/mcn.12070. 

Kinyoki, D. K., N. B. Kandala, S. O. Manda, E. T. Krainski, G. A. Fuglstad, G. M. Moloney, J. A. 
Berkley, and A. M. Noor. 2016. “Assessing Comorbidity and Correlates of Wasting and Stunting among 
Children in Somalia Using Cross-Sectional Household Surveys: 2007 to 2010.” BMJ Open 6 (3): 
e009854. http://dx.doi.org/10.1136/bmjopen-2015-009854. 

Kinyoki, D. K., A. E. Osgood-Zimmerman, B. V. Pickering, L. E. Schaeffer, L. B. Marczak, A. Lazzar-
Atwood, M. L. Collison, et al. 2020. “Mapping Child Growth Failure across Low- and Middle-Income 
Countries.” Nature 577 (7789): 231-234. https://doi.org/10.1038/s41586-019-1878-8. 

Li, Z., Y. Hsiao, J. Godwin, B. D. Martin, J. Wakefield, S. J. Clark, E. with support from the United 
Nations Inter-agency Group for Child Mortality and Its Technical Advisory Group. 2019. “Changes in the 
Spatial Distribution of the Under-Five Mortality Rate: Small-Area Analysis of 122 DHS Surveys in 262 
Subregions of 35 Countries in Africa.” PLoS One 14 (1): e0210645. 
https://doi.org/10.1371/journal.pone.0210645. 

Lindgren, F., H. Rue, and J. Lindström. 2011. “An Explicit Link between Gaussian Fields and Gaussian 
Markov Random Fields: The Stochastic Partial Differential Equation Approach.” Journal of the Royal 
Statistical Society: Series B (Statistical Methodology) 73 (4): 423-498. https://doi.org/10.1111/j.1467-
9868.2011.00777.x. 

Lloyd, S. J., R. S. Kovats, and Z. Chalabi. 2011. “Climate Change, Crop Yields, and Undernutrition: 
Development of a Model to Quantify the Impact of Climate Scenarios on Child Undernutrition.” Environ 
Health Perspect 119 (12): 1817-23. https://doi.org/10.1289/ehp.1003311. 

Martorell, R., and M. F. Young. 2012. “Patterns of Stunting and Wasting: Potential Explanatory Factors.” 
Adv Nutr 3 (2): 227-33. https://doi.org/10.3945/an.111.001107. 

https://www.dhsprogram.com/pubs/pdf/FR358/FR358.pdf


 

26 

Mayala, B. K., T. Dontamsetti, T. D. Fish, and T. N. Croft. 2019. Interpolation of DHS Survey Data at 
Subnational Administrative Level 2. Rockville, MD, USA: ICF. 
https://dhsprogram.com/pubs/pdf/SAR17/SAR17.pdf. 

Mosser, J. F., W. Gagne-Maynard, P. C. Rao, A. Osgood-Zimmerman, N. Fullman, N. Graetz, R. 
Burstein, et al. 2019. “Mapping Diphtheria-Pertussis-Tetanus Vaccine Coverage in Africa, 2000–2016: A 
Spatial and Temporal Modelling Study.” The Lancet 393 (10183): 1843-1855. 
https://doi.org/10.1016/S0140-6736(19)30226-0. 

Osgood-Zimmerman, A., A. I. Millear, R. W. Stubbs, C. Shields, B. V. Pickering, L. Earl, N. Graetz, et 
al. 2018. “Mapping Child Growth Failure in Africa between 2000 and 2015.” Nature 555 (7694): 41-47. 
https://doi.org/10.1038/nature25760. 

Pare, B. C., D. L. Dahourou, A. Kabore, A. Sana, R. Kinda, B. Ouaro, M. M. Dahany, H. Hien, and N. 
Meda. 2019. “Prevalence of Wasting and Associated Factors among 6 to 23 Months Old Children in the 
Sahel Region of Burkina Faso.” Pan Afr Med J 34: 164. https://www.panafrican-med-
journal.com/content/article/34/164/full. 

Pongou, R., M. Ezzati, and J. A. Salomon. 2006. “Household and Community Socioeconomic and 
Environmental Determinants of Child Nutritional Status in Cameroon.” BMC Public Health 6: 98. 
https://doi.org/10.1186/1471-2458-6-98. 

