Namibia

REPUBLIC OF NAMIBIA

Namibia Demographic and Health Survey 2013

Ministry of Health and Social Services

Windhoek, Namibia

Namibia Statistics Agency
Windhoek, Namibia

September 2014

This report summarizes the findings of the 2013 Nambia Demographic and Health Survey (NDHS) implemented by the Ministry of Health and Social Services (MoHSS) in collaboration with the Namibia Statistics Agency (NSA) and the National Institute of Pathology (NIP). Technical support was provided by ICF International with financial support from the Government of Namibia, the United States Agency for International Development (USAID), and the Global Fund (GFATM).

Information about the 2013 NDHS may be obtained from the Ministry of Health and Social Services (MoHSS), Private Bag 13198, Windhoek, Namibia; Telephone: (264-61) 203-2500/2; Fax: (264-61) 222-558; Email: pro@mhss.gov.na; Internet: www.mhss.gov.na.

Information about The DHS Program may be obtained from ICF International, 530 Gaither Road, Suite 500, Rockville, MD 20850-5971, USA; Telephone: +1-301-407-6500; Fax: +1-301-407-6501; Email: reports@DHSprogram.com; Internet: www.DHSprogram.com.

Cover photo: "Sunset behind a baobab." ©2006 Ian Beatty [www.flickr.com/photos/ibeatty/351180675/in/set72157594468704452]. Used under Creative Commons license.

Suggested citation:

The Nambia Ministry of Health and Social Services (MoHSS) and ICF International. 2014. The Namibia Demographic and Health Survey 2013. Windhoek, Namibia, and Rockville, Maryland, USA: MoHSS and ICF International.

CONTENTS

TABLES AND FIGURES ix
FOREWORD xvii
MILLENNIUM DEVELOPMENT GOAL INDICATORS xix
MAP OF NAMIBIA xx
1 INTRODUCTION 1
1.1 Geography, History, and Economy 1
1.1.1 Geography 1
1.1.2 History 1
1.1.3 Economy 2
1.2 Population 2
1.3 Health Services and Programmes 3
1.4 Survey Objectives 4
1.5 Organisation of the Survey 4
1.6 Survey Implementation 4
1.6.1 Sample Design 4
1.6.2 Questionnaires 5
1.6.3 Anaemia and HIV Testing 6
1.6.4 Blood Glucose and Blood Pressure Testing 7
1.6.5 Pretest 8
1.6.6 Household Listing 8
1.6.7 Training of Field Staff 8
1.6.8 Data Collection 8
1.6.9 Data Processing 9
1.7 Response Rates 9
2 HOUSING CHARACTERISTICS AND HOUSEHOLD POPULATION 11
2.1 Household Characteristics 11
2.1.1 Drinking Water 11
2.1.2 Sanitation Facilities and Waste Disposal 13
2.1.3 Housing Characteristics 14
2.1.4 Household Possessions 15
2.2 Household Wealth 16
2.3 Hand Washing 17
2.4 Household Population by Age, Sex, and Residence 18
2.5 Household Composition 20
2.6 Birth Registration 20
2.7 Children’s Living Arrangements and Parental Survival 21
2.8 Education of the Household Population 22
2.8.1 Educational Attainment 22
2.8.2 School Attendance Ratios 24
2.9 Utilisation of Health Services and Out-of-Pocket Expenditure for Health Care 26
3 CHARACTERISTICS OF SURVEY RESPONDENTS 29
3.1 Characteristics of Survey Respondents 29
3.2 Educational Attainment by Background Characteristics 31
3.3 Literacy 33
3.4 Exposure to Mass Media 35
3.5 Employment 37
3.5.1 Employment Status 37
3.5.2 Occupation 40
3.5.3 Earnings, Employers, and Continuity of Employment for Women 42
4 MARRIAGE AND SEXUAL ACTIVITY 45
4.1 Marital Status 45
4.2 Polygyny 46
4.3 Age at First Marriage 48
4.4 Age at First Sexual Intercourse 49
4.5 Recent Sexual Activity 51
5 FERTILITY 55
5.1 Current Fertility 55
5.2 Fertility by Background Characteristics 56
5.3 Fertility Trends 57
5.4 Children Ever Born and Living 58
5.5 Birth Intervals 59
5.6 Postpartum Amenorrhoea, Abstinence, and Insusceptibility 60
5.7 Median Duration of Postpartum Insusceptibility by Background Characteristics 61
5.8 Menopause 62
5.9 Age at First Birth 62
5.10 Median Age at First Birth by Background Characteristics 63
5.11 Teenage Pregnancy and Motherhood 63
6 FERTILITY PREFERENCES 65
6.1 Fertility Preferences by Number of Living Children 65
6.2 Desire to Limit Childbearing by Background Characteristics 66
6.3 Ideal Number of Children 67
6.4 Mean Ideal Number of Children by Background Characteristics. 69
6.5 Fertility Planning Status 69
6.6 Wanted Fertility Rates 70
7 FAMILY PLANNING 71
7.1 Knowledge of Contraceptive Methods 71
7.2 Current Use of Contraception 72
7.3 Current Use of Contraception by Background Characteristics 74
7.4 Source of Modern Contraceptive Methods 76
7.5 Informed Choice 77
7.6 Rates of Discontinuing Contraceptive Methods 78
7.7 Reasons for Discontinuing Contraceptive Methods 79
7.8 Knowledge of the Fertile Period. 80
7.9 Need and Demand for Family Planning 80
7.10 Future Use of Contraception 82
7.11 Exposure to Family Planning Messages in the Media 82
7.12 Contact of Nonusers with Family Planning Providers 83
8 INFANT AND CHILD MORTALITY 85
8.1 Background and Assessment of Data Quality 85
8.2 Infant and Child Mortality Levels and Trends 87
8.3 Socioeconomic Differentials in Early Childhood Mortality 88
8.4 Demographic Differentials in Early Childhood Mortality 89
8.5 Perinatal Mortality 90
8.6 High-Risk Fertility Behaviour 91
9 ADULT AND MATERNAL MORTALITY 93
9.1 Assessment of Data Quality 94
9.2 Estimates of Adult Mortality 95
9.3 Estimates of Maternal Mortality. 95
10 MATERNAL HEALTH CARE 99
10.1 Antenatal Care 100
10.2 Number and Timing of Antenatal Care Visits 101
10.3 Components of Antenatal care 102
10.4 Tetanus Toxoid 104
10.5 Place of Delivery 104
10.6 Assistance during Delivery 106
10.7 Postnatal Care 108
10.7.1 Postnatal Checkup for the Mother 108
10.7.2 Postnatal Care for the Newborn 111
10.8 Problems in Accessing Health Care 113
11 CHILD HEALTH 115
11.1 Child's Weight and Size at Birth 115
11.2 Vaccination of Children. 117
11.2.1 Sources of Information 117
11.2.2 Vaccination Coverage 117
11.2.3 Trends in Vaccination Coverage 119
11.3 Prevalence and Treatment of Acute Respiratory Infection 120
11.4 Prevalence and Treatment of Fever 120
11.5 Diarrhoeal Disease 122
11.5.1 Prevalence of Diarrhoea 122
11.5.2 Treatment of Diarrhoea 122
11.5.3 Feeding Practices during Diarrhoea 124
11.6 Knowledge of ORS Packets 124
11.7 Disposal of Children’s Stools 126
12 NUTRITION OF CHILDREN AND ADULTS 129
12.1 Nutritional Status of Children 130
12.1.1 Measurement of Nutritional Status among Young Children 130
12.1.2 Data Collection 131
12.1.3 Levels of Child Malnutrition 131
12.1.4 Trends in Child Malnutrition 133
12.2 Initiation of Breastfeeding 134
12.3 Breastfeeding Status by Age 135
12.4 Duration of Breastfeeding 138
12.5 Types of Complementary Foods. 138
12.6 Infant and Young Child Feeding Practices 139
12.7 Prevalence of Anaemia in Children 142
12.8 Micronutrient Intake and Supplementation among Children 143
12.9 Presence of Iodised Salt in Households 146
12.10 Adult Nutritional Status 146
12.10.1 Nutritional Status of Women 146
12.10.2 Nutritional Status of Men 148
12.10.3 Anaemia in Women 149
12.10.4 Anaemia in Men 150
12.11 Micronutrient Intake among Mothers 150
13 MALARIA 153
13.1 Ownership of Mosquito Nets 153
13.2 Indoor Residual Spraying 156
13.3 Access to an Insecticide-Treated Net 157
13.4 Use of Mosquito Nets 158
13.4.1 Use of Mosquito Nets by Persons in the Household 158
13.4.2 Use of Existing Mosquito Nets 160
13.4.3 Use of Mosquito Nets by Children under Age 5 160
13.4.4 Use of Mosquito Nets by Pregnant Women 161
13.5 Use of Intermittent Preventive Treatment of Malaria During Pregnancy 163
13.6 Prevalence, Diagnosis, and Prompt Treatment of Children with Fever 163
13.7 Prevalence of Low Haemoglobin in Children 166
14 HIV/AIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR 169
14.1 HIV/AIDS Knowledge, Transmission, and Prevention Methods 170
14.1.1 Knowledge of AIDS 170
14.1.2 Knowledge of HIV Prevention 171
14.1.3 Comprehensive Knowledge about HIV/AIDS 173
14.2 Knowledge about Mother-to-Child Transmission 176
14.3 Attitudes toward People Living with HIV/AIDS 178
14.4 Attitudes toward Negotiating Safer Sexual Relations with Husbands 180
14.5 Attitudes toward Condom Education for Young People 182
14.6 Higher-Risk Sex 183
14.6.1 Multiple Sexual Partners 183
14.6.2 Point Prevalence and Cumulative Prevalence of Concurrent Sexual Partners 186
14.7 Paid Sex 187
14.8 Male Circumcision 189
14.9 Self-Reporting of Sexually Transmitted Infections 192
14.10 Injections 193
14.11 HIV/AIDS-Related Knowledge and Behaviour among Young People 195
14.11.1 Knowledge about HIV/AIDS and Source for Condoms 195
14.11.2 First Sex 196
14.11.3 Premarital Sex 198
14.11.4 Multiple Sexual Partners among Youth 199
14.11.5 Age Mixing in Sexual Relationships 201
HIV PREVALENCE 203
15.1 Participation Rates for HIV Testing 204
15.2 HIV Prevalence 208
15.2.1 HIV Prevalence by Age 208
15.2.2 HIV Prevalence by Socioeconomic Characteristics 209
15.2.3 HIV Prevalence by Demographic and Health Characteristics 211
15.2.4 HIV Prevalence by Sexual Risk Behaviour 213
15.3 HIV Prevalence among Young People 216
15.4 HIV Prevalence by Other Characteristics Related to HIV Risk 217
15.5 HIV Prevalence among Couples. 219
16 SELF-REPORTED PRIOR HIV TESTING AND TREATMENT 221
16.1 Coverage of HIV Testing Services 221
16.2 HIV Testing among Youth 224
16.3 Couple Counselling and Testing. 225
16.4 Place of Last HIV Test 229
16.5 HIV Prevalence by Prior HIV Test Results 229
16.6 Self-Reported Use of Antiretroviral Medications (ARVs) 232
16.7 HIV Testing during Pregnancy 233
16.8 Early Infant Diagnosis 235
17 BLOOD PRESSURE AND BLOOD GLUCOSE 237
17.1 Coverage Rates for Blood Pressure and Blood Glucose Measurement 237
17.2 High Blood Pressure 238
17.2.1 History and Treatment of High Blood Pressure 239
17.2.2 Prevalence of High Blood Pressure 241
17.3 Diabetes 247
17.3.1 History of Diabetes 248
17.3.2 Prevalence and Treatment of Diabetes 250
18 OTHER HEALTH ISSUES 253
18.1 Knowledge of and Attitudes toward Tuberculosis 253
18.2 Cancer Screening 255
18.2.1 Breast Cancer and Cervical Cancer Screening 255
18.2.2 Prostate Cancer Screening 257
18.3 Use of Tobacco 258
18.4 Alcohol Consumption 261
18.5 Use of Seatbelts 264
18.6 Physical Activity 266
18.7 Consumption of Water, Fruits, and Vegetables 269
18.8 Mental Health 271
18.9 Health Insurance 274
19 WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES. 277
19.1 Women's and Men's Employment 277
19.2 Women's Control over Their Own Earnings and Relative Magnitude of Women's Earnings 278
19.3 Women's Ownership of Assets 282
19.4 Women's and Men's Participation in Decision Making 284
19.5 Attitudes toward Wife Beating 288
19.6 Women's Empowerment Indicators 291
19.7 Current Use of Contraception by Women's Empowerment 291
19.8 Ideal Family Size and Unmet Need by Women’s Empowerment 292
19.9 Women's Empowerment and Reproductive Health Care 293
20 DOMESTIC VIOLENCE 295
20.1 Valid Measures of Domestic Violence 295
20.1.1 Use of Valid Measures of Violence 295
20.1.2 Ethical Considerations for the Domestic Violence Module in the 2013 NDHS 296
20.1.3 Subsample for the Violence Module 297
20.2 Experience of Physical Violence 297
20.3 Perpetrators of Physical Violence 299
20.4 Experience of Sexual Violence 299
20.5 Perpetrators of Sexual Violence 301
20.6 Experience of Different Forms of Violence 301
20.7 Violence during Pregnancy 302
20.8 Marital Control by Husband 303
20.9 Forms of Spousal Violence. 305
20.10 Spousal Violence by Background Characteristics 306
20.11 Violence by Spousal Characteristics and Women’s Empowerment Indicators 308
20.12 Recent Spousal Violence 310
20.13 Onset of Spousal Violence 310
20.14 Physical Consequences of Spousal Violence 311
20.15 Women's Violence Against Their Husbands 312
20.16 Help-Seeking Behaviour by Women Who Experience Violence 315
20.17 Sources of Help to Stop Violence 316
REFERENCES 317
APPENDIX A SAMPLE SELECTION 323
A. 1 Introduction 323
A. 2 Sampling Frame. 323
A. 3 Sampling Procedure and Sample Allocation 324
A. 4 Sampling Probabilities 326
APPENDIX B ESTIMATES OF SAMPLING ERRORS 335
APPENDIX C DATA QUALITY TABLES 355
APPENDIX D PARTICIPANTS IN THE 2013 NAMIBIA DEMOGRAPHIC AND HEALTH SURVEY 361
APPENDIX E QUESTIONNAIRES 367

TABLES AND FIGURES

1 INTRODUCTION 1
Table $1.1 \quad$ Basic demographic indicators, Namibia 1991, 2001, and 2011 2
Table 1.2 Results of the household and individual interviews 9
2 HOUSING CHARACTERISTICS AND HOUSEHOLD POPULATION 11
Table $2.1 \quad$ Household drinking water 12
Table $2.2 \quad$ Household sanitation facilities 13
Table 2.3 Household characteristics 14
Table 2.4 Household possessions 15
Table $2.5 \quad$ Wealth quintiles 17
Table 2.6 Hand washing 18
Table $2.7 \quad$ Household population by age, sex, and residence. 19
Table $2.8 \quad$ Household composition 20
Table $2.9 \quad$ Birth registration of children under age 5 21
Table $2.10 \quad$ Children's living arrangements and orphanhood 22
Table 2.11.1 Educational attainment of the female household population 23
Table 2.11.2 Educational attainment of the male household population 24
Table 2.12 School attendance ratios 25
Table 2.13.1 Health expenditure: Inpatient visits 27
Table 2.13.2 Health expenditure: Outpatient visits 28
Figure 2.1 Population pyramid 19
Figure 2.2 Age-specific attendance rates 26
3 CHARACTERISTICS OF SURVEY RESPONDENTS 29
Table 3.1 Background characteristics of respondents 30
Table 3.2.1 Educational attainment: Women 32
Table 3.2.2 Educational attainment: Men 33
Table 3.3.1 Literacy: Women 34
Table 3.3.2 Literacy: Men 35
Table 3.4.1 Exposure to mass media: Women 36
Table 3.4.2 Exposure to mass media: Men 37
Table 3.5.1 Employment status: Women 38
Table 3.5.2 Employment status: Men 39
Table 3.6.1 Occupation: Women 41
Table 3.6.2 Occupation: Men. 42
Table 3.7 Type of employment 43
Figure 3.1 Women's employment status in the past 12 months 40
4 MARRIAGE AND SEXUAL ACTIVITY 45
Table 4.1 Current marital status 46
Table 4.2.1 Number of women's co-wives 47
Table 4.2.2 Number of men's wives 48
Table 4.3 Age at first marriage 49
Table $4.4 \quad$ Age at first sexual intercourse 50
Table $4.5 \quad$ Median age at first sexual intercourse by background characteristics 50
Table 4.6.1 Recent sexual activity: Women 51
Table 4.6.2 Recent sexual activity: Men 53
5 FERTILITY 55
Table $5.1 \quad$ Current fertility 55
Table 5.2 Fertility by background characteristics 56
Table 5.3.1 Trends in age-specific fertility rates 57
Table 5.3.2 Trends in fertility 57
Table 5.4 Children ever born and living 58
Table $5.5 \quad$ Birth intervals 59
Table 5.6 Postpartum amenorrhoea, abstinence, and insusceptibility. 60
Table 5.7 Median duration of amenorrhoea, postpartum abstinence, and postpartum insusceptibility 61
Table $5.8 \quad$ Menopause 62
Table $5.9 \quad$ Age at first birth 62
Table 5.10 Median age at first birth 63
Table 5.11 Teenage pregnancy and motherhood 64
Figure 5.1 Trends in fertility 58
6 FERTILITY PREFERENCES. 65
Table 6.1 Fertility preferences by number of living children 66
Table $6.2 \quad$ Desire to limit childbearing: Women 67
Table 6.3 Ideal number of children by number of living children 68
Table 6.4 Mean ideal number of children 69
Table 6.5 Fertility planning status 70
Table $6.6 \quad$ Wanted fertility rates 70
7 FAMILY PLANNING 71
Table 7.1 Knowledge of contraceptive methods 72
Table 7.2.1 Current use of contraception by age 73
Table 7.2.2 Current use of contraception by background characteristics 75
Table 7.3 Trends in contraceptive use 76
Table 7.4 Source of modern contraception methods 77
Table $7.5 \quad$ Informed choice 78
Table 7.6 Twelve-month contraceptive discontinuation rates 79
Table 7.7 Reasons for discontinuation 79
Table $7.8 \quad$ Need and demand for family planning for all women 81
Table $7.9 \quad$ Future use of contraception 82
Table 7.10 Exposure to family planning messages 83
Table 7.11 Contact of nonusers with family planning providers 84
Figure 7.1 Trends in contraceptive use among all women age 15-49, Namibia 1992-2013 76
8 INFANT AND CHILD MORTALITY. 85
Table 8.1 Early childhood mortality rates 87
Table $8.2 \quad$ Early childhood mortality rates by socioeconomic characteristics 88
Table 8.3 Early childhood mortality rates by demographic characteristics 89
Table $8.4 \quad$ Perinatal mortality 91
Table $8.5 \quad$ High-risk fertility behaviour 92
Figure 8.1 Trends in childhood mortality, 1987-2012 88
ADULT AND MATERNAL MORTALITY 93
Table $9.1 \quad$ Adult mortality rates 95
Table 9.2 Adult mortality probabilities 95
Table 9.3 Maternal mortality 96
Figure 9.1 Maternal mortality ratios with confidence intervals for the 10 years preceding the 1992, 2000, 2006-07, and 2013 NDHS surveys (per 100,000 live births) 97
10 MATERNAL HEALTH CARE 99
Table 10.1 Antenatal care 101
Table $10.2 \quad$ Number of antenatal care visits and timing of first visit 102
Table 10.3 Components of antenatal care 103
Table 10.4 Tetanus toxoid injections 104
Table $10.5 \quad$ Place of delivery 105
Table 10.6 Reasons for not delivering in a health facility 106
Table 10.7 Assistance during delivery 107
Table 10.8 Timing of first postnatal checkup 109
Table 10.9 Type of provider of first postnatal checkup for the mother 110
Table 10.10 Timing of first postnatal checkup for the newborn 112
Table 10.11 Type of provider of first postnatal checkup for the newborn 113
Table 10.12 Problems in accessing health care 114
Figure 10.1 Mother’s duration of stay in the health facility after giving birth 111
11 CHILD HEALTH 115
Table $11.1 \quad$ Child's size and weight at birth 116
Table $11.2 \quad$ Vaccinations by source of information 117
Table $11.3 \quad$ Vaccinations by background characteristics 118
Table $11.4 \quad$ Vaccinations in first year of life 119
Table 11.5 Prevalence and treatment of symptoms of ARI 120
Table 11.6 Prevalence and treatment of fever 121
Table 11.7 Prevalence of diarrhoea 122
Table 11.8 Diarrhoea treatment 123
Table $11.9 \quad$ Feeding practices during diarrhoea 125
Table 11.10 Disposal of children’s stools 126
Figure 11.1 Trends in vaccination coverage during the first year of life among children age 12-23 months 119
12 NUTRITION OF CHILDREN AND ADULTS 129
Table 12.1 Nutritional status of children 132
Table 12.2 Initial breastfeeding 135
Table $12.3 \quad$ Breastfeeding status by age 136
Table 12.4 Median duration of breastfeeding 138
Table 12.5 Foods and liquids consumed by children in the day or night preceding the interview 139
Table 12.6 Infant and young child feeding (IYCF) practices 141
Table 12.7 Prevalence of anaemia in children 143
Table 12.8 Micronutrient intake among children 145
Table $12.9 \quad$ Presence of iodised salt in household 146
Table 12.10.1 Nutritional status of women 147
Table 12.10.2 Nutritional status of men 148
Table 12.11.1 Prevalence of anaemia in women 149
Table 12.11.2 Prevalence of anaemia in men 150
Table 12.12 Micronutrient intake among mothers 151
Figure 12.1 Nutritional status of children by age 133
Figure 12.2 Trends in nutritional status of children under age 5 by period 134
Figure 12.3 Infant feeding practices by age 137
Figure 12.4 IYCF indicators on breastfeeding status 137
Figure 12.5 IYCF indicators on minimum acceptable diet 142
13 MALARIA 153
Table 13.1 Household possession of mosquito nets. 155
Table $13.2 \quad$ Indoor residual spraying against mosquitoes 156
Table 13.3 Access to an insecticide-treated net (ITN) 157
Table 13.4 Use of mosquito nets by persons in the household 159
Table 13.5 Use of existing ITNs 160
Table 13.6 Use of mosquito nets by children. 161
Table 13.7 Use of mosquito nets by pregnant women 162
Table 13.8 Use of Intermittent Preventive Treatment (IPTp) by women during pregnancy 163
Table 13.9 Prevalence, diagnosis, and prompt treatment of children with fever 165
Table 13.10 Source of advice or treatment for children with fever 166
Table 13.11 Haemoglobin < $8.0 \mathrm{~g} / \mathrm{dl}$ in children 167
Figure 13.1 Percentage of the de facto population with access to an ITN in the household 158
Figure 13.2 Ownership, access, and use of ITNs 160
14 HIV/AIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR 169
Table 14.1 Knowledge of AIDS 171
Table 14.2 Knowledge of HIV prevention methods 172
Table 14.3.1 Comprehensive knowledge about AIDS: Women 174
Table 14.3.2 Comprehensive knowledge about AIDS: Men 175
Table 14.4 Knowledge of prevention of mother-to-child transmission of HIV 177
Table 14.5.1 Accepting attitudes toward those living with HIV/AIDS: Women 179
Table 14.5.2 Accepting attitudes toward those living with HIV/AIDS: Men 180
Table 14.6 Attitudes toward negotiating safer sexual relations with husband. 181
Table 14.7 Adult support of education about condom use to prevent AIDS 182
Table 14.8.1 Multiple sexual partners: Women 184
Table 14.8.2 Multiple sexual partners: Men 185
Table 14.9 Point prevalence and cumulative prevalence of concurrent sexual partners 187
Table $14.10 \quad$ Payment for sexual intercourse and condom use at last paid sexual intercourse 188
Table 14.11 Male circumcision 189
Table 14.12 Provider and place of circumcision 189
Table 14.13 Attitudes toward male circumcision 190
Table $14.14 \quad$ Benefits of male circumcision 191
Table 14.15 Specific benefits of male circumcision 191
Table 14.16 Self-reported prevalence of sexually transmitted infections (STIs) and STI symptoms 192
Table 14.17 Prevalence of medical injections 194
Table 14.18 Comprehensive knowledge about AIDS and of a source of condoms among youth 196
Table 14.19 Age at first sexual intercourse among young people 197
Table 14.20 Premarital sexual intercourse and condom use during premarital sexual intercourse among youth 199
Table 14.21.1 Multiple sexual partners in the past 12 months among young people: Women 200
Table 14.21.2 Multiple sexual partners in the past 12 months among young people: Men 201
Table 14.22 Age mixing in sexual relationships among women and men age 15-19 202
Figure 14.1 Women and men seeking advice for treatment of STIs 193
Figure 14.2 Trends in age at first sexual intercourse. 198
15 HIV PREVALENCE 203
Table 15.1.1 Coverage of HIV testing by background characteristics: Respondents age 15-49 205
Table 15.1.2 Coverage of HIV testing by background characteristics: Respondents age 50-64 207
Table 15.2 HIV prevalence by age 209
Table 15.3.1 HIV prevalence by socioeconomic characteristics: Respondents age 15-49 210
Table 15.3.2 HIV prevalence by socioeconomic characteristics: Respondents age 50-64 211
Table 15.4.1 HIV prevalence by demographic characteristics: Respondents age 15-49 212
Table 15.4.2 HIV prevalence by demographic characteristics: Respondents age 50-64 213
Table 15.5.1 HIV prevalence by sexual behaviour: Respondents age 15-49 214
Table 15.5.2 HIV prevalence by sexual behaviour: Respondents age 50-64 215
Table $15.6 \quad$ HIV prevalence among young people by background characteristics 216
Table 15.7 HIV prevalence among young people by sexual behaviour. 217
Table $15.8 \quad$ HIV prevalence by other characteristics: Respondents age 15-64. 218
Table 15.9 HIV prevalence by male circumcision 219
Table 15.10 HIV prevalence among couples 220
16 SELF-REPORTED PRIOR HIV TESTING AND TREATMENT 221
Table 16.1.1 Coverage of prior HIV testing: Women 223
Table 16.1.2 Coverage of prior HIV testing: Men 224
Table 16.2 Recent HIV tests among youth 225
Table 16.3.1 Couple counselling and testing 227
Table 16.3.2 Consideration of couple counselling and testing in the future 228
Table 16.4 Place of last HIV test 229
Table 16.5.1 HIV prevalence by self-reported prior HIV testing: Respondents 15-49 230
Table 16.5.2 HIV prevalence by self-reported prior HIV testing: Respondents age 50-64 230
Table 16.6.1 Prior HIV testing by current HIV status: Respondents 15-49 231
Table 16.6.2 Prior HIV testing by current HIV status: Respondents 50-64 231
Table 16.7 Self-reported HIV status and ARV use: Women 232
Table 16.8 Pregnant women counselled and tested for HIV 234
Table 16.9 Early infant diagnosis 235
Figure 16.1 Self-reported ARV use and HIV status among HIV-positive women age 15-64 233
17 BLOOD PRESSURE AND BLOOD GLUCOSE 237
Table 17.1 Coverage of testing for blood pressure and fasting blood glucose measurement among women and men age 35-64 238
Table 17.2 History of hypertension 240
Table 17.3 Actions taken or advice received to lower blood pressure 241
Table 17.4.1 Blood pressure status: Women 243
Table 17.4.2 Blood pressure status: Men 245
Table $17.5 \quad$ History of diabetes 249
Table 17.6 Actions taken or advice received to lower high blood glucose or diabetes 250
Table 17.7.1 Prevalence of diabetes by background characteristics: Women 251
Table 17.7.2 Prevalence of diabetes by socioeconomic characteristics: Men 252
Figure 17.1 Awareness of high blood pressure and treatment status among women and men age 35-64 with high blood pressure 247
18 OTHER HEALTH ISSUES 253
Table 18.1.1 Knowledge of and attitudes concerning tuberculosis: Women 254
Table 18.1.2 Knowledge of and attitudes concerning tuberculosis: Men 255
Table $18.2 \quad$ Breast cancer examination and cervical cancer examination or test 257
Table 18.3 Knowledge of and testing for prostate cancer 258
Table 18.4.1 Use of tobacco: Women 259
Table 18.4.2 Use of tobacco: Men 260
Table 18.5.1 Use of alcohol: Women 262
Table 18.5.2 Use of alcohol: Men 263
Table 18.6 Use of seatbelts 265
Table 18.7.1 Physical activity: Women 267
Table 18.7.2 Physical activity: Men 268
Table 18.8.1 Consumption of water, fruits, and vegetables: Women 270
Table 18.8.2 Consumption of water, fruits, and vegetables: Men 271
Table 18.9.1 Mental health: Women 272
Table 18.9.2 Mental health: Men 273
Table 18.10.1 Health insurance coverage: Women 275
Table 18.10.2 Health insurance coverage: Men 276
19 WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES 277
Table 19.1 Employment and cash earnings of currently married women and men 278
Table 19.2.1 Control over women's cash earnings and relative magnitude of women's cash earnings 279
Table 19.2.2 Control over men's cash earnings 281
Table 19.3 Women's control over their own earnings and over those of their husbands 282
Table 19.4.1 Ownership of assets: Women 283
Table 19.4.2 Ownership of assets: Men 284
Table 19.5 Participation in decision making 285
Table 19.6.1 Women's participation in decision making by background characteristics 286
Table 19.6.2 Men's participation in decision making by background characteristics 288
Table 19.7.1 Attitude toward wife beating: Women 289
Table 19.7.2 Attitude toward wife beating: Men 290
Table 19.8 Indicators of women's empowerment 291
Table 19.9 Current use of contraception by women's empowerment 292
Table 19.10 Ideal number of children and unmet need for family planning by women's empowerment 293
Table 19.11 Reproductive health care by women's empowerment 293
Figure 19.1 Number of decisions in which currently married women participate, Namibia 2013 287
20 DOMESTIC VIOLENCE 295
Table 20.1 Experience of physical violence 298
Table 20.2 Persons committing physical violence 299
Table 20.3 Experience of sexual violence. 300
Table 20.4 Persons committing sexual violence 301
Table 20.5 Experience of different forms of violence 301
Table 20.6 Experience of violence during pregnancy 302
Table 20.7 Marital control exercised by husbands 304
Table 20.8 Forms of spousal violence 305
Table 20.9 Spousal violence by background characteristics 307
Table 20.10 Spousal violence by husband's characteristics and empowerment indicators 309
Table 20.11 Physical or sexual violence in the past 12 months by any husband/partner 310
Table 20.12 Experience of spousal violence by duration of marriage 311
Table 20.13 Injuries to women due to spousal violence 311
Table 20.14 Women's violence against their spouse 313
Table 20.15 Women's violence against their spouse by husband's characteristics and empowerment indicators 314
Table 20.16 Help seeking to stop violence 315
Table 20.17 Sources of help to stop the violence 316
APPENDIX A SAMPLE SELECTION 323
Table A. 1 Enumeration areas (EAs) and average EA size in the sampling frame 324
Table A. 2 Distribution of households in the sampling frame 324
Table A. 3 Sample allocation of clusters and households 325
Table A. 4 Sample allocation of expected number of interviews with women and men 325
Table A. 5 Sample implementation: Women. 328
Table A. 6 Sample implementation: Men 329
Table A. 7 Coverage of HIV testing by social and demographic characteristics: Women 330
Table A. 8 Coverage of HIV testing by social and demographic characteristics: Men 331
Table A. 9 Coverage of HIV testing by sexual behaviour characteristics: Women 332
Table A. 10 Coverage of HIV testing by sexual behaviour characteristics: Men 333
APPENDIX B ESTIMATES OF SAMPLING ERRORS 335
Table B. $1 \quad$ List of selected variables for sampling errors, Namibia 2013 337
Table B. 2 Sampling errors: Total sample, Namibia 2013 338
Table B. 3 Sampling errors: Urban sample, Namibia 2013 339
Table B. $4 \quad$ Sampling errors: Rural sample, Namibia 2013 340
Table B. 5 Sampling errors: Zambezi sample, Namibia 2013 341
Table B. $6 \quad$ Sampling errors: Erongo sample, Namibia 2013 342
Table B. $7 \quad$ Sampling errors: Hardap sample, Namibia 2013 343
Table B. 8 Sampling errors: //Karas sample, Namibia 2013 344
Table B. 9 Sampling errors: Kavango sample, Namibia 2013 345
Table B. 10 Sampling errors: Khomas sample, Namibia 2013 346
Table B. 11 Sampling errors: Kunene sample, Namibia 2013 347
Table B. 12 Sampling errors: Ohangwena sample, Namibia 2013 348
Table B. 13 Sampling errors: Omaheke sample, Namibia 2013 349
Table B. 14 Sampling errors: Omusati sample, Namibia 2013 350
Table B. 15 Sampling errors: Oshana sample, Namibia 2013 351
Table B. 16 Sampling errors: Oshikoto sample, Namibia 2013 352
Table B. 17 Sampling errors: Otjozondjupa sample, Namibia 2013 353
Table B. 18 Sampling errors for adult and maternal mortality rates, Namibia 2013 354
APPENDIX C DATA QUALITY TABLES 355
Table C. 1 Household age distribution 355
Table C.2.1 Age distribution of eligible and interviewed women. 356
Table C.2.2 Age distribution of eligible and interviewed men 356
Table C. 3 Completeness of reporting 357
Table C. 4 Births by calendar years 357
Table C. 5 Reporting of age at death in days 358
Table C. 6 Reporting of age at death in months 358
Table C. 7 Nutritional status of children based on the NCHS/CDC/WHO International Reference Population 359
Table C. 8 Completeness of information on siblings 360
Table C. 9 Sibship size and sex ratio of siblings 360

FOREWORD

TThe 2013 Namibia Demographic and Health Survey (NDHS) serves as a periodic update of the demographic and health situation in Namibia. This is the fourth comprehensive, national-level population and health survey conducted in Namibia as part of the global Demographic and Health Surveys (DHS) programme.

The 2013 NDHS was implemented by the Ministry of Health and Social Services (MoHSS) in collaboration with the Namibia Statistics Agency (NSA) and the National Institute of Pathology (NIP). Technical support was provided by ICF International, with financial support from the Government of Namibia, the United States Agency for International Development (USAID), and the Global Fund.