Quan, C., S. Han, T. Utescher, C. Zhang, and Y.-S. Liu. 2013. “Validation of Temperature–Precipitation 
Based Aridity Index: Paleoclimatic Implications.” Palaeogeography, Palaeoclimatology, Palaeoecology 
386: 86-95. https://doi.org/10.1016/j.palaeo.2013.05.008. 

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-
for-statistical-computing. 

Reiner, R. C., Jr., N. Graetz, D. C. Casey, C. Troeger, G. M. Garcia, J. F. Mosser, A. Deshpande, et al. 
2018. “Variation in Childhood Diarrhoeal Morbidity and Mortality in Africa, 2000-2015.” N Engl J Med 
379 (12): 1128-1138. https://www.nejm.org/doi/10.1056/NEJMoa1716766. 

Rue, H., S. Martino, and N. Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models 
by Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical Society: Series B 
(Statistical Methodology) 71 (2): 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x. 

Ruel, M. T., and P. Menon. 2002. “Child Feeding Practices Are Associated with Child Nutritional Status 
in Latin America: Innovative Uses of the Demographic and Health Surveys.” J Nutr 132 (6): 1180-7. 
https://doi.org/10.1093/jn/132.6.1180. 

Scaling Up Nutrition. 2020. Mali. https://scalingupnutrition.org/sun-countries/mali/. 

Sobgui, M. C., L. Kamedjie Fezeu, F. Diawara, H. Diarra, V. Afari-Sefa, and A. Tenkouano. 2018. 
“Predictors of Poor Nutritional Status among Children Aged 6-24 Months in Agricultural Regions of 
Mali: A Cross-Sectional Study.” BMC Nutr 4: 18. https://doi.org/10.1186/s40795-018-0225-z. 

https://dhsprogram.com/pubs/pdf/SAR17/SAR17.pdf
https://doi.org/10.1186/1471-2458-6-98


 

27 

Tusting, L. S., J. Bradley, S. Bhatt, H. S. Gibson, D. J. Weiss, F. C. Shenton, and S. W. Lindsay. 2020. 
“Environmental Temperature and Growth Faltering in African Children: A Cross-Sectional Study.” The 
Lancet Planetary Health 4 (3): e116-e123. https://doi.org/10.1016/S2542-5196(20)30037-1. 

UNICEF/WHO/World Bank Group. 2020. Joint Malnutrition Estimates. New York, NY, USA: 
UNICEF/WHO/The World Bank Group. https://www.who.int/publications-detail/jme-2020-edition. 

United Nations Children’s Fund. 2015. UNICEF’s Approach to Scaling up Nutrition for Mothers and 
Their Children. Discussion Paper. New York, NY, USA: Programme Division, UNICEF. 
https://www.unicef.org/nutrition/files/Unicef_Nutrition_Strategy.pdf. 

Utazi, C. E., J. Thorley, V. A. Alegana, M. J. Ferrari, S. Takahashi, C. J. E. Metcalf, J. Lessler, and A. J. 
Tatem. 2018. “High Resolution Age-Structured Mapping of Childhood Vaccination Coverage in Low and 
Middle Income Countries.” Vaccine 36 (12): 1583-1591. https://doi.org/10.1016/j.vaccine.2018.02.020. 

Victora, C. G., R. Bahl, A. J. Barros, G. V. Franca, S. Horton, J. Krasevec, S. Murch, et al. 2016. 
“Breastfeeding in the 21st Century: Epidemiology, Mechanisms, and Lifelong Effect.” Lancet 387 
(10017): 475-90. https://doi.org/10.1016/S0140-6736(15)01024-7. 

Wakefield, J., G-A. Fuglstad, A. Riebler, J. Godwin, K. Wilson, and S. J. Clark. 2019. “Estimating under-
Five Mortality in Space and Time in a Developing World Context.” Stat Methods Med Res 28 (9): 2614-
2634. https://doi.org/10.1177%2F0962280218767988. 

World Health Organization (WHO). 2014a. Global Nutrition Targets 2025: Policy Brief Series Geneva, 
Switzerland: World Health Organization. 
https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_eng.pdf?ua=1. 

WHO. 2014b. Global Nutrition Targets 2025: Stunting Policy Brief. Geneva, Switzerland: World Health 
Organization. 
https://apps.who.int/iris/bitstream/handle/10665/149019/WHO_NMH_NHD_14.3_eng.pdf?ua=1. 