The study was initiated in April 2012, and data collection was carried out from May to September 2013. The overall objective of the survey was to provide demographic, socioeconomic, and health data necessary for policymaking, planning, monitoring, and evaluation at both the national and regional levels. The survey was designed to generate recent and reliable information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, domestic violence, and knowledge and prevalence of HIV/AIDS and other noncommunicable diseases, which allows monitoring progress through time with respect to these issues. In addition, the survey measured the prevalence of anaemia, high blood pressure, and high blood glucose among adult women and men and the prevalence of anaemia among children age 6-59 months; it also collected anthropometric data to assess the nutritional status of women, men, and children. The information provided in this report will aid in assessments of current health- and populationrelated policies and programmes. It will also be useful in formulating new population and health policies and programmes.

A long-term objective of the survey is to strengthen the technical capacity of local organisations to plan, conduct, process, and analyse data from complex national population and health surveys. Moreover, the 2013 NDHS is comparable to similar surveys conducted in other developing countries and therefore affords a national and international comparison. The 2013 NDHS adds to the vast and growing international database on demographic and health-related variables.

The Ministry of Health and Social Services would like to extend its appreciation to all development partners for their input to the survey, to ICF International for providing technical support, and, most importantly, to the respondents who provided the information on which this report is based.

ANDREW NDISHISHI PERMANENT SECRETARY

Millennium Development Goal Indicators
Namibia 2013

Indicator	Sex		Total
	Male	Female	
1. Eradicate extreme poverty and hunger			
1.8 Prevalence of underweight children under age 5	15.3	11.4	13.3
2. Achieve universal primary education			
2.1 Net attendance ratio in primary education ${ }^{1}$	89.5	90.8	90.1
2.3 Literacy rate of 15 to 24 -year-olds ${ }^{2}$	$92.8{ }^{\text {a }}$	95.9	$94.4{ }^{\text {b }}$
3. Promote gender equality and empower women			
3.1 Ratio of girls to boys in primary, secondary , and tertiary education			
3.1a Ratio of girls to boys in primary education ${ }^{3}$	na	na	1.0
3.1b Ratio of girls to boys in secondary education ${ }^{3}$	na	na	1.2
3.1c Ratio of girls to boys in tertiary education ${ }^{3}$	na	na	1.5
4. Reduce child mortality			
4.1 Under-5 mortality rate ${ }^{4}$	64	54	54
4.2 Infant mortality rate ${ }^{4}$	44	37	39
4.3 Proportion of 1-year-old children immunized against measles	91.4	87.8	89.5
5. Improve maternal health			
5.1 Maternal mortality ratio ${ }^{5}$	na	na	385
5.2 Percentage of births attended by skilled health personnel ${ }^{6}$	na	na	88.2
5.3 Contraceptive prevalence rate ${ }^{7}$	na	56.1	na
5.4 Adolescent birth rate ${ }^{8}$	na	82.3	na
5.5a Antenatal care coverage: at least one visit ${ }^{9}$	na	73.6	na
5.5b Antenatal care coverage: four or more visits ${ }^{10}$	na	62.5	na
5.6 Unmet need for family planning	na	17.5	na
6. Combat HIVIAIDS, malaria, and other diseases			
6.3 Percentage of the population age 15-24 with comprehensive correct knowledge of HIV/AIDS ${ }^{12}$	51.1	61.6	56.3
6.4 Ratio of school attendance of orphans to school attendance of non-orphans age 10-14	1.02	1.01	1.02
6.7 Percentage of children under 5 sleeping under insecticide-treated bed nets	5.9	5.2	5.6
6.8 Percentage of children under 5 with fever who are treated with appropriate antimalarial drugs ${ }^{13}$	8.8	8.1	8.4
	Urban	Rural	Total
7. Ensure environmental sustainability			
7.8 Percentage of population using an improved drinking water source ${ }^{14}$	97.8	71.9	84.0
7.9 Percentage of population with access to improved sanitation ${ }^{15}$	53.2	16.7	33.8

na $=$ Not applicable
${ }^{1}$ The ratio is based on reported attendance, not enrollment, in primary education among primary school age children age 6-10. The rate also includes children of primary school age enrolled in secondary education. This is a proxy for MDG indicator 2.1, Net enrollment ratio.
${ }^{2}$ Refers to respondents who attended secondary school or higher or who could read a whole sentence or part of a sentence
${ }^{3}$ Based on reported net attendance, not gross enrollment, among 6-12-year-olds for primary, 13-17-year-olds for secondary, and 18-22-yearolds for tertiary education
${ }^{4}$ Expressed in terms of deaths per 1,000 live births. Mortality by sex refers to a 10 -year reference period preceding the survey. Mortality rates for males and females combined refer to the five-year period preceding the survey.
${ }^{5}$ Expressed in terms of maternal deaths per 100,000 live births in the seven-year period preceding the survey
${ }^{6}$ Among births in the five years preceding the survey
${ }^{7}$ Percentage of currently married women age 15-49 using any method of contraception
${ }^{8}$ Equivalent to the age-specific fertility rate for women age $15-19$ for the three years preceding the survey, expressed in terms of births per 1,000 women age 15-19
${ }^{9}$ With a skilled provider
${ }^{10}$ With any health care provider
${ }^{11}$ High-risk sex refers to sexual intercourse with a non-marital, non-cohabitating partner. Expressed as a percentage of men and women age 1524 who had higher-risk sex in the past 12 months.
${ }^{12}$ Comprehensive knowledge means knowing that consistent use of a condom during sexual intercourse and having just one uninfected faithful partner can reduce the chance of getting the AIDS virus, knowing a healthy-looking person can have the AIDS virus, and rejecting the two most common local misconceptions about transmission or prevention of the AIDS virus.
${ }^{13}$ Measured as the percentage of children age 0-59 months who were ill with a fever in the two weeks preceding the interview and who received any antimalarial drug
${ }^{14}$ Percentage of de jure population whose main source of drinking water is a household connection (piped), public tap or standpipe, tubewell or borehole, protected dug well, protected spring, rainwater collection, or bottled water
${ }^{15}$ Percentage of de jure population whose household has a flush toilet, ventilated improved pit latrine, pit latrine with a slab, or composting toilet and does not share its facility with other households
${ }^{\text {a }}$ Restricted to men in a subsample of households selected for the male interview
${ }^{\text {b }}$ The total calculated as the simple arithmetic mean of the percentages in the columns for male and females

NAMIBIA

1.1 Geography, History, and Economy

1.1.1 Geography

Namibia is a country in south-western Africa that covers approximately 824,000 square kilometres. It is bordered by the Atlantic Ocean in the west, Angola and Zambia in the north, Botswana in the east, and South Africa in the south and east. It lies mostly between 17° and 29° south latitude (a small area is north of 17°) and 11° and 26° east longitude.

The name of the country is derived from the Namib Desert, one of the oldest deserts in the world. Its sand dunes, created by the strong onshore winds, are the highest in the world. There is often extremely dense fog in the Namib Desert as a result of its location, where the Atlantic's cold waters reach Africa. The Namib Desert stretches along the entire west coast of the country, and the Kalahari Desert runs along the south-eastern border with Botswana.

The Namibia consists of five geographical areas: the Central Plateau, the Namib Desert, the Great Escarpment, the Bushveld, and the Kalahari Desert. The central, southern, and coastal areas constitute some of the most arid landscapes south of the Sahara. Because of its location between the Namib and Kalahari deserts, Namibia has the least rainfall in sub-Saharan Africa.

The climate in Namibia ranges from arid and semi-arid to subtropical, with temperatures between $5^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. Fog sometimes occurs along the temperate desert coast. The hottest months of the year are January and February, with average daytime temperatures ranging between $9^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. During the winter months, May to September, temperatures can fluctuate from between $-6^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ at night to $20^{\circ} \mathrm{C}$ in the day. Although frost occurs over large areas of the country during the winter, in general winter days are clear, cloudless, and sunny. Overall, Namibia is a summer rainfall area, with limited showers beginning in October and continuing until April.

1.1.2 History

Namibia gained independence from South Africa on March 21, 1990, following the Namibian War of Independence. Independence followed almost a century of colonial rule by Germany and then by South Africa. Namibia became a German Imperial protectorate in 1884 and remained a German colony until the end of World War I. South Africa occupied the colony in 1915, and the League of Nations mandated Namibia to South Africa in 1919. In 1978 the United Nations (UN) Security Council passed UN Resolution 435, which planned the transition toward independence for Namibia. However, it was only in 1985, after internal violence and uprisings, that South Africa established an interim administration in Namibia. Namibia obtained full independence in 1990 with the exception of Walvis Bay and the Penguin Islands, which remained under South African control until 1994.

The country has a multi-party system and holds general elections every five years. A bicameral legislature consists of the National Council (two members chosen from each regional council) and the National Assembly. Namibia is a member state of the UN, the Southern African Development Community, the African Union, and the Commonwealth of Nations.

Administratively, the country is divided into 13 regions: Zambezi, Kavango, Kunene, Ohangwena, Omusati, Oshana, and Oshikoto in the north; Omaheke, Otjozondjupa, Erongo, and Khomas in central Namibia; and Hardap and //Karas in the south. The capital is Windhoek, located in the Khomas region.

1.1.3 Economy

Agriculture, herding, tourism, and the mining industry, including mining for gem diamonds, uranium, gold, silver, and base metals, are the basis of the economy in Namibia.

The growth rate of the domestic economy is expected to increase from 4.7 percent in 2013 to 5.0 percent in 2014 (Bank of Namibia, 2013). This economic growth is attributed to the agricultural sector, which recorded a tremendous growth of 42 percent despite the drought experienced in 2013. The drought led to a decrease in the local production of crop farming and, hence, the need to import food items to feed the country's population. Sectors that have recently performed well include meat processing; manufacturing of other food products, textiles, clothing apparel, and non-metallic mineral products; publishing and printing. The fishing sector declined by 12 percent in 2013, attributed to the ongoing economic crisis in Europe, especially in Spain, which is the largest export market for the Namibian fishing industry. The mining sector also recorded a reduction of 10 percent due to a decline in the value of diamonds (National Planning Commission [NPC], 2013).

Namibia is ranked as a middle-income country but has one of the most skewed distributions of income per capita in the world. The disparities in per capita income among the population are the result of the unbalanced development that characterised the Namibian economy in the past. The annual unemployment rate increased from 27 percent in 2012 to 29 percent in 2013 (Namibia Statistics Agency [NSA], 2013a).

1.2 Population

Decennial population censuses have been carried out in Namibia since 1991. Table 1.1 provides a summary of the basic demographic indicators for Namibia from 1991, 2001, and 2011census data. According to the 2011 Population and Housing Census, the country's population stands at 2,113,077, with an increase of 1.5 percent in the last 10 years.

Given the presence of the arid Namib Desert, Namibia is one of the least densely populated countries in the world; the population density is estimated to be 2.6 persons per square kilometre. Regional population densities vary substantially, with almost two-thirds of the population living in the four northern regions and less than one-tenth living in the south.

Despite rapid urbanisation, Namibia is still mostly rural, with about four in ten people living in urban areas. The percentage of the population residing in urban areas has increased steadily over the last two decades, from 28 percent in 1991 to 43 percent in 2011.

Table 1.1 Basic demographic indicators, Namibia 1991, 2001, and 2011				
	Census year			
Indicator	1991 1	2001^{2}	$2^{2011^{3}}$	
Population	$1,409,920$	$1,830,330$	$2,113,077$	
Intercensal growth rate (percentage)	3.1	2.9	1.5	
Density (population/km ${ }^{2}$)	1.7	2.1	2.6	
Percentage urban	28	33	43	
Life expectancy at birth (years) ${ }^{4}$				
Male	59	48	53	
Female	63	50	61	

${ }^{1}$ Central Bureau of Statistics (CBS), 1992
${ }^{2}$ CBS, 2003
${ }^{3}$ NSA, 2013b
${ }^{4}$ NSA, 2013c

English is the country's official language, but there are more than 11 indigenous languages in Namibia. People commonly speak two or three languages, and close to 50 percent of the population speaks Oshiwambo (NSA, 2013b).

1.3 Health Services and Programmes

The government of Namibia recognizes that health is a fundamental human right, and it is committed to achieving health for all Namibians. The mandate of the Ministry of Health and Social Services (MoHSS) is derived from Article 95 of the Namibian Constitution, whereby the government is required to support the health and well-being of all people by putting in place legislation that helps provide health care for all and social assistance to the country's most vulnerable groups (MoHSS, 2012a).

Upon gaining independence in 1990, Namibia inherited a health service delivery structure that was segregated along racial lines and based entirely on curative health services. Since then, the MoHSS has adopted a primary health care (PHC) approach for the delivery of health services to the Namibian population. The core functions of the PHC directorate within the MoHSS are organized around four pillars: health promotion, disease prevention, curative services, and rehabilitation services.

The PHC programmes were established to reflect the eight core elements of PHC:

- Promotion of proper nutrition and an adequate supply of safe water
- Maternal and child care, including family spacing
- Immunisation of children against the major infectious diseases
- Basic housing and sanitation
- Prevention and control of locally endemic diseases
- Education, awareness, and training on prevention and control of prevailing community health problems
- Appropriate treatment for common diseases and injuries
- Community participation in health and social matters

To implement the national health strategy, the MoHSS has established the following directorates at the national and regional levels (MoHSS, 2007):

- Primary Health Care
- Special Programmes
- Developmental Social Welfare Services
- Tertiary Health Care and Clinical Support Services
- Policy, Planning and Human Resource Development
- Human Resource Management and General Services
- Finance and Logistics
- 13 Regional Health Directorates

The 13 Regional Health Directorates oversee service delivery in 34 health districts. The role of each district is to ensure efficient and effective implementation of regionally directed programmes and projects. Public health services are provided through 30 public district hospitals, 44 health centres, and 269 clinics. Because of the vastness of the country, the sparse distribution of the population, and the lack of access to permanent health facilities in some communities, outreach (mobile clinic) services are provided at about 1,150 outreach points across the country. Three intermediate hospitals (Oshakati Hospital in Oshana, Rundu Hospital in Kavango, and Katutura Hospital in Khomas) and the national referral hospital (Windhoek Central Hospital) provide support to the district hospitals.

Intersectoral collaboration has been recognised as an important aspect of health and social care delivery in Namibia, with a number of partners and stakeholders playing a role. Although the government is the main health care and service provider, private and faith-based facilities make an important contribution. The private sector is mainly urban, providing health care through medium-sized hospitals as well as through private pharmacies, doctors’ surgery offices, and nursing homes. Faith-based services are entirely subsidised by the government.

1.4 Survey Objectives

The 2013 NDHS is part of the worldwide Demographic and Health Surveys (DHS) programme funded by the United States Agency for International Development (USAID). DHS surveys are designed to collect data on fertility, family planning, and maternal and child health; assist countries in monitoring changes in population, health, and nutrition; and provide an international database that can be used by researchers investigating topics related to population, health, and nutrition.

The overall objective of the survey is to provide demographic, socioeconomic, and health data necessary for policymaking, planning, monitoring, and evaluation of national health and population programmes. In addition, the survey measured the prevalence of anaemia, HIV, high blood glucose, and high blood pressure among adult women and men; assessed the prevalence of anaemia among children age 6-59 months; and collected anthropometric measurements to assess the nutritional status of women, men, and children.

A long-term objective of the survey is to strengthen the technical capacity of local organizations to plan, conduct, and process and analyse data from complex national population and health surveys. At the global level, the 2013 NDHS data are comparable with those from a number of DHS surveys conducted in other developing countries. The 2013 NDHS adds to the vast and growing international database on demographic and health-related variables.

1.5 Organisation of the Survey

The 2013Namibia Demographic and Health Survey is the fourth nationally representative, comprehensive DHS survey conducted in Namibia. The 2013 NDHS was implemented by the Ministry of Health and Social Services in collaboration with the Namibia Statistics Agency and the National Institute of Pathology (NIP). Technical support was provided by ICF International, with financial support from the government of Namibia, the United States Agency for International Development, and the Global Fund.

1.6 SURVEY IMPLEMENTATION

1.6.1 Sample Design

The primary focus of the 2013 NDHS was to provide estimates of key population and health indicators, including fertility and mortality rates, for the country as a whole and for urban and rural areas. In addition, the sample was designed to provide estimates of most key variables for the 13 administrative regions.

Each of the administrative regions is subdivided into a number of constituencies (with an overall total of 107 constituencies). Each constituency is further subdivided into lower level administrative units. An enumeration area (EA) is the smallest identifiable entity without administrative specification, numbered sequentially within each constituency. Each EA is classified as urban or rural.

The sampling frame used for the 2013 NDHS was the preliminary frame of the 2011 Namibia Population and Housing Census (NSA, 2013a). The sampling frame was a complete list of all EAs covering the whole country. Each EA is a geographical area covering an adequate number of households to serve as a counting unit for the population census. In rural areas, an EA is a natural village, part of a large village, or a group of small villages; in urban areas, an EA is usually a city block. The 2011 population census also produced a digitised map for each of the EAs that served as the means of identifying these areas.