WHO. 2017. Double-Duty Actions. Policy Brief. Geneva, Switzerland: World Health Organization. 
https://www.who.int/nutrition/publications/double-duty-actions-nutrition-policybrief/en/. 

WHO/UNICEF/World Food Programme (WFP). 2014. Global Nutrition Targets 2025: Wasting Policy 
Brief Geneva, Switzerland: World Health Organization. 
https://www.who.int/nutrition/publications/globaltargets2025_policybrief_wasting/en/. 

Wolpert, D. H. 1992. “Stacked Generalization.” Neural Networks 5 (2): 241-259. 
https://doi.org/10.1016/S0893-6080(05)80023-1. 

Wood, S. 2017. Generalized Additive Models: An Introduction with R. Boca Raton, FL, USA: CRC 
Press/Chapman and Hall. https://people.maths.bris.ac.uk/~sw15190/igam/. 

Zou, H. and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” J. R. Statist. Soc 
Series B (Statistical Methodology) 67 (2): 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x. 

https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.nejm.org/doi/10.1056/NEJMoa1716766
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1093/jn/132.6.1180
https://scalingupnutrition.org/sun-countries/mali/
https://doi.org/10.1186/s40795-018-0225-z
https://www.who.int/publications-detail/jme-2020-edition
https://www.unicef.org/nutrition/files/Unicef_Nutrition_Strategy.pdf


https://doi.org/10.1016/S0140-6736(15)01024-7
https://doi.org/10.1177%2F0962280218767988
https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/149019/WHO_NMH_NHD_14.3_eng.pdf?ua=1
https://people.maths.bris.ac.uk/~sw15190/igam/


 

29 

APPENDIX 

Appendix Figure 1 DHS covariates maps at the pixel level  
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Appendix Table 1 Prevalence of stunting, 95% confidence intervals, and change in stunting 
prevalence by cercles 