The sample for the 2013 NDHS was a stratified sample selected in two stages. In the first stage, 554 EAs-269 in urban areas and 285 in rural areas-were selected with a stratified probability proportional to size selection from the sampling frame. The size of an EA is defined according to the
number of households residing in the EA, as recorded in the 2011 Population and Housing Census. Stratification was achieved by separating every region into urban and rural areas. Therefore, the 13 regions were stratified into 26 sampling strata (13 rural strata and 13 urban strata). Samples were selected independently in every stratum, with a predetermined number of EAs selected. A complete household listing and mapping operation was carried out in all selected clusters. In the second stage, a fixed number of 20 households were selected in every urban and rural cluster according to equal probability systematic sampling.

Due to the non-proportional allocation of the sample to the different regions and the possible differences in response rates, sampling weights are required for any analysis using the 2013 NDHS data to ensure the representativeness of the survey results at the national as well as the regional level. Since the 2013 NDHS sample was a two-stage stratified cluster sample, sampling probabilities were calculated separately for each sampling stage and for each cluster.

1.6.2 Questionnaires

Three questionnaires were administered in the 2013 NDHS: the Household Questionnaire, the Woman's Questionnaire, and the Man's Questionnaire. These questionnaires were adapted from the standard DHS6 core questionnaires to reflect the population and health issues relevant to Namibia at a series of meetings with various stakeholders from government ministries and agencies, nongovernmental organisations, and international donors. The final draft of each questionnaire was discussed at a questionnaire design workshop organised by the MoHSS from September 25-28, 2012, in Windhoek. The questionnaires were then translated from English into the six main local languages-Afrikaans, Rukwangali, Oshiwambo, Damara/Nama, Otjiherero, and Silozi-and back translated into English. The questionnaires were finalised after the pretest, which took place from February 11-25, 2013.

The Household Questionnaire was used to list all usual household members as well as visitors in the selected households. Basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. In addition, the Household Questionnaire included questions on knowledge of malaria and use of mosquito nets by household members, along with questions regarding health expenditures. The Household Questionnaire was used to identify women and men who were eligible for the individual interview and the interview on domestic violence. The questionnaire also collected information on characteristics of the household's dwelling unit, such as source of water, type of toilet facilities, materials used for the floor of the house, and ownership of various durable goods. The results of tests assessing iodine levels were recorded as well.

In half of the survey households (the same households selected for the male survey), the Household Questionnaire was also used to record information on anthropometry and biomarker data collected from eligible respondents, as follows:

- All eligible women and men age 15-64 were measured, weighed, and tested for anaemia and HIV.
- All eligible women and men age 35-64 had their blood pressure and blood glucose measured.
- All children age 0 to 59 months were measured and weighed.
- All children age 6 to 59 months were tested for anaemia.

The Woman's Questionnaire was used to collect information from women age 15-49. Women were asked questions on the following topics:

- Background characteristics (e.g., education, residential history, media exposure)
- Birth history and childhood mortality
- Knowledge and use of family planning methods
- Fertility preferences
- Antenatal, delivery, and postnatal care
- Breastfeeding and infant feeding practices
- Vaccinations and childhood illnesses
- Marriage and sexual activity
- Women's work and husbands' background characteristics
- Awareness and behaviour regarding AIDS and other sexually transmitted infections (STIs)
- Other health issues (e.g., knowledge of tuberculosis; tobacco use; alcohol consumption; use of seat belts while seated in a vehicle; physical activity; consumption of water, fruits, and vegetables; knowledge of and testing for breast cancer and cervical cancer; and mental health)
- Maternal mortality
- Domestic violence

The Woman's Questionnaire was also used to collect information from women age 50-64 living in half of the selected survey households on background characteristics, marriage and sexual activity, women's work and husbands' background characteristics, awareness and behaviour regarding AIDS and other STIs, and other health issues.

The Man's Questionnaire was administered to all men age 15-64 living in half of the selected survey households. The Man's Questionnaire collected much of the same information as the Woman's Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health or nutrition.

In addition to the questionnaires, other technical documents were prepared by the MoHSS in collaboration with DHS programme staff at ICF International, including interviewer and supervisor training manuals and assignment sheets for fieldwork control.

1.6.3 Anaemia and HIV Testing

In half of the survey households (the same households selected for the male survey), haemoglobin testing to assess the prevalence of anaemia was conducted on women and men age 15-64 who voluntarily consented to the testing and on children 6-59 months for whom consent was obtained from their parents or the adult responsible for the children. To carry out the testing, a drop of blood was obtained from a finger prick (or a heel prick in the case of children less than 12 months old or young children with thin fingers) and collected in a microcuvette. Haemoglobin analysis was performed on-site using a battery-operated portable HemoCue analyser. Results were given to the adults and to the parents or adults responsible for the children, verbally and in writing.

Parents of children with a haemoglobin level under $7 \mathrm{~g} / \mathrm{dl}$ (considered to be severely anaemic) were instructed to take the child to a health facility for follow-up care. Likewise, non-pregnant women and men were referred for follow-up care if their haemoglobin level was below $7 \mathrm{~g} / \mathrm{dl}$. Pregnant women were referred to a health facility for follow-up care if their haemoglobin level was below $9 \mathrm{~g} / \mathrm{dl}$.

In the same households selected for anaemia (half of the survey households), blood specimens were also collected in the field from men and women age 15-64 for HIV testing in the laboratory. Verbal consent for HIV testing was requested from each respondent following completion of the individual interview. The HIV testing protocol was approved by the MoHSS Biomedical Research Committee, the Institutional Review Board of ICF International, and the U.S. Centers for Disease Control and Prevention.

Health technicians collected blood specimens from all women and men who consented. The protocol for blood specimen collection and analysis was based on the anonymous linked protocol developed by the DHS programme. This protocol allows for the merging of HIV test results with socio-
demographic data collected in the individual questionnaires after all information that can potentially identify an individual has been destroyed.

Health technicians explained the procedure, the confidentiality of the data, and the fact that the test results would not be made available to the respondent. If a respondent consented to HIV testing, three to five blood spots from a finger prick were collected on a filter paper card to which a barcode label unique to the respondent was affixed. Respondents were asked whether they would consent to having the laboratory store their blood sample for future unspecified testing. If they did not consent to additional testing using their sample, this was indicated on the Household Questionnaire, and the words "no additional testing" were written on the filter paper card. Each respondent, whether providing consent or not, was given an informational brochure on HIV/AIDS and a list of nearby sites providing voluntary counselling and testing services.

A barcode label identical to that placed on the filter paper card was attached to the Household Questionnaire. A third copy of the same barcode was affixed to the dried blood spot (DBS) transmittal form to track the blood samples from the field to the laboratory. Blood samples were dried overnight and packaged for storage the following morning. Samples were periodically collected from the field, along with the completed questionnaires, and transported to be logged in and checked at the MoHSS; the samples were then delivered to the NIP, where HIV testing took place.

At the NIP, each blood sample was logged into the CSPro HIV Test Tracking System database, given a laboratory number, and stored at $-20^{\circ} \mathrm{C}$. The HIV testing protocol stipulates that testing of blood can be conducted only after questionnaire data entry is completed, verified, and cleaned; all paper questionnaires are destroyed; and all unique identifiers are removed from the questionnaire data file except the anonymous barcode number.

The HIV testing algorithm followed in the 2013 NDHS was as follows. First, all samples were screened using the Vironostika ${ }^{\circledR} \mathrm{Ag} / \mathrm{Ab}$ combination assay (Biomérieux), a highly sensitive fourthgeneration enzyme-linked immunoassay (ELISA). A negative result was recorded as negative. All samples that tested positive on the first ELISA and 10 percent of the samples that tested negative were retested with a second highly specific fourth-generation ELISA, the Enzygnost ${ }^{\circledR}$ HIV Integral II assay (Siemens). Positive samples on both tests were recorded as positive. If the results of the first and second ELISAs were discordant, the two ELISAs were repeated. If the results remained discordant, the samples were tested using a third confirmatory test, the Inno-Lia HIV I/II Score line immunoassay (Innogenetics), to resolve the discordance. The final result was recorded as positive if the line immunoassay confirmed it to be positive and negative if the line immunoassay confirmed it to be negative. If the line immunoassay results were indeterminate, the sample result was recorded as indeterminate. The line immunoassay was also used to determine the HIV type of all positive samples.

Following laboratory testing, the HIV test results were entered into a spreadsheet with a barcode as the unique identifier. The barcode linked the HIV test results with the data from the individual interviews.

1.6.4 Blood Glucose and Blood Pressure Testing

In the 2013 NDHS, blood glucose testing was conducted to estimate the prevalence of diabetes mellitus type 2 among women and men age 35-64. After an overnight fast, a blood sample was obtained from respondents by a finger prick, and the blood was tested using the HemoCue Glucose 201 RT system (HemoCue Ab, Angelholm, Sweden) to determine the blood glucose level. Blood glucose levels were recorded as millimoles per litre ($\mathrm{mmol} / \mathrm{L}$) and compared with the World Health Organization's cutoffs to classify the prevalence of diabetes among adult women and men.

Elevated blood pressure, commonly referred to as high blood pressure, is a known risk factor for death from stroke and coronary heart disease. In the 2013 NDHS, blood pressure measurements (systolic
and diastolic) were carried out among women and men age 35-64 to assess the prevalence of high blood pressure among adults. The measurements were not used for diagnostic purposes. Rather, respondents who had an abnormal measurement were informed of their blood pressure level and advised to visit a health facility for evaluation. Blood pressure was measured using the Life Source UA-767 Plus digital device with automatic upper-arm inflation and automatic pressure release. Interviewers were trained in the use of this device according to the manufacturer's recommended protocol. Three blood pressure measurements were taken, and the first measurement was discarded. The average of the last two measurements was reported as the blood pressure reading in millimetres of mercury (mmHg).

1.6.5 Pretest

Pretest training was held at the Khomas Regional Council Office and the National Training Center in Windhoek. There were 35 trainees, 16 men and 19 women. Trainees included eight individuals who had participated in previous NDHS surveys.

The survey instruments were piloted from February 11 to February 24, 2013. The questionnaires were pretested in both urban and rural clusters. About 150 women and 150 men were interviewed during the pilot survey, and the results were used to modify the survey instruments as necessary.

1.6.6 Household Listing

Prior to the main survey, a complete listing of households in the selected primary sampling units (PSUs) was carried out. This provided a sampling frame from which 20 households in each PSU were selected for the survey. The listing exercise was carried out by the MoHSS in collaboration with the NSA.

1.6.7 Training of Field Staff

The main training for the 2013 NDHS was conducted from April 22 to May 18, 2013. A total of 250 participants were recruited, including 31 nurses who served as health technicians. The interviewers were split into five classrooms. The first three weeks primarily covered classroom instruction, expert presentations on selected topics, mock interviews and quizzes. At the end of the classroom training, all of the interviewers completed a final exam and a structured, scored mock interview; they were also judged according to their performance during field practice. In addition to training on the basic content of the questionnaires, a separate training session was conducted for health technicians from May 6-22 on height and weight measurements, blood pressure and blood glucose measurements, anaemia and HIV testing, and DBS preparation. Also, separate training sessions were held for regional supervisors, team supervisors, and editors on their roles and responsibilities, emphasizing the importance of field editing and data quality.

1.6.8 Data Collection

Data collection was carried out by 28 teams, each consisting of a supervisor, a field editor, three female interviewers, one male interviewer, and a health technician. Fieldwork started on May 26, 2013, with all teams initially deployed to complete one selected cluster each in Windhoek to enable intense supervision and technical backstopping. After satisfactory completion of these clusters, the teams were deployed to their respective regions to continue fieldwork. Fieldwork was completed on September 30, 2013.

Quality assurance was maintained by national and regional supervisors through close supervision and monitoring during fieldwork. The questionnaires were edited by the field editors in the field and verified by the team supervisor before being transported to the MoHSS central office. In addition, national and regional supervisors ensured quality control through editing of questionnaires and observation of interviewers. Common mistakes and practical solutions were communicated through written notes and discussed with all team members.

Close contact between the MoHSS central office and the teams was maintained through field visits by senior staff, ICF International staff and representatives of USAID/Namibia. Regular communication was maintained through cell phones.

A publicity campaign was implemented during May and June 2013 to provide information to communities about the survey and its objectives. The campaign enlightened the public about survey processes, including interviews, anthropometric measurements and collection of blood samples.

Information about the survey was announced in the print media and on television, including the official launch of the survey by the MoHSS. T-shirts and leaflets were also prepared for this purpose.

1.6.9 Data Processing

CSPro-a Windows-based integrated census and survey processing system that combines and replaces the ISSA and IMPS packages-was used for entry, editing, and tabulation of the NDHS data. Prior to data entry, a practical training session was provided by ICF International to all data entry staff. A total of 28 data processing personnel, including 17 data entry operators, one questionnaire administrator, two office editors, three secondary editors, two network technicians, two data processing supervisors, and one coordinator, were recruited and trained on administration of questionnaires and coding, data entry and verification, correction of questionnaires and provision of feedback, and secondary editing. NDHS data processing was formally launched during the week of June 22, 2013, at the National Statistics Agency Data Processing Centre in Windhoek. The data entry and editing phase of the survey was completed in January 2014.

1.7 Response Rates

Table 1.2 shows household and individual response rates for the 2013 NDHS. A total of 11,004 households were selected for the sample, of which 10,165 were found to be occupied during data collection. Of the occupied households, 9,849 were successfully interviewed, yielding a household response rate of 97 percent.

In these households, 9,940 women age 15-49 were identified as eligible for the individual interview. Interviews were completed with 9,176 women, yielding a response rate of 92 percent. In addition, in half of these households, 842 women age 50-64 were successfully interviewed; in this group of women, the response rate was 91 percent.

Of the 5,271 eligible men identified in the selected subsample of households, 4,481 (85 percent) were successfully interviewed.

Response rates were higher in rural than in urban areas, with the rural-urban difference more marked among men than among women.

Table 1.2 Results of the household and individual interviews
Number of households, number of interviews, and response rates, according to residence (unweighted), Namibia 2013

Result	Residence		Total
	Urban	Rural	
Household interviews			
Households selected	5,343	5,661	11,004
Households occupied	4,975	5,190	10,165
Households interviewed	4,766	5,083	9,849
Household response rate ${ }^{1}$	95.8	97.9	96.9
Interviews with women age 15-49			
Number of eligible women	5,327	4,613	9,940
Number of eligible women interviewed	4,843	4,333	9,176
Eligible women response rate ${ }^{2}$	90.9	93.9	92.3
Interviews with women age 50-64 ${ }^{\mathbf{3}}$			
Number of eligible women	359	562	921
Number of eligible women interviewed	320	522	842
Eligible women response rate ${ }^{2}$	89.1	92.9	91.4
Interviews with men age 15-64 ${ }^{3}$			
Number of eligible men	2,722	2,549	5,271
Number of eligible men interviewed	2,224	2,257	4,481
Eligible men response rate ${ }^{2}$	81.7	88.5	85.0

[^0]
Key Findings

- Eighty-seven percent of Namibian households use an improved source of drinking water.
- Only 34 percent of households in Namibia use improved toilet facilities that are not shared with other households; 46 percent of households have no toilet facility at all.
- Forty-seven percent of households have access to electricity.
- Fifty-three percent of households use solid fuel for cooking.
- Ownership of mobile phones has risen dramatically; 89 percent of households reported owning a mobile phone in the current survey, as compared with 52 percent in the 2006-07 NDHS.
- Eighty-seven percent of children under age 5 have been registered with civil authorities and 63 percent have a birth certificate.
- Approximately 14 percent of children under age 18 are orphaned (that is, one or both parents are not living).
- Twelve percent of females and 14 percent of males age 6 and older have never attended school.

TThis chapter presents information on the demographic and socioeconomic characteristics of the household population, including age, sex, education, and place of residence. These descriptive data provide a context for the interpretation of demographic and health indices and can offer an approximate indication of the representativeness of the survey.

In the 2013 NDHS, a household was defined as a person or group of related and unrelated persons who lived together in the same dwelling unit(s), who acknowledged one adult male or female as the head of the household, who shared the same housekeeping arrangements, and who were considered a single unit. Information was collected from all of the usual residents of each selected household and visitors who had stayed in the selected household the night before the interview. Those persons who stayed in the selected household the night before the interview (whether usual residents or visitors) represent the de facto population; usual residents alone constitute the de jure population. To maintain comparability with other surveys, all tables in this report refer to the de facto population unless otherwise specified.

2.1 Household Characteristics

The physical characteristics of households and the availability and accessibility of basic household facilities are important in assessing the general welfare and socioeconomic condition of the population. The 2013 NDHS collected information on a range of housing characteristics, including source of drinking water, time taken to fetch water, type of sanitation facility, access to electricity, type of flooring, and number of rooms used for sleeping. Questions were asked about sources of energy for cooking fuel and lighting, household effects, hand washing, school attendance, and educational attainment as well as health insurance and health expenditures. These data are presented for households and are further disaggregated by residence (rural and urban) and region.

2.1.1 Drinking Water

The source of drinking water is an indicator of its suitability for drinking. Sources that are more likely to provide water suitable for drinking are identified in Table 2.1 as improved sources. These include
a piped source within the dwelling, yard, or plot; a public tap, tube well, or borehole; a hand pump/protected well or protected spring; and rainwater or bottled water. ${ }^{1}$ Lack of ready access to a water source may limit the quantity of suitable drinking water that is available to a household. Even if the water is obtained from an improved source, it may be contaminated during transportation or storage if it is fetched from a source that is not immediately accessible to the household.

Table 2.1 Household drinking water
Percent distribution of households and de jure population by source of drinking water, time to obtain drinking water, and treatment of drinking water, according to residence, Namibia 2013

Characteristic	Households			Population		
	Urban	Rural	Total	Urban	Rural	Total
Source of drinking water						
Improved source	97.5	75.5	86.9	97.8	71.9	84.0
Piped into dwelling	52.8	19.4	36.8	54.9	18.5	35.5
Piped to yard/plot	14.6	13.6	14.2	15.5	12.5	13.9
Public tap/standpipe	28.7	23.3	26.1	26.3	22.8	24.4
Tube well or borehole	0.3	15.3	7.5	0.4	13.9	7.6
Protected well	0.0	3.0	1.5	0.0	3.4	1.8
Protected spring	0.0	0.6	0.3	0.0	0.6	0.3
Rainwater	0.0	0.1	0.1	0.0	0.1	0.1
Bottled water	1.1	0.1	0.6	0.7	0.0	0.4
Non-improved source	0.3	13.2	6.5	0.3	15.5	8.4
Unprotected well	0.2	11.2	5.5	0.3	13.6	7.4
Unprotected spring	0.0	0.8	0.4	0.0	0.7	0.4
Tanker truck/cart with drum	0.0	1.1	0.6	0.1	1.3	0.7
Other	2.1	3.0	2.6	1.7	2.4	2.1
Missing	0.1	8.3	4.0	0.1	10.1	5.4
Total	100.0	100.0	100.0	100.0	100.0	100.0
Time to obtain drinking water (round trip)						
Water on premises	68.0	37.3	53.3	70.9	34.9	51.7
Less than 30 minutes	26.2	35.5	30.7	23.3	34.9	29.5
30 minutes or longer	4.9	25.5	14.8	5.1	28.6	17.6
Don't know/missing	0.8	1.7	1.2	0.8	1.6	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0
Water treatment prior to drinking ${ }^{1}$						
Boiled	9.1	2.3	5.9	9.4	2.3	5.6
Bleach/chlorine added	0.3	4.2	2.2	0.3	5.1	2.9
Strained through cloth	0.0	0.3	0.2	0.0	0.3	0.2
Ceramic, sand, or other filter	1.5	0.2	0.9	1.5	0.2	0.8
Other	0.6	0.6	0.6	0.5	0.5	0.5
No treatment	88.5	92.6	90.5	88.4	92.0	90.3
Percentage using an appropriate treatment method ${ }^{2}$	10.7	6.4	8.7	11.0	7.3	9.0
Number	5,121	4,728	9,849	19,458	22,207	41,665

${ }^{1}$ Respondents may report multiple treatment methods, so the sum of treatment may exceed 100 percent.
${ }^{2}$ Appropriate water treatment methods include boiling, bleaching, filtering, and solar disinfecting.

Source of drinking water is important because waterborne diseases such as diarrhoea are prevalent in Namibia. Sources of water expected to be relatively free of the agents responsible for these diseases are piped water, hand pumps/protected wells, protected springs, rainwater, and bottled water. Other sources such as unprotected wells, unprotected springs, and tanker trucks/carts with drums are more likely to carry disease-causing agents. Table 2.1 indicates that a majority of Namibian households (87 percent) have access to improved water sources: 37 percent from piped water into the dwelling, 14 percent from water piped to the yard, and 26 percent from a public tap. Households in urban areas (98 percent) are more likely than those in rural areas (76 percent) to have access to an improved source of water. In the 2006-07 NDHS, 97 percent of urban households and 80 percent of rural households were reported to use improved sources of water.

[^1]The table further shows that 53 percent of households in Namibia have a source of drinking water on their premises, with a large difference between urban and rural households (68 percent and 37 percent, respectively). A comparison with the findings from the 2006-07 NDHS shows that there has been a significant drop in the proportion of urban households with water on the premises (from 81 percent to 68 percent), while the percentage of rural households with water on the premises has increased slightly from 32 percent to 37 percent. Thirty-one percent of households take less than 30 minutes to obtain drinking water, while 15 percent take 30 minutes or longer.

Nine percent of households treat their drinking water. Six percent boil their water and 2 percent use bleach/chlorine prior to drinking. Ninety-three percent of rural households and 89 percent of urban households do not treat their drinking water.

2.1.2 Sanitation Facilities and Waste Disposal

A household is classified as having an improved toilet if the toilet is used only by members of one household (i.e., it is not shared) and if the facility used by the household separates waste from human contact (WHO and UNICEF, 2012b). The types of facilities considered improved are toilets that flush or pour flush into a piped sewer system, septic tank, or pit latrine; ventilated improved pit (VIP) latrines; and pit latrines with a slab.

Table 2.2 shows that only 34 percent of households in Namibia use improved toilet facilities that are not shared with other households, and 15 percent use facilities that would be considered improved if they were not shared. Forty-nine percent of households in urban areas have improved toilet facilities that are not shared, as compared with 17 percent of households in rural areas.

Table 2.2 Household sanitation facilities
Percent distribution of households and de jure population by type of toilet/latrine facilities, according to residence, Namibia 2013

Type of toilet/latrine facility	Households			Population		
	Urban	Rural	Total	Urban	Rural	Total
Improved, not shared facility						
Flush/pour flush to piped sewer system	44.0	7.4	26.4	48.0	5.2	25.2
Flush/pour flush to septic tank	0.9	0.8	0.9	0.9	0.6	0.8
Flush/pour flush to pit latrine	1.3	1.5	1.4	1.7	1.4	1.5
Ventilated improved pit (VIP) latrine	1.9	5.4	3.6	2.2	7.0	4.8
Pit latrine with slab	0.3	1.9	1.0	0.4	2.2	1.3
Composting toilet	0.1	0.2	0.1	0.1	0.2	0.1
Total	48.5	17.2	33.5	53.2	16.7	33.8
Shared facility ${ }^{1}$						
Flush/pour flush to piped sewer system	19.0	2.0	10.9	15.4	0.9	7.7
Flush/pour flush to septic tank	0.2	0.4	0.3	0.1	0.2	0.2
Flush/pour flush to pit latrine	1.9	0.5	1.3	1.5	0.2	0.8
Ventilated improved pit (VIP) latrine	3.2	2.1	2.6	2.8	1.7	2.2
Pit latrine with slab	0.2	0.5	0.4	0.2	0.3	0.2
Composting toilet	0.0	0.1	0.0	0.0	0.1	0.0
Total	24.6	5.5	15.4	20.1	3.3	11.2
Non-improved facility						
Flush/pour flush not to sewer/septic tank/pit latrine	1.8	0.7	1.2	1.7	0.4	1.0
Pit latrine without slab/open pit	2.7	2.3	2.5	3.4	2.7	3.0
Bucket	0.6	0.6	0.6	0.6	0.4	0.5
Hanging toilet/hanging latrine	0.1	0.1	0.1	0.1	0.1	0.1
No facility/bush/field	21.1	73.6	46.3	20.0	76.4	50.0
Other	0.5	0.0	0.3	0.7	0.0	0.3
Missing	0.1	0.1	0.1	0.1	0.1	0.1
Total	26.9	77.3	51.1	26.7	80.0	55.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	5,121	4,728	9,849	19,458	22,207	41,665

${ }^{1}$ Facilities that would be considered improved if they were not shared by 2 or more households

More than half of Namibian households (51 percent) have non-improved toilet facilities. Forty-six percent of households have no toilet facility at all, as compared with 49 percent in the 2006-07 NDHS
survey. Twenty-one percent of households in urban areas and 74 percent of households in rural areas lack any toilet facility. The proportion of urban households without a toilet facility increased by 6 percentage points over the last six years from 15 percent to 21 percent. On the other hand, the proportion of rural households with no toilet facility decreased by 4 percentage points over the same period (78 percent versus 74 percent).

2.1.3 Housing Characteristics

Table 2.3 presents information on the characteristics of household dwellings. In addition to reflecting the household's socioeconomic situation, these characteristics show the environmental conditions in which the household lives.

Access to electricity usually goes hand in hand with improved housing structures and a better standard of living. In Namibia, only 47 percent of households have electricity. There is a large difference in access to electricity between urban and rural households (72 percent and 21 percent, respectively). The percentage of households with electricity has risen since the 2006-07 NDHS survey, when only 44 percent of households had electricity. This gain, however, has been in rural households only, in which the percentage of households with electricity rose from 15 percent to 21 percent. Access to electricity in urban households however, declined from 78 percent to 72 percent over the same period.

The type of material used for flooring is also an indicator of socioeconomic status and, to some extent, determines the household's vulnerability to disease-causing agents. Forty percent of Namibian households have earthen floors (made of earth/sand, dung, or mud/clay), while 34 percent have cement floors. One in five households have ceramic floors. Differences exist between rural and urban households; earth/sand flooring is most common in rural areas (44 percent), while cement and ceramic tiles are most common in urban areas (35 percent and 33 percent, respectively).

Table 2.3 Household characteristics			
Percent distribution of households by housing characteristics, percentage using solid fuel for cooking, and percent distribution by frequency of smoking in the home, according to residence, Namibia 2013			
Housing characteristic	Residence		Total
	Urban	Rural	
Electricity			
Yes	72.2	20.5	47.4
No	27.8	79.5	52.6
Total	100.0	100.0	100.0
Flooring material			
Earth/sand	17.7	44.1	30.4
Dung	0.5	2.7	1.6
Mud/clay	1.9	13.8	7.6
Wood planks	0.4	0.1	0.3
Palm/bamboo	0.2	0.0	0.1
Parquet or polished wood	0.6	0.1	0.4
Vinyl or asphalt strips	1.4	0.3	0.9
Ceramic tiles	33.4	3.7	19.1
Cement	34.5	33.7	34.1
Carpet	8.3	1.3	4.9
Other	0.8	0.1	0.5
Missing	0.3	0.1	0.2
Total	100.0	100.0	100.0
Rooms used for sleeping			
One	35.3	26.0	30.8
Two	29.3	21.8	25.7
Three or more	35.0	51.7	43.0
Missing	0.5	0.5	0.5
Total	100.0	100.0	100.0
Place for cooking			
In the house	77.5	52.8	65.6
In a separate building	5.8	10.8	8.2
Outdoors	16.2	36.2	25.8
No food cooked in household	0.4	0.1	0.3
Other	0.1	0.1	0.1
Total	100.0	100.0	100.0
Cooking fuel			
Electricity	58.0	7.4	33.7
LPG/natural gas/biogas	16.3	3.4	10.1
Kerosene	5.0	0.1	2.6
Charcoal	0.2	0.4	0.3
Wood	19.9	87.4	52.3
Animal dung	0.0	1.0	0.5
Other	0.1	0.0	0.1
No food cooked in household	0.4	0.1	0.3
Total	100.0	100.0	100.0
Percentage using solid fuel for cooking ${ }^{1}$	20.1	88.9	53.1
Frequency of smoking in the home			
Daily	19.5	22.4	20.9
Weekly	2.2	2.4	2.3
Monthly	0.4	0.2	0.3
Less than monthly	0.5	0.6	0.5
Never	77.3	74.4	75.9
Missing	0.1	0.0	0.1
Total	100.0	100.0	100.0
Number	5,121	4,728	9,849

LPG = Liquid petroleum gas
${ }^{1}$ Includes charcoal, wood, and animal dung

Overall, 31 percent of Namibian households use one room for sleeping, 26 percent use two rooms, and 43 percent use three or more rooms.

The potential for exposure to harmful effects of smoke from using solid fuels for cooking increases if cooking occurs within the house itself rather than outdoors or in a separate building. Sixty-six percent of households in Namibia cook in the house, 8 percent cook in a separate building, and 26 percent cook outdoors. Seventy-eight percent of urban households cook in the house, as compared with 53 percent of rural households.

Cooking and heating with solid fuels can lead to high levels of indoor smoke, a complex mix of health-damaging pollutants that can increase the risk of contracting diseases (WHO, 2011). Solid fuels include charcoal, wood, and animal dung. In the 2013 NDHS, households were asked about their primary source of fuel for cooking. The results show that 52 percent of households use wood for cooking, while only 34 percent use electricity. There are large differences in use of fuel for cooking between urban and rural areas. Eighty-seven percent of households in rural areas use wood as their primary source of fuel for cooking, while 58 percent of urban households use electricity as their main source of cooking fuel.

Information on frequency of smoking inside the home was obtained to assess the percentage of households in which there is exposure to secondhand smoke, which causes health risks in children and adults who do not smoke. Pregnant women who are exposed to secondhand smoke have a higher risk of delivering a low birth weight baby (Windham et al., 1999), and children exposed to secondhand smoke are at increased risk for respiratory and ear infections and poor lung development (U.S. Department of Health and Human Services, 2006). Twenty-one percent of Namibian households reported that someone smokes in the home daily. In 76 percent of households, smoking never occurs in the home.

2.1.4 Household Possessions

Possession of durable goods is an indicator of a household’s socioeconomic status. Moreover, each particular item has specific benefits. For instance, having access to a radio or a television exposes household members to innovative ideas, a refrigerator prolongs the wholesomeness of foods, and a means of transport allows greater access to services away from the local area. Table 2.4 shows data on ownership of selected household possessions by residence.

The most commonly owned items by households are mobile telephones (89 percent), radios (68 percent), televisions (44 percent), and refrigerators (42 percent). With the exception of the radio, all of these proportions are higher than those recorded in the 2006-07 NDHS. Most notably, household ownership of mobile phones has risen

Table 2.4 Household possessions
Percentage of households possessing various household effects, means of transportation, agricultural land, and livestock/farm animals by residence, Namibia 2013

	Residence		
Possession	Urban	Rural	Total
Household effects			
\quad Radio	73.3	63.0	68.4
Television	66.6	18.5	43.6
Mobile telephone	95.0	81.4	88.5
Non-mobile telephone	15.0	2.6	9.0
\quad Refrigerator	64.9	16.7	41.8
\quad			
Means of transport			
\quad Bicycle	2.0	11.8	13.5
Animal-drawn cart	2.5	1.4	7.0
Motorcycle/scooter	0.0	17.6	26.8
Car/truck	0.2	0.5	
\quad Boat with a motor	19.7	70.3	44.0
Ownership of agricultural land	22.3	74.8	47.5
Ownership of farm animals ${ }^{1}$	5,121	4,728	9,849
Number			

${ }^{1}$ Cattle, cows, bulls, horses, donkeys, goats, sheep, or chickens from 52 percent to 89 percent, a 71 percent increase. Urban households are more likely than rural households to own each of these items.

With regard to a means of transportation, 14 percent of households own a bicycle, while 27 percent own a car or truck. Urban households are twice as likely to own a car or truck as rural households.

Farming of agricultural land and ownership of farm animals are common in Namibia, with about 48 percent of households owning farm animals. Not surprisingly, the proportions of households in rural areas that own agricultural land (70 percent) and farm animals (75 percent) are much higher than the corresponding proportions of urban households (20 percent and 22 percent, respectively).

2.2 Household Wealth

Information on household assets was used to create an index that is used throughout this report to represent the wealth of the households interviewed in the 2013 NDHS. This method for calculating a country-specific wealth index was developed and tested in a large number of countries in relation to inequalities in household income, use of health services, and health outcomes (Rutstein and Johnson, 2004). It has been shown to be consistent with expenditure and income measures.

The wealth index is constructed using household asset data, including ownership of consumer items ranging from a television to a bicycle or car, as well as dwelling characteristics, such as source of drinking water, sanitation facilities, and type of flooring material. In its current form, which takes account of urban-rural differences in these items and characteristics, the wealth index is created in three steps. In the first step, a subset of indicators common to urban and rural areas is used to create wealth scores for households in both areas. For purposes of creating scores, categorical variables are transformed into separate dichotomous ($0-1$) indicators. These indicators and those that are continuous are then examined using a principal components analysis to produce a common factor score for each household. In the second step, separate factor scores are produced for households in urban and rural areas using area-specific indicators (Rutstein, 2008). The third step combines the separate area-specific factor scores to produce a nationally applicable combined wealth index by adjusting area-specific scores through a regression on the common factor scores. The resulting combined wealth index has a mean of zero and a standard deviation of one. Once the index is computed, national-level wealth quintiles (from lowest to highest) are formed by assigning the household score to each de jure household member, ranking each person in the population by that score, and then dividing the ranking into five equal categories, each comprising 20 percent of the population. Thus, throughout this report, wealth quintiles are expressed in terms of quintiles of individuals in the overall population rather than quintiles of individuals at risk for any one health or population indicator. For example, quintile rates for infant mortality refer to infant mortality rates per 1,000 live births among all people in the population quintile concerned, as distinct from quintiles of live births or newly born infants, who constitute the only members of the population at risk of mortality during infancy.

Table 2.5 presents wealth quintiles by residence and region. Also included in the table is the Gini coefficient, which indicates the level of concentration of wealth (0 being an equal distribution and 1 a totally unequal distribution). The table shows that wealth in Namibia is unevenly distributed by residence and region. Forty percent of the urban population is in the highest wealth quintile, as compared with 2 percent of the rural population. In contrast, 36 percent of the rural population is in the lowest wealth quintile, compared with 2 percent of the urban population. The distribution of the population by wealth quintile among regions shows large variations. In Khomas and Erongo, half of the population is in the highest wealth quintile (50 percent and 48 percent, respectively). In Ohangwena and Kavango, on the other hand, half of the population is in the lowest wealth quintile.