Region Cercles 

Stunting 

Change in 
prevalence 

2006 2018 

Prevalence Upper Lower Prevalence Upper Lower 
Bamako Bamako 20.5 23.0 18.0 14.4 16.5 12.6 6.1 
Gao Ansongo 41.7 45.7 37.7 28.6 31.4 26.0 13.1 
Gao Bourem 46.1 50.5 41.8 28.3 30.8 25.9 17.8 
Gao Gao 32.9 36.3 29.9 25.9 29.5 22.8 7.0 
Gao Menaka 38.1 40.5 35.7 26.3 28.8 23.8 11.7 
Kayes Bafoulabe 37.3 40.4 34.0 28.3 30.5 26.0 9.0 
Kayes Diema 37.1 40.1 34.4 30.3 33.3 27.5 6.9 
Kayes Kayes 31.4 34.9 27.9 22.1 24.8 19.9 9.3 
Kayes Kenieba 39.8 43.8 36.0 27.7 30.3 25.2 12.1 
Kayes Kita 37.7 40.3 35.1 27.5 29.7 25.3 10.2 
Kayes Nioro 36.6 40.5 33.1 29.1 32.5 26.0 7.5 
Kayes Yelimane 31.9 35.7 28.2 26.3 29.8 23.3 5.6 
Kidal Abeibara 33.5 37.5 29.9 26.0 28.4 23.4 7.5 
Kidal Kidal 35.4 38.8 32.4 25.7 28.7 22.9 9.7 
Kidal Tessalit 34.5 37.7 31.2 26.1 28.5 23.6 8.4 
Kidal Tin-Essako 36.4 39.6 33.4 26.5 29.0 24.1 10.0 
Koulikoro Banamba 38.7 42.6 35.2 28.0 31.5 24.9 10.7 
Koulikoro Dioila 41.1 43.8 38.4 30.5 32.8 28.2 10.6 
Koulikoro Kangaba 40.7 45.1 36.4 26.3 29.5 23.2 14.5 
Koulikoro Kolokani 31.1 33.3 29.1 20.5 22.3 19.0 10.5 
Koulikoro Koulikoro 37.6 41.0 34.2 28.8 31.7 26.1 8.8 
Koulikoro Nara 40.0 45.3 35.4 25.1 28.3 22.2 14.9 
Koulikoro Kati 36.8 41.1 33.0 23.7 26.9 20.8 13.2 
Mopti Bandiagara 40.1 42.6 37.6 32.5 35.4 29.9 7.6 
Mopti Bankass 46.0 48.9 42.8 29.6 32.7 26.6 16.4 
Mopti Djenne 43.5 47.5 39.2 31.7 35.0 28.5 11.8 
Mopti Douentza 44.1 48.1 40.1 28.5 32.0 25.2 15.6 
Mopti Koro 40.3 43.1 37.6 31.7 34.6 28.8 8.6 
Mopti Mopti 44.2 47.3 41.3 33.7 36.7 30.8 10.5 
Mopti Tenenkou 44.9 50.1 40.3 27.1 30.2 23.9 17.8 
Mopti Youwarou 39.5 42.8 36.3 30.8 34.0 27.5 8.6 
Segou Baroueli 41.2 44.9 37.5 31.7 35.3 28.1 9.5 
Segou Bla 39.4 43.2 35.8 28.9 32.1 25.9 10.5 
Segou Macina 39.3 43.2 35.7 29.5 32.5 26.5 9.8 
Segou Niono 39.1 42.9 35.5 29.3 32.4 26.2 9.7 
Segou San 34.3 37.8 30.7 26.9 30.1 23.9 7.4 
Segou Segou 39.7 43.1 36.3 29.0 32.3 26.1 10.7 
Segou Tominian 36.5 39.2 33.6 25.5 28.1 23.3 11.0 
Sikasso Bougouni 41.1 45.0 37.3 30.7 34.1 27.8 10.4 
Sikasso Kadiolo 43.4 46.4 40.7 28.6 30.8 26.3 14.8 
Sikasso Kolondieba 46.1 50.4 42.0 29.1 32.4 26.0 17.1 
Sikasso Koutiala 49.5 52.9 45.8 31.4 34.2 28.5 18.1 
Sikasso Sikasso 38.5 41.4 35.7 28.5 31.5 25.8 10.0 
Sikasso Yanfolila 44.1 47.5 41.3 28.2 30.9 25.6 16.0 
Sikasso Yorosso 42.3 45.6 38.9 28.7 31.7 25.9 13.6 
Tombouctou Dire 43.5 47.8 39.4 31.7 35.5 28.3 11.8 
Tombouctou Goundam 39.1 44.3 34.2 27.0 30.9 23.3 12.2 
Tombouctou Gourma-Rharous 43.2 46.7 39.9 29.7 32.4 27.1 13.5 
Tombouctou Niafunke 39.5 42.2 37.0 30.4 32.9 28.2 9.1 
Tombouctou Tombouctou 44.8 48.2 41.3 30.3 33.2 27.6 14.5 

 

  



 

32 

Appendix Table 2 Prevalence of wasting, 95% confidence intervals, and change in wasting prevalence by 
cercles 