The overall Gini coefficient in Namibia is 0.42. It is higher in rural (0.45) than in urban (0.24) areas, indicating a more unequal distribution of wealth in the rural population than in the urban population. The lowest Gini coefficient is seen in Erongo (0.18), where nearly one in two persons are in the highest wealth quintile. The highest Gini coefficient-that is, the least equitable distribution of wealth-is observed in Kavango (0.51).

Table 2.5 Wealth quintiles
Percent distribution of the de jure population by wealth quintiles, and the Gini coefficient, according to residence and region, Namibia 2013

Residence/region	Wealth quintile					Total	Number of persons	Gini coefficient
	Lowest	Second	Middle	Fourth	Highest			
Residence								
Urban	1.7	11.0	17.5	29.5	40.3	100.0	19,458	0.24
Rural	36.1	27.8	22.3	11.6	2.2	100.0	22,207	0.45
Region								
Zambezi	36.3	23.8	19.7	11.4	8.8	100.0	2,181	0.44
Erongo	0.5	8.0	12.1	31.3	48.1	100.0	3,083	0.18
Hardap	3.4	11.3	19.0	34.9	31.3	100.0	1,451	0.30
//Karas	3.8	10.7	22.5	31.9	31.0	100.0	1,482	0.28
Kavango	48.9	22.0	15.6	10.5	3.1	100.0	4,308	0.51
Khomas	0.5	10.4	14.9	23.7	50.4	100.0	7,697	0.21
Kunene	17.7	28.3	22.3	19.3	12.5	100.0	1,288	0.41
Ohangwena	49.2	26.2	13.6	8.7	2.2	100.0	4,861	0.47
Omaheke	10.6	27.1	30.2	21.4	10.7	100.0	1,144	0.44
Omusati	23.1	30.5	32.8	10.8	2.8	100.0	4,829	0.37
Oshana	10.6	24.3	29.2	22.7	13.2	100.0	3,306	0.38
Oshikoto	26.8	26.6	20.9	17.2	8.5	100.0	3,483	0.48
Otjozondjupa	5.5	13.2	21.1	41.9	18.3	100.0	2,553	0.30
Total	20.0	20.0	20.0	20.0	20.0	100.0	41,665	0.42

2.3 Hand Washing

To obtain hand washing information, interviewers asked to see the place where members of the household most often washed their hands. Information on the availability of water, cleansing agents, or both was recorded only for households where a hand washing place was observed. Interviewers observed a place for hand washing in 87 percent of households (Table 2.6).

Among households where a place for washing hands was observed, 54 percent had soap and water, 21 percent had only water, and 21 percent had no water, soap, or any other cleansing agent. Not surprisingly, households in urban areas were much more likely to have soap and water for hand washing. Three in four households in Otjozondjupa and //Karas (76 percent and 74 percent, respectively) had soap and water for hand washing. On the other hand, four in ten households in Omusati (43 percent) had no water, no soap, and no cleansing agent for washing hands. The percentage of households with soap and water for hand washing increases with increasing wealth, from 22 percent among the poorest households to 85 percent among the wealthiest households.

Table 2.6 Hand washing
Percentage of households in which the place most often used for washing hands was observed, and among households in which the place for hand washing was observed, percent distribution by availability of water, soap, and other cleansing agents, Namibia 2013

Background characteristic	Percentage of households where place for washing hands was observed	Number of households	Among households where place for hand washing was observed, percentage with:								Number of households with place for hand washing observed
			Soap and water ${ }^{1}$	Water and cleansing agent ${ }^{2}$ other than soap only	Water only	Soap but no water ${ }^{3}$	Cleansing agent other than soap only ${ }^{2}$	No water, no soap, no other cleansing agent	Missing	Total	
Residence											
Urban	89.1	5,121	68.3	0.0	14.9	4.6	0.0	12.1	0.1	100.0	4,561
Rural	84.0	4,728	37.4	0.4	28.0	3.5	0.2	30.4	0.0	100.0	3,970
Region											
Zambezi	79.6	541	42.2	0.8	37.9	1.1	0.0	18.0	0.0	100.0	431
Erongo	89.4	930	63.0	0.1	16.3	4.2	0.0	16.4	0.0	100.0	832
Hardap	91.5	381	60.2	0.0	20.6	0.8	0.0	18.4	0.0	100.0	349
//Karas	63.3	406	73.8	0.2	14.8	2.5	0.0	8.5	0.2	100.0	257
Kavango	58.9	737	36.7	0.0	35.1	5.7	0.2	22.4	0.0	100.0	435
Khomas	89.7	2,015	68.0	0.0	18.4	3.2	0.0	10.1	0.3	100.0	1,807
Kunene	87.5	354	69.4	2.5	15.5	1.7	0.0	10.9	0.0	100.0	310
Ohangwena	83.7	900	25.1	0.0	28.5	4.7	0.9	40.9	0.0	100.0	754
Omaheke	80.7	335	66.7	0.0	21.0	0.8	0.2	11.2	0.0	100.0	270
Omusati	90.0	949	27.2	0.0	26.5	3.6	0.0	42.7	0.0	100.0	855
Oshana	99.2	831	58.2	0.1	7.0	11.2	0.0	23.4	0.1	100.0	824
Oshikoto	97.2	817	43.3	0.1	25.7	2.2	0.0	28.6	0.0	100.0	794
Otjozondjupa	94.1	652	75.6	0.7	14.4	5.8	0.0	3.5	0.0	100.0	614
Wealth quintile											
Lowest	77.0	1,737	21.6	0.5	35.2	3.3	0.3	39.1	0.1	100.0	1,338
Second	84.8	1,910	38.2	0.4	25.8	3.6	0.2	31.8	0.0	100.0	1,620
Middle	88.4	1,954	46.1	0.1	22.9	5.6	0.1	25.1	0.1	100.0	1,728
Fourth	90.2	2,136	65.6	0.1	18.5	4.8	0.0	10.9	0.0	100.0	1,927
Highest	90.8	2,111	84.9	0.0	7.8	3.1	0.0	4.0	0.2	100.0	1,918
Total	86.6	9,849	53.9	0.2	21.0	4.1	0.1	20.6	0.1	100.0	8,530

${ }^{1}$ Soap includes soap or detergent in bar, liquid, powder, or paste form. This column includes households with soap and water only as well as those that had soap and water and another cleansing agent.
${ }^{2}$ Cleansing agents other than soap include locally available materials such as ash, mud, or sand
${ }^{3}$ Includes households with soap only as well as those with soap and another cleansing agent

2.4 Household Population by Age, Sex, and Residence

Age and sex are important demographic variables and are the primary basis for demographic classifications in vital statistics, censuses, and surveys. They are also important variables in the study of mortality, fertility, and marriage. The distribution of the de facto household population in the 2013 NDHS is shown in Table 2.7 by five-year age groups, according to sex and residence. A total of 41,396 individuals resided in the 9,849 households successfully interviewed; 21,774 were female, and 19,621 were male.

The age-sex structure of the population is shown in the population pyramid in Figure 2.1. The broad base of the pyramid indicates that Namibia's population is mostly young. The proportion of persons under age 15 was 38 percent in 2013, while the proportion of individuals age 65 and older was 5 percent. After a steady decline from 16 percent in the 1992 NDHS to 14 percent in the 2000 NDHS and 13 percent in the 2006-07 NDHS, the proportion of the population less than age 5 increased slightly to 14 percent in the current survey.

Table 2.7 Household population by age, sex, and residence
Percent distribution of the de facto household population by five-year age groups, according to sex and residence, Namibia 2013

Age	Urban			Rural			Male	Female	Total
	Male	Female	Total	Male	Female	Total			
<5	11.7	11.5	11.6	16.4	15.1	15.7	14.2	13.4	13.8
5-9	10.6	10.5	10.5	15.6	13.5	14.5	13.3	12.1	12.7
10-14	9.8	9.1	9.4	14.6	13.4	14.0	12.4	11.4	11.9
15-19	8.8	9.8	9.4	12.4	9.9	11.1	10.8	9.9	10.3
20-24	11.8	12.5	12.2	7.8	6.7	7.2	9.6	9.4	9.5
25-29	10.3	10.4	10.4	5.5	5.7	5.6	7.8	7.9	7.9
30-34	9.0	8.6	8.8	4.9	5.0	4.9	6.8	6.7	6.7
35-39	7.4	7.3	7.4	4.6	4.8	4.7	5.9	6.0	5.9
40-44	6.5	5.9	6.2	3.2	3.9	3.6	4.8	4.8	4.8
45-49	5.0	4.0	4.5	2.7	3.5	3.2	3.8	3.8	3.8
50-54	3.2	3.6	3.4	2.4	3.9	3.2	2.7	3.8	3.3
55-59	2.0	2.3	2.1	1.8	2.7	2.2	1.9	2.5	2.2
60-64	1.4	1.5	1.5	1.9	2.8	2.4	1.7	2.2	2.0
65-69	1.0	1.1	1.0	1.9	2.3	2.1	1.5	1.7	1.6
70-74	0.7	0.7	0.7	1.6	2.0	1.8	1.2	1.4	1.3
75-79	0.3	0.5	0.4	0.9	1.3	1.1	0.6	0.9	0.8
80+	0.2	0.5	0.4	1.6	3.4	2.5	1.0	2.0	1.5
Don't know/missing	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	9,116	10,174	19,291	10,505	11,599	22,106	19,621	21,774	41,396

Figure 2.1 Population pyramid

NDHS 2013

2.5 Household Composition

Information on the composition of households, including the sex of the head of the household and the size of the household, is presented in Table 2.8. These characteristics are important because they are associated with the welfare of the household. In larger households, economic resources are often more limited. Moreover, when the household size is large, crowding can lead to health problems.

Table 2.8 shows that 44 percent of the households in Namibia are headed by women. Households with one and two members constitute 17 percent and 16 percent of all households, respectively. The average household size is 4.2 persons, as compared with 4.5 in the 2006-07 NDHS survey. On average, rural households are larger (4.7 persons) than urban households (3.8 persons).

Information was also collected on the living arrangements of all children under age 18 residing in the sample households and on the survival status of their parents. This information can be used to assess the extent to which households face a need to care for orphaned or foster children. Orphans include children whose mother or father has died (single orphans) as well as children who have lost both parents (double orphans). In the case of foster children, both parents are alive but the children are living in a household where neither their natural mother nor their natural father resides. Overall, 35 percent of households in Namibia are caring for foster and/or orphaned children.

Table 2.8 Household composition			
Percent distribution of households by sex of head of household and by household size, mean size of household, and percentage of households with orphans and foster children under age 18, according to residence, Namibia 2013			
Characteristic			Total
	Urban	Rural	
Household headship			
Male	59.5	52.3	56.1
Female	40.5	47.7	43.9
Total	100.0	100.0	100.0
Number of usual members			
0	0.2	0.2	0.2
1	18.6	16.1	17.4
2	18.1	13.4	15.8
3	15.2	12.6	13.9
4	15.7	11.7	13.8
5	11.5	12.0	11.7
6	8.3	9.3	8.8
7	4.8	7.4	6.0
8	2.7	5.0	3.8
9+	5.1	12.2	8.5
Total	100.0	100.0	100.0
Mean size of households	3.8	4.7	4.2
Percentage of households with orphans and foster children under age 18			
Foster children ${ }^{1}$	18.4	46.4	31.9
Double orphans	2.0	3.5	2.7
Single orphans ${ }^{2}$	9.5	19.9	14.5
Foster and/or orphan children	22.1	49.6	35.3
Number of households	5,121	4,728	9,849

Note: Table is based on de jure household members (i.e., usual residents). ${ }^{1}$ Foster children are those under age 18 living in households with neither their mother nor their father present.
${ }^{2}$ Includes children with one dead parent and an unknown survival status of the other parent

2.6 Birth Registration

Birth registration is the inscription of the facts of each birth into an official log kept at the registrar's office. A birth certificate is issued as proof of the registration of the birth. Birth registration is basic to ensuring a child's legal status and, thus, fundamental rights and services (UNICEF, 2006; United Nations General Assembly, 2002).

Information on registration of births was collected in the household interview. Respondents were asked whether children under age 5 residing in the household had a birth certificate. Table 2.9 shows the percentage of de jure children under age 5 whose births are registered with the civil authorities.

Eighty-seven percent of children under five are registered with the civil authorities- 63 percent have a birth certificate, 23 percent have a hospital card and less than 1 percent are registered but do not have a birth certificate. Children less than age 2 are less likely to have a birth certificate (56 percent) than children age 2-4 (68 percent Male children are slightly more likely to have a birth certificate than female children (65 percent versus 62 percent). Children in urban households are more likely to have a birth certificate than children in rural households (77 percent and 54 percent, respectively). By region, the proportion of children with birth certificates is highest in //Karas (89 percent) and lowest in Kavango (47 percent). The percentage of children with birth certificates correlates positively with wealth, ranging from 42 percent among children in the lowest wealth quintile to 90 percent among children in the highest quintile.

Table 2.9 Birth registration of children under age 5					
Percentage of de jure children under age 5 whose births are registered with the civil authorities, according to background characteristics, Namibia 2013					
	Children whose births are registered				
Background characteristic	Percentage with a birth certificate	Percentage without a birth certificate	Percentage with only a hospital card	Percentage registered	Number of children
Age					
<2	55.5	0.4	29.3	85.3	2,288
2-4	68.4	0.9	19.1	88.4	3,390
Sex					
Male	64.7	0.7	22.2	87.6	2,776
Female	61.8	0.7	24.2	86.7	2,900
Residence					
Urban	77.2	0.8	10.9	88.9	2,214
Rural	54.3	0.6	31.0	86.0	3,464
Region					
Zambezi	49.1	1.1	41.9	92.1	352
Erongo	79.7	0.5	10.6	90.8	310
Hardap	84.7	0.0	7.8	92.5	195
//Karas	88.8	3.0	5.1	97.0	175
Kavango	46.5	0.4	23.4	70.2	688
Khomas	78.1	0.6	10.6	89.3	769
Kunene	52.2	3.4	20.9	76.4	221
Ohangwena	54.4	0.3	36.5	91.2	836
Omaheke	60.4	1.4	22.9	84.6	180
Omusati	64.3	0.1	24.8	89.2	672
Oshana	63.2	1.1	17.3	81.6	398
Oshikoto	59.1	0.2	37.6	96.9	504
Otjozondjupa	70.7	1.0	14.2	86.0	379
Wealth quintile					
Lowest	42.2	0.6	40.2	83.1	1,420
Second	55.6	0.6	28.2	84.5	1,306
Middle	68.2	0.8	19.4	88.4	1,181
Fourth	76.1	1.1	12.8	90.1	1,009
Highest	90.4	0.4	2.5	93.3	762
Total	63.2	0.7	23.2	87.1	5,678

Note: Total includes 1 child with missing information on sex.

2.7 Children’s Living Arrangements and Parental Survival

Information was collected on the living arrangements and parental survival status of all children under age 18 residing in the sample households to assess the potential burden on households in terms of the need to provide for orphaned or foster children. The information was also used to assess the situation from the perspective of the children themselves. Table 2.10 presents the proportion of children under age 18 who are not living with one or both parents, either because the parent(s) died or for other reasons.

Two percent of Namibian children under age 18 have lost both parents. Eight percent are not living with either parent. Twenty-eight percent of children are not living with either parent although both are alive. Fourteen percent of children under age 18 are orphaned (that is, one or both parents are dead).

The percentage of orphaned children increases rapidly with age, from 4 percent among children under age 5 to 27 percent among children age 15-17. Rural children are more likely to be orphaned than urban children (15 percent and 12 percent, respectively). Otjozondjupa and Erongo (9 percent each) have the lowest proportion of orphaned children, and Oshana has the highest (18 percent). The percentage of children with one or both parents dead varies little by wealth.

Thirty-seven percent of children are not living with their biological parents. Twenty-one percent of children from households in the highest wealth quintile are not living with a biological parent, and 43 and 44 percent of children from households in the second and middle wealth quintiles, respectively, are not living with a biological parent.

The vast majority (97) percent) of children with no parents are attending school, while 95 percent of children with at least one living parent are attending school (data not shown).

Percent distribution of de jure children under age 18 by living arrangements and survival status of parents, the percentage of children not living with a biological parent, and the percentage of children with one or both parents dead, according to background characteristics, Namibia 2013

Background characteristic	Living with both parents	Living with mother but not with father		Living with father but not with mother		Not living with either parent						Percentage not living with a biological parent	Percentage with one or both parents dead 1	Number of children
		Father alive	Father dead	Mother alive	Mother dead	Both alive	Only father alive	Only mother alive	Both dead	Missing information on father/ mother	Total			
Age														
0-4	29.8	40.6	2.1	2.3	0.1	22.6	0.5	0.8	0.4	0.9	100.0	24.3	4.0	5,678
<2	31.9	53.4	2.2	0.6	0.0	10.7	0.3	0.1	0.2	0.7	100.0	11.3	2.8	2,288
2-4	28.4	32.0	2.0	3.4	0.2	30.5	0.7	1.3	0.6	1.0	100.0	33.1	4.8	3,390
5-9	25.2	25.2	3.6	4.7	0.4	33.7	1.8	2.9	1.2	1.3	100.0	39.6	10.0	5,267
10-14	20.8	21.3	6.4	4.4	0.9	30.0	4.4	6.6	3.3	1.9	100.0	44.3	21.9	4,919
15-17	20.3	17.3	8.5	3.7	1.2	26.7	5.9	6.5	4.2	5.7	100.0	43.2	26.8	2,528
Sex														
Male	24.8	27.4	4.6	4.2	0.6	28.4	2.5	3.6	2.0	2.0	100.0	36.5	13.5	9,148
Female	24.7	28.3	4.5	3.3	0.5	28.3	2.8	3.9	1.9	1.9	100.0	36.8	13.8	9,243
Residence														
Urban	34.9	30.5	4.8	5.0	0.8	15.9	1.8	2.1	2.1	2.1	100.0	22.0	11.8	7,087
Rural	18.4	26.2	4.4	2.9	0.4	36.1	3.2	4.8	1.8	1.8	100.0	45.8	14.8	11,305
Region														
Zambezi	34.1	27.2	5.9	3.1	1.2	17.3	2.8	3.3	3.5	1.7	100.0	26.8	16.7	987
Erongo	38.4	28.5	3.7	5.3	0.6	17.3	2.7	1.5	0.2	1.9	100.0	21.7	9.0	1,053
Hardap	33.1	30.8	3.0	3.8	0.5	20.0	2.2	1.9	3.3	1.4	100.0	27.4	11.1	581
//Karas	31.6	29.5	6.9	5.8	0.9	15.5	2.0	1.6	4.0	2.3	100.0	23.0	15.8	574
Kavango	29.5	29.6	4.7	3.1	0.3	22.8	2.7	3.2	1.9	2.2	100.0	30.7	12.9	2,268
Khomas	39.1	30.4	5.6	5.8	1.0	11.5	1.3	1.8	1.9	1.8	100.0	16.5	11.7	2,482
Kunene	23.6	29.2	4.3	4.2	0.2	29.9	1.3	2.2	1.2	3.9	100.0	34.7	9.5	568
Ohangwena	13.4	25.5	3.7	3.8	0.4	42.5	3.3	5.2	1.2	1.0	100.0	52.2	14.1	2,755
Omaheke	32.2	23.9	5.5	3.3	1.2	25.8	2.2	1.4	2.5	2.1	100.0	31.9	12.7	465
Omusati	12.6	26.4	4.8	2.5	0.4	40.0	3.1	5.7	2.4	2.1	100.0	51.2	16.6	2,498
Oshana	14.3	27.0	4.9	3.5	0.1	34.6	4.0	6.3	2.5	2.8	100.0	47.4	18.1	1,426
Oshikoto	16.6	27.7	3.5	2.4	0.4	37.3	3.8	5.4	1.3	1.5	100.0	47.8	14.8	1,637
Otjozondjupa	32.4	27.1	3.8	3.5	0.6	25.6	1.1	1.4	1.9	2.6	100.0	30.0	8.9	1,098
Wealth quintile														
Lowest	22.6	28.6	5.5	2.5	0.4	30.5	2.7	3.9	1.9	1.5	100.0	39.0	14.5	4,520
Second	19.7	28.2	4.1	2.9	0.4	32.8	3.4	4.8	1.9	1.9	100.0	42.8	14.7	3,967
Middle	20.1	25.5	4.3	4.2	0.6	34.6	2.7	4.5	1.7	1.9	100.0	43.5	14.1	3,677
Fourth	23.2	33.0	4.3	3.9	0.8	24.1	2.8	3.1	2.3	2.5	100.0	32.4	13.7	3,347
Highest	42.9	23.2	4.4	6.1	0.5	15.6	1.4	1.8	1.9	2.1	100.0	20.7	10.2	2,882
Total <15	25.5	29.5	3.9	3.7	0.4	28.6	2.2	3.3	1.6	1.3	100.0	35.6	11.6	15,864
Total <18	24.8	27.8	4.6	3.7	0.5	28.3	2.7	3.7	1.9	1.9	100.0	36.6	13.6	18,392

[^2]
2.8 Education of the Household Population

The educational level of household members is among the most important characteristics of a household because it is associated with many factors that have a significant impact on health-seeking behaviours, reproductive behaviours, use of contraception, and the health of children. Results from the 2013 NDHS can be used to look at educational attainment among household members and school attendance as well as dropout rates among youth.

2.8.1 Educational Attainment

Tables 2.11.1 and 2.11.2 show the distribution of female and male household members age 6 and above by the highest level of schooling ever attended (even if they did not complete that level) and the median number of years of education completed according to age, residence, region, and wealth quintile. A comparison of the two tables reveals that there is a gap in educational attainment between females and males. Although the majority of the household population age 6 and older has some education, 12 percent of females have never attended school, as compared with 14 percent of males. Females have completed a median of 6.6 years of schooling, which is 0.6 years more than the median for males (6.0 years).

Table 2.11.1 Educational attainment of the female household population
Percent distribution of the de facto female household population age 6 and over by highest level of schooling attended or completed and median years completed, according to background characteristics, Namibia 2013

Background characteristic	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary	Don't know/ missing	Total	Number	Median years completed
Age										
6-9	31.9	67.0	0.0	0.0	0.0	0.0	1.1	100.0	2,111	0.0
10-14	2.2	83.0	5.7	8.5	0.1	0.0	0.5	100.0	2,481	3.8
15-19	2.0	15.5	10.9	60.7	7.4	3.5	0.1	100.0	2,148	7.7
20-24	3.2	6.8	4.2	48.5	22.6	14.4	0.3	100.0	2,052	9.7
25-29	4.6	9.0	5.2	49.0	21.0	10.7	0.4	100.0	1,725	9.4
30-34	6.0	11.6	6.2	45.5	20.0	10.4	0.2	100.0	1,454	9.3
35-39	6.9	16.1	5.2	41.3	20.7	9.0	0.9	100.0	1,298	9.2
40-44	7.0	19.2	5.5	37.4	19.7	10.5	0.6	100.0	1,055	9.2
45-49	12.3	24.5	7.0	29.8	12.9	12.3	1.2	100.0	820	7.8
50-54	14.8	33.6	7.2	23.0	9.2	10.8	1.4	100.0	825	6.1
55-59	23.3	33.5	8.3	20.7	5.0	8.8	0.3	100.0	545	4.9
60-64	28.8	35.7	5.9	16.6	5.4	6.4	1.3	100.0	475	3.8
$65+$	43.3	36.5	4.6	7.9	2.3	3.2	2.1	100.0	1,331	1.0
Residence										
Urban	7.1	24.1	4.4	34.5	17.9	11.5	0.6	100.0	8,805	8.9
	16.9	40.8	6.7	27.7	4.7	2.5	0.8	100.0	9,528	4.8
Region										
Zambezi	13.3	31.5	4.4	36.2	9.5	4.6	0.6	100.0	911	6.7
Erongo	5.2	25.8	3.6	39.1	18.5	7.5	0.3	100.0	1,311	8.9
Hardap	7.5	34.4	5.8	35.5	12.0	4.6	0.3	100.0	633	7.1
//Karas	7.5	29.7	6.9	38.3	12.9	4.5	0.3	100.0	646	7.5
Kavango	18.7	44.6	8.1	21.3	4.2	1.8	1.3	100.0	1,848	4.1
Khomas	4.5	19.4	3.8	31.4	21.7	18.4	0.8	100.0	3,561	9.6
Kunene	31.7	29.3	2.7	25.7	6.2	3.5	0.9	100.0	522	3.5
Ohangwena	18.7	41.2	5.3	28.1	4.1	2.0	0.5	100.0	2,119	4.5
Omaheke	25.8	29.3	7.0	26.8	6.1	4.2	0.8	100.0	440	4.6
Omusati	14.3	41.4	7.6	29.6	3.6	2.9	0.6	100.0	2,268	5.2
Oshana	6.6	33.1	3.0	35.7	13.5	7.5	0.6	100.0	1,527	7.5
Oshikoto	11.4	35.9	7.1	31.6	9.4	3.9	0.7	100.0	1,501	6.3
Otjozondjupa	16.6	30.2	8.0	29.8	10.2	3.8	1.3	100.0	1,048	6.3
Wealth quintile										
Lowest	23.0	45.2	7.9	21.1	1.8	0.1	1.0	100.0	3,560	3.4
Second	17.1	40.0	6.4	31.3	4.0	0.7	0.6	100.0	3,459	5.0
Middle	11.9	34.4	5.8	36.2	8.6	2.2	0.9	100.0	3,523	6.4
Fourth	7.3	27.4	5.4	35.9	15.5	8.0	0.5	100.0	3,784	8.2
Highest	3.2	19.0	2.8	30.2	23.3	20.9	0.7	100.0	4,007	9.9
Total	12.2	32.7	5.6	31.0	11.0	6.8	0.7	100.0	18,333	6.6

Note: Total includes 13 children with missing information on age.
${ }^{1}$ Completed 7 grades at the primary level
${ }^{2}$ Completed 5 grades at the secondary leve

The percentage of females who have no education decreases from 43 percent among those age 65 and over to 2 percent among those age 10-19. Similarly, the percentage of males who have never been to school decreases from 39 percent in the oldest age group to 3 percent among those age 10-19, indicating that there has been a gradual improvement in the level of education in Namibia over the last few decades.

Educational attainment also differs markedly among regions. For example, the largest proportion of the female and male household population over age 6 that has never been to school is found in Kunene (32 percent and 35 percent, respectively). The region with the lowest proportion of household members who have never attended school is Khomas and Erongo for females (5 percent each) and Khomas for males (7 percent). The percentage of males and females who have no education decreases steadily with increasing wealth.

Table 2.11.2 Educational attainment of the male household population
Percent distribution of the de facto male household population age 6 and over by highest level of schooling attended or completed and median years completed, according to background characteristics, Namibia 2013

Background characteristic	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary	Don't know/ missing	Total	Number	Median years completed
Age										
6-9	34.0	64.9	0.0	0.1	0.0	0.0	0.9	100.0	2,035	0.0
10-14	3.4	88.0	3.7	4.4	0.0	0.0	0.5	100.0	2,426	3.4
15-19	3.1	27.3	10.9	53.0	3.6	1.6	0.5	100.0	2,111	7.0
20-24	6.6	12.5	5.8	44.5	20.0	10.1	0.5	100.0	1,892	9.2
25-29	9.7	12.5	5.2	40.4	19.1	12.6	0.5	100.0	1,525	9.3
30-34	9.9	14.8	5.9	35.8	20.6	11.5	1.4	100.0	1,340	9.2
35-39	10.1	17.7	7.1	34.2	18.4	11.5	1.1	100.0	1,160	9.1
40-44	14.0	21.3	5.6	28.9	17.0	12.2	1.1	100.0	933	8.4
45-49	14.7	20.3	7.6	24.5	17.7	13.5	1.7	100.0	747	8.0
50-54	17.2	25.4	7.4	24.3	10.4	14.1	1.2	100.0	538	6.9
55-59	22.1	29.3	4.5	21.9	10.3	11.1	0.8	100.0	364	5.6
60-64	27.6	31.5	5.6	19.1	5.6	8.5	2.2	100.0	334	4.3
65+	39.4	35.0	2.8	10.2	5.7	4.8	2.1	100.0	834	1.5
Residence										
Urban	8.7	26.0	4.4	32.0	16.6	11.5	0.9	100.0	7,840	8.5
Rural	18.1	45.4	6.4	22.3	4.6	2.4	1.0	100.0	8,414	4.0
Region										
Zambezi	8.5	37.3	4.5	30.5	13.5	4.8	0.9	100.0	846	6.6
Erongo	7.6	25.7	4.2	35.8	17.5	8.6	0.5	100.0	1,333	8.4
Hardap	11.4	34.6	6.3	29.9	13.5	3.6	0.6	100.0	587	6.5
//Karas	10.1	29.6	8.3	33.0	12.1	6.5	0.3	100.0	610	7.2
Kavango	19.4	44.3	6.2	20.6	5.1	2.8	1.5	100.0	1,595	3.5
Khomas	6.9	21.6	4.3	30.4	18.7	16.9	1.3	100.0	3,183	9.3
Kunene	34.7	31.0	3.1	21.2	5.2	4.2	0.6	100.0	477	2.8
Ohangwena	19.0	49.3	4.2	21.3	3.0	1.9	1.3	100.0	1,725	3.5
Omaheke	27.0	33.2	6.0	21.8	7.5	3.8	0.8	100.0	493	3.9
Omusati	14.0	49.7	7.8	21.7	3.4	3.0	0.5	100.0	1,757	4.4
Oshana	7.5	39.8	4.1	29.4	11.1	7.9	0.2	100.0	1,311	6.3
Oshikoto	14.5	41.5	7.5	25.4	6.5	3.9	0.9	100.0	1,364	5.0
Otjozondjupa	20.6	30.6	5.2	29.0	10.3	2.8	1.6	100.0	972	5.6
Wealth quintile										
Lowest	23.8	48.7	6.0	17.6	2.1	0.3	1.4	100.0	3,011	2.8
Second	18.8	43.9	6.0	25.1	4.7	0.8	0.8	100.0	3,257	4.1
Middle	13.4	38.0	6.6	30.4	7.9	2.5	1.2	100.0	3,374	5.7
Fourth	8.7	31.7	5.5	32.4	14.0	7.1	0.6	100.0	3,246	7.4
Highest	4.2	19.3	2.9	28.3	22.2	22.4	0.7	100.0	3,367	9.9
Total	13.5	36.0	5.4	26.9	10.4	6.8	0.9	100.0	16,254	6.0

Note: Total includes 16 children with missing information on age.
${ }^{1}$ Completed 7 grades at the primary level
${ }^{2}$ Completed 5 grades at the secondary level

2.8.2 School Attendance Ratios

The net attendance ratio (NAR) indicates participation in primary schooling for the population age 6-12 and secondary schooling for the population age 13-17. The gross attendance ratio (GAR) measures participation at each level of schooling among those of any age from 5 to 24 years. The GAR is almost always higher than the NAR for the same level because the GAR includes participation by those who may be older or younger than the official age range for that level. An NAR of 100 percent would indicate that all of those in the official age range for a given level are attending at that level. The GAR can exceed 100 percent if there is significant overage or underage participation at a given level of schooling.

Table 2.12 provides data on net attendance ratios and gross attendance ratios by sex and level of schooling, according to residence, region, and wealth quintile. The NAR is 90 percent at the primary level and 50 percent at the secondary level. The rural primary school NAR is 88 percent, as compared with 93 percent in urban areas. The NAR is highest in Erongo (96 percent). In general, the NAR at the primary level increases with increasing wealth, from 85 percent in the lowest wealth quintile to $94-95$ percent in the highest two quintiles. There have been only very small changes in the NAR and GAR since 2006-07.

Table 2.12 School attendance ratios
Net attendance ratios (NARs) and gross attendance ratios (GARs) for the de facto household population by sex and level of schooling, and the gender parity index (GPI), according to background characteristics, Namibia 2013

	Net attendance ratio ${ }^{1}$				Gross attendance ratio ${ }^{2}$			
Background characteristic	Male	Female	Total	Gender parity index ${ }^{3}$	Male	Female	Total	Gender parity index ${ }^{3}$
PRIMARY SCHOOL								
Residence								
Urban	92.7	93.8	93.3	1.01	128.9	124.5	126.6	0.97
Rural	87.7	88.8	88.2	1.01	135.7	126.9	131.4	0.94
Region								
Zambezi	94.7	94.2	94.4	0.99	144.2	137.0	140.8	0.95
Erongo	94.7	97.7	96.3	1.03	130.5	124.1	127.2	0.95
Hardap	92.8	96.1	94.5	1.04	124.2	117.7	120.9	0.95
//Karas	92.3	92.0	92.1	1.00	127.5	114.8	120.7	0.90
Kavango	86.0	89.6	87.8	1.04	135.8	135.1	135.4	0.99
Khomas	93.4	94.4	93.9	1.01	123.5	127.3	125.4	1.03
Kunene	66.2	77.6	71.9	1.17	99.9	105.0	102.4	1.05
Ohangwena	87.4	88.6	88.0	1.01	135.4	128.0	131.9	0.95
Omaheke	83.1	83.9	83.5	1.01	111.8	115.4	113.3	1.03
Omusati	90.9	88.1	89.4	0.97	143.1	121.5	131.9	0.85
Oshana	96.4	92.5	94.4	0.96	153.4	122.3	137.5	0.80
Oshikoto	88.4	91.9	90.2	1.04	136.5	135.1	135.8	0.99
Otjozondjupa	84.0	87.9	86.0	1.05	109.6	117.9	114.0	1.08
Wealth quintile								
Lowest	83.0	87.1	85.0	1.05	132.2	131.3	131.8	0.99
Second	88.5	88.0	88.3	0.99	138.2	124.7	131.7	0.90
Middle	90.5	91.3	90.9	1.01	136.7	124.1	130.4	0.91
Fourth	95.6	94.4	95.0	0.99	133.1	126.1	129.5	0.95
Highest	93.3	94.8	94.1	1.02	123.4	122.1	122.7	0.99
Total	89.5	90.8	90.1	1.01	133.2	126.0	129.6	0.95
SECONDARY SCHOOL								
Residence								
Urban	55.3	56.0	55.7	1.01	66.6	67.0	66.8	1.01
Rural	40.2	51.5	45.6	1.28	51.5	61.6	56.4	1.20
Region								
Zambezi	45.0	55.7	50.7	1.24	70.2	71.6	71.0	1.02
Erongo	51.4	60.1	55.9	1.17	58.0	67.5	62.9	1.16
Hardap	44.2	47.0	45.6	1.06	44.9	50.6	47.7	1.13
//Karas	56.1	63.6	59.5	1.14	66.7	77.8	71.7	1.17
Kavango	33.8	31.9	32.8	0.94	50.0	40.5	45.0	0.81
Khomas	62.6	58.5	60.3	0.93	75.1	70.5	72.5	0.94
Kunene	22.5	38.1	30.0	1.69	33.0	41.2	37.0	1.25
Ohangwena	40.6	49.9	45.1	1.23	52.2	62.7	57.3	1.20
Omaheke	37.9	30.6	34.2	0.81	40.4	31.9	36.2	0.79
Omusati	45.4	62.4	53.5	1.37	57.3	74.4	65.5	1.30
Oshana	50.2	61.4	55.3	1.22	59.3	75.6	66.8	1.28
Oshikoto	41.6	57.5	49.7	1.38	52.8	66.3	59.6	1.26
Otjozondjupa	46.1	49.8	48.2	1.08	49.7	53.5	51.8	1.08
Wealth quintile								
Lowest	30.9	41.5	36.3	1.34	44.0	49.8	46.9	1.13
Second	36.2	44.9	40.3	1.24	44.9	60.2	52.0	1.34
Middle	47.2	56.0	51.3	1.19	60.0	65.0	62.3	1.08
Fourth	53.5	53.7	53.6	1.00	63.9	65.0	64.5	1.02
Highest	69.0	70.6	69.9	1.02	80.8	79.6	80.1	0.99
Total	45.8	53.4	49.6	1.17	57.1	63.9	60.5	1.12

${ }^{1}$ The NAR for primary school is the percentage of the primary school age (A-B years) population that is attending primary school. The NAR for secondary school is the percentage of the secondary school age (C-D years) population that is attending secondary school. By definition, the NAR cannot exceed 100 percent.
${ }^{2}$ The GAR for primary school is the total number of primary school students expressed as a percentage of the official primary school age population. The GAR for secondary school is the total number of secondary school students expressed as a percentage of the official secondary school age population. If there are significant numbers of overage and underage students at a given level of schooling, the GAR can exceed 100 percent.
${ }^{3}$ The gender parity index for primary school is the ratio of the primary school NAR (GAR) for females to the NAR (GAR) for males. The gender parity index for secondary school is the ratio of the secondary school NAR (GAR) for females to the NAR (GAR) for males.