Region Cercles 

Wasting  

Change in 
prevalence 

2006 2018 

Prevalence Upper Lower Prevalence Upper Lower 
Bamako Bamako 14.3 16.5 12.4 8.2 9.9 6.8 6.0 
Gao Ansongo 16.8 22.1 12.5 11.3 14.5 8.6 5.5 
Gao Bourem 20.3 25.1 16.0 11.0 13.8 8.5 9.3 
Gao Gao 18.8 22.5 15.5 9.9 12.7 7.5 8.9 
Gao Menaka 16.3 19.6 13.5 10.1 12.9 7.7 6.2 
Kayes Bafoulabe 17.7 21.9 14.0 8.7 11.3 6.5 8.9 
Kayes Diema 19.6 23.8 16.1 9.2 11.9 7.0 10.5 
Kayes Kayes 15.1 18.5 12.1 8.9 11.3 6.8 6.2 
Kayes Kenieba 17.1 21.5 13.1 9.7 13.1 7.2 7.3 
Kayes Kita 15.2 18.2 12.1 8.9 11.2 7.0 6.3 
Kayes Nioro 18.9 23.5 15.2 10.6 14.2 7.8 8.3 
Kayes Yelimane 18.2 23.5 13.9 9.7 13.5 6.6 8.5 
Kidal Abeibara 17.9 23.0 13.6 10.2 13.8 7.3 7.7 
Kidal Kidal 20.2 24.9 16.3 12.1 15.8 9.1 8.1 
Kidal Tessalit 17.4 22.7 13.1 10.7 14.7 7.6 6.7 
Kidal Tin-Essako 17.3 23.0 12.4 10.0 14.0 6.9 7.4 
Koulikoro Banamba 18.3 22.6 14.5 9.6 13.1 6.6 8.7 
Koulikoro Dioila 15.2 18.0 12.6 7.4 9.6 5.6 7.8 
Koulikoro Kangaba 18.6 24.0 14.1 7.7 11.1 5.4 10.9 
Koulikoro Kolokani 14.6 16.5 12.8 8.5 10.1 7.2 6.1 
Koulikoro Koulikoro 16.3 20.3 13.0 8.0 10.8 5.7 8.3 
Koulikoro Nara 16.3 21.0 12.8 8.7 11.8 6.4 7.5 
Koulikoro Kati 14.9 18.5 11.9 11.4 14.8 8.6 3.6 
Mopti Bandiagara 17.8 21.5 14.6 11.9 15.2 9.0 6.0 
Mopti Bankass 12.7 14.9 10.6 10.1 13.5 7.7 2.6 
Mopti Djenne 14.9 19.3 10.9 7.6 10.1 5.4 7.4 
Mopti Douentza 17.9 23.2 13.7 9.0 12.6 6.2 8.9 
Mopti Koro 16.6 20.3 13.5 10.9 14.3 8.2 5.7 
Mopti Mopti 14.7 17.9 11.9 10.4 13.4 7.6 4.2 
Mopti Tenenkou 14.2 18.1 10.9 11.3 14.7 8.4 3.0 
Mopti Youwarou 17.8 22.2 13.7 10.6 15.1 6.8 7.2 
Segou Baroueli 23.0 28.3 18.0 12.9 18.5 8.9 10.1 
Segou Bla 15.9 19.7 12.6 9.0 12.1 6.4 7.0 
Segou Macina 15.8 19.8 12.3 8.6 11.6 6.3 7.3 
Segou Niono 20.6 25.5 16.3 11.8 16.2 8.4 8.9 
Segou San 16.6 21.3 12.7 11.7 15.5 8.6 4.9 
Segou Segou 12.3 15.6 9.6 9.2 12.2 6.7 3.1 
Segou Tominian 17.9 21.2 14.9 9.6 12.0 7.6 8.3 
Sikasso Bougouni 13.4 17.2 10.0 7.9 10.7 5.6 5.5 
Sikasso Kadiolo 17.3 20.5 14.4 8.1 10.2 6.2 9.2 
Sikasso Kolondieba 16.2 20.8 12.5 7.7 11.1 5.3 8.5 
Sikasso Koutiala 15.9 19.7 12.8 8.4 11.4 5.9 7.6 
Sikasso Sikasso 12.8 15.3 10.7 7.7 10.1 5.8 5.2 
Sikasso Yanfolila 15.6 18.4 13.2 7.8 9.7 6.1 7.8 
Sikasso Yorosso 18.3 22.6 14.7 8.4 11.1 6.0 9.9 
Tombouctou Dire 12.3 16.3 9.4 8.2 11.3 5.6 4.1 
Tombouctou Goundam 16.4 21.6 11.8 9.4 13.0 6.5 7.0 
Tombouctou Gourma-Rharous 16.1 19.7 13.2 11.3 14.2 8.8 4.8 
Tombouctou Niafunke 16.1 19.4 13.2 11.5 14.3 8.8 4.6 
Tombouctou Tombouctou 20.9 25.2 17.2 13.1 16.1 10.4 7.9 
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Appendix Table 3 Prediction metrics for each indicator aggregated at cercles-level 

Indicator Year Mean error 
Mean absolute 

error Variance 
95% Data 
coverage Correlation 

Stunting 2006 -0.0066 0.0187 0.0299 0.9897 0.9512 
 2018 -0.0035 0.0202 0.0264 0.9874 0.9305 

Wasting 2006 -0.0012 0.0114 0.0178 0.9975 0.9256 
  2018 -0.0009 0.0098 0.0139 0.9956 0.9528 

 
Appendix Figure 2 Comparison of stunting predictions for (A) 2006 and (B) 2018, aggregated at cercles-

level with 95% uncertainty intervals, plotted against data observations from the same 
area aggregated to the cercles-level 

 

Appendix Figure 3 Comparison of wasting predictions for (A) 2006 and (B) 2018, aggregated at cercles-
level with 95% uncertainty intervals, plotted against data observations from the same 
area aggregated to the cercles-level 
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