The GAR at the primary school level is 130 percent. This figure exceeds the primary school NAR (90 percent) by 40 percentage points, indicating that a large number of children outside the official school age population are attending primary school. At the secondary level, the GAR (61 percent) is somewhat closer to the NAR (50 percent), indicating that fewer youth outside of the official school age population are attending secondary school than is the case for primary school.

At the primary school level, the GPI is more than 1 for the NAR and 0.95 for the GAR, but both are more than 1 at the secondary school level. This means that there is a greater gender disparity in favour of females in secondary school than in primary school. This parity difference is especially pronounced between urban and rural areas. The GPI associated with the secondary school NAR in rural areas is 1.28, as compared with 1.01 in urban areas; the GPI associated with the secondary school GAR is 1.20 and 1.01 in rural areas and urban areas, respectively. Large differences in GPI are also observed by region. The difference in the GPI for both the NAR and GAR by wealth quintile is more pronounced at the secondary level.

Age-specific attendance rates (ASARs) for the population age 5 to 24 -that is, the percentage of a given age cohort that attends school, regardless of the level attended (primary, secondary, or higher)—are shown in Figure 2.2. Up to age 14, a higher percentage of females than males attend school. From age 1520, a higher percentage of males than females attend school. Beyond age 20, females are more likely to be in school than males.

Figure 2.2 Age-specific attendance rates

2.9 Utilisation of Health Services and Out-of-Pocket Expenditure for Health Care

The 2013 NDHS collected data in the Household Questionnaire on utilisation of health services by household members. Information on inpatient visits was collected for each household from just a single member who was admitted for an overnight stay at a health facility in the six months preceding the survey. This information included place of admission, the cost of treatment and services received during the most recent visit (including the cost of laboratory tests, drugs, and other items), the main reason for seeking care, and the total number of times the individual stayed overnight at a health facility in the preceding six months. Information on outpatient visits was also collected from a single household member who consulted a health care facility, provider, pharmacy, or traditional healer for health care in the four weeks preceding the survey without staying overnight. Information on outpatient care included the place where care was most recently received, the cost of treatment and services received (including the cost of consulting fees and expenses, as well as other items such as drugs and tests), the main reason for seeking care, and the number of times the individual received care in the last four weeks without staying overnight.

Caution should be exercised when interpreting the data collected on inpatient and outpatient health care visits since this information refers to only one person from each household who was not selected at random, but rather selected on the basis of the most recent visit during the reference period (six months for inpatient care and four weeks for outpatient care). These data cannot be extrapolated to provide information on the number of annual outpatient visits per capita among women and men in Namibia, nor can they provide the annual number of inpatient admissions. The information is meant to simply provide insight into the general level of out-of-pocket expenditure on inpatient and outpatient visits.

Table 2.13 .1 shows that 14 percent of households had a member who stayed overnight at a health facility in the past six months. Inpatient visits were most common in households in Kavango (20 percent) and least common in Omaheke (10 percent). The average expenditure for the most recent visit was 798 Namibian dollars (NAD) (about US\$75) for men and 817 NAD (about US\$77) for women. Men had an average of 3.6 inpatient stays, as compared with women's average of 2.9 inpatient stays. Not surprisingly, men and women in urban areas and in the highest wealth quintile paid much more on average for inpatient visits than men and women in rural areas or in the other wealth quintiles.

Table 2.13.1 Health expenditure: Inpatient visits								
Percentage of households with a member who was admitted to stay overnight at a health facility in the last six months, average cost of health care (in Namibia dollars) during the most recent overnight stay, and average number of inpatient visits for this particular household member (unweighted), Namibia 2013								
	Percentage of households with a member		Men			Women		
Background characteristic	overnight in a health facility in the past 6 months	Number of households	Average health expenditure for the most recent visit	Average number of inpatient visits	Number of households	Average health expenditure for the most recent visit	Average number of inpatient visits	Number of households
Age								
<5	na	211	291	3.3	120	185	3.4	91
5-14	na	84	(827)	(2.0)	52	(258)	(3.6)	32
15-24	na	185	(651)	(3.5)	37	85	2.0	148
25-34	na	301	820	4.9	82	1,460	2.1	218
35-44	na	203	361	4.4	77	299	2.1	126
45-54	na	122	$(1,730)$	(2.8)	45	2,670	4.1	77
55-64	na	96	$(1,154)$	(2.6)	41	1,021	6.2	54
65+	na	149	1,290	3.6	81	149	3.4	67
Residence								
Urban	13.6	5,121	1,424	2.7	249	1,076	2.7	447
Rural	14.0	4,728	259	4.3	289	501	3.0	366
Region								
Zambezi	15.4	541	(57)	(1.8)	31	51	1.3	51
Erongo	13.0	930	$(1,294)$	(2.1)	39	971	1.5	81
Hardap	12.4	381	*	*	12	1,315	2.9	35
//Karas	13.0	406	$(1,943)$	(2.2)	22	1,648	3.4	30
Kavango	20.2	737	252	7.6	62	53	5.4	80
Khomas	12.3	2,015	$(1,975)$	(3.7)	91	1,843	2.0	156
Kunene	12.5	354	(92)	(4.5)	16	148	2.1	28
Ohangwena	13.7	900	(33)	(5.9)	55	(54)	(4.0)	68
Omaheke	9.5	335	(529)	(1.5)	16	(111)	(1.4)	15
Omusati	15.3	949	181	2.9	75	664	3.5	70
Oshana	12.8	831	$(1,848)$	(2.2)	34	833	2.0	72
Oshikoto	13.1	817	(292)	(2.0)	38	527	2.8	69
Otjozondjupa	15.4	652	790	2.3	45	765	4.5	56
Wealth quintile								
Lowest	14.7	1,737	82	4.3	126	42	4.2	124
Second	14.2	1,910	209	4.6	108	75	2.7	161
Middle	12.7	1,954	195	3.6	86	51	2.5	161
Fourth	14.7	2,136	476	2.8	116	431	3.0	196
Highest	12.9	2,111	3,180	2.5	102	3,258	2.2	170
Total	13.8	9,849	798	3.6	538	817	2.9	813

Note: Total includes 1 man with missing information on age. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na = Not applicable

Table 2.13 .2 shows that 36 percent of households reported a member who had sought care from a health provider, pharmacy, or traditional healer without staying overnight in the four weeks preceding the survey. Outpatient visits are more common in rural (39 percent) than urban areas (33 percent) and most common in Omusati (51 percent). Differences by wealth quintile are small. Outpatient visits are less
expensive than inpatient visits. Men paid an average of 99 NAD (about US\$10) and women an average of 161 NAD (about US\$15) for an outpatient visit. There is only a minimal difference in the average number of outpatient visits by men (1.6) and women (1.5). Both men and women incurred costs for an average of 1.2 outpatient visits. Outpatient visits were most expensive for men in Hardap and least expensive for men in Omusati. On the other hand, women in Otjozondjupa paid the most for an outpatient visit and women in Ohangwena paid the least. Among both men and women, outpatient visits were much more expensive in urban than rural areas and for households in the highest wealth quintile.

Table 2.13.2 Health expenditure: Outpatient visits
Percentage of households with a member who received care from a health provider, a pharmacy, or a traditional healer without staying overnight in the last four weeks, average cost of health care (in Namibia dollars) during the most recent visit, average number of outpatient visits for this particular household member, and average number of outpatient visits for which money was spent (unweighted), Namibia 2013

Background characteristic	Percentage of households with a member who had an outpatient visit in the past 4 weeks	Number of households	Men				Women			
			Average health expenditure for the most recent visit	Average number of outpatient visits	Average number of outpatient visits for which money was spent	Number of households	Average health expenditure for the most recent visit	Average number of outpatient visits	Average number of outpatient visits for which money was spent	Number of households
Age										
<5	na	594	39	1.4	1.2	316	44	1.5	1.3	278
5-14	na	312	42	1.6	1.2	143	46	1.3	1.1	169
15-24	na	402	79	1.4	1.2	167	63	1.7	1.4	235
25-34	na	527	50	1.7	1.2	196	65	1.5	1.2	331
35-44	na	498	148	1.7	1.4	207	467	1.4	1.2	291
45-54	na	422	184	1.7	1.3	156	365	1.7	1.5	266
55-64	na	296	158	1.6	1.3	126	42	1.5	1.1	170
65+	na	457	156	1.4	0.9	156	107	1.5	0.9	300
Residence										
Urban	32.5	5,121	149	1.6	1.3	715	284	1.6	1.3	945
Rural	39.1	4,728	51	1.5	1.1	751	55	1.5	1.2	1,099
Region										
Zambezi	42.8	541	31	1.8	1.4	106	84	1.9	1.4	126
Erongo	31.2	930	112	1.5	1.3	146	67	1.5	1.2	145
Hardap	24.6	381	538	1.3	0.9	37	65	1.1	0.8	57
//Karas	35.8	406	95	1.5	1.0	62	80	1.4	1.2	82
Kavango	37.5	737	26	1.7	1.3	110	22	1.6	1.2	166
Khomas	28.9	2,015	241	1.8	1.5	229	447	1.6	1.3	348
Kunene	20.9	354	97	1.2	1.1	26	129	1.4	1.2	48
Ohangwena	45.0	900	12	1.4	1.0	164	11	1.4	0.9	241
Omaheke	34.0	335	160	1.5	1.4	57	210	1.5	1.1	56
Omusati	50.5	949	7	1.5	1.1	171	15	1.5	1.3	308
Oshana	36.3	831	59	1.4	1.2	137	68	1.5	1.4	163
Oshikoto	37.5	817	32	1.7	1.1	122	113	1.2	1.1	185
Otjozondjupa	33.3	652	148	1.3	1.1	99	689	1.9	1.4	118
Wealth quintile										
Lowest	37.4	1,737	12	1.6	1.2	256	8	1.5	1.1	394
Second	34.5	1,910	21	1.7	1.2	278	305	1.5	1.1	381
Middle	36.5	1,954	16	1.6	1.2	308	70	1.5	1.2	406
Fourth	33.1	2,136	92	1.6	1.4	296	86	1.6	1.3	409
Highest	37.3	2,111	316	1.4	1.1	328	322	1.5	1.3	454
Total	35.7	9,849	99	1.6	1.2	1,466	161	1.5	1.2	2,044

Note. Total includes 3 women with missing information on age.
na $=$ Not applicable

Key Findings

- A total of 9,176 women and 3,950 men age $15-49$ were interviewed as part of the 2013 NDHS.
- In half of the households selected for the male survey, partial interviews were conducted with 842 women and 531 men age 50-64.
- Five percent of women and 8 percent of men age $15-49$ have no education. The majority of respondents (76 percent of women and 69 percent of men) have a secondary education or higher.
- Literacy rates are high in Namibia: 93 percent of women and 91 percent of men are literate.
- Forty-three percent of women and 56 percent of men age 15-49 are currently employed.
- Among women who were employed in the past 12 months, the majority work in sales and services (58 percent). Men are most likely to be employed in skilled manual work (33 percent) and sales and services (30 percent).
- Three percent of women and 9 percent of men work in agriculture.
- Thirty-six percent of women who work in agriculture are not paid for their work.

TThis chapter presents information on key demographic and socioeconomic characteristics of the survey respondents, including age, religion, marital status, residence, education, literacy, and media access. The chapter also explores adult employment status, occupation, and earnings. The information contained in this chapter provides a useful context within which the demographic and health indices discussed in the remainder of the report should be understood.

3.1 Characteristics of Survey Respondents

Table 3.1 shows the background characteristics of the 9,176 women and 3,950 men age 15-49 interviewed in the 2013 NDHS. In addition, as explained in Chapter 1, interviews on selected sections of the questionnaires were conducted with 842 women and 531 men age 50-64 in a subsample of half of the households selected for the male survey.

Overall, 57 percent of women and 59 percent of men are below the age of 30 . The highest proportions of respondents however, fall in the 15-19 age group with 21 percent of women and 23 percent of men falling within this age group. These percentages decrease steadily to reach 8 percent and 7 percent, respectively, in the 45-49 age group.

The Namibian population is predominantly Christian. The majority (44 percent of women and 43 percent of men) belong to the Evangelical Lutheran Church in Namibia (ELCIN). Twenty percent of women and 26 percent of men reported being Roman Catholic while 21 percent of women and 13 percent of men reported being Protestant or Anglican.

A large majority of respondents age 15-49 (60 percent of women and 68 percent of men) have never been married. Thirty-four percent of women and 29 percent of men are currently married or living together with a partner as if married, while 7 percent and 3 percent, respectively, are divorced, separated, or widowed.

Fifty-seven percent of the respondents reside in urban areas, while 43 percent reside in rural areas. By region, Khomas (where Windhoek, the capital city, is located) had the highest proportion of both female and male respondents (24 percent and 25 percent, respectively), whereas Kunene, Omaheke, Hardap, and //Karas had the lowest proportions of respondents (3-4 percent).

Table 3.1 Background characteristics of respondents
Percent distribution of women and men age 15-49 by selected background characteristics, Namibia 2013

Background characteristic	Women			Men		
	Weighted percent	Weighted number	Unweighted number	Weighted percent	Weighted number	Unweighted number
Age						
15-19	20.8	1,906	1,857	22.9	922	883
20-24	19.5	1,786	1,720	20.1	808	771
25-29	16.2	1,489	1,495	16.4	658	613
30-34	13.7	1,260	1,262	12.9	520	516
35-39	12.1	1,110	1,146	11.1	448	454
40-44	10.0	917	942	9.3	376	404
45-49	7.7	708	754	7.2	289	309
Religion						
Roman Catholic	19.6	1,802	1,892	25.9	1,041	1,031
Protestant/Anglican	21.2	1,947	2,049	12.7	511	511
ELCIN	44.0	4,035	3,783	43.4	1,745	1,571
Seventh-Day Adventist	4.8	436	522	4.0	161	192
No religion	1.1	105	129	1.8	72	100
Other	9.0	827	779	12.0	483	537
Missing	0.3	23	22	0.2	9	8
Marital status						
Never married	59.5	5,458	5,188	68.3	2,745	2,577
Married	17.9	1,644	1,779	15.1	609	657
Living together	16.1	1,476	1,587	13.7	551	587
Divorced/separated	4.4	408	429	2.6	106	118
Widowed	2.1	189	193	0.2	10	11
Residence						
Urban	56.6	5,190	4,843	56.8	2,282	1,998
Rural	43.4	3,986	4,333	43.2	1,739	1,952
Region						
Zambezi	5.0	457	647	5.4	218	291
Erongo	8.4	771	858	9.3	372	421
Hardap	3.3	304	595	3.8	152	299
//Karas	3.7	343	782	3.8	151	333
Kavango	9.1	835	743	7.9	316	281
Khomas	24.0	2,202	986	25.4	1,023	415
Kunene	2.8	258	584	2.6	104	252
Ohangwena	9.7	894	695	8.2	328	255
Omaheke	2.5	225	535	2.6	103	256
Omusati	9.6	884	725	8.5	342	262
Oshana	8.2	755	671	8.3	335	274
Oshikoto	7.7	707	656	8.3	335	302
Otjozondjupa	5.9	540	699	6.0	241	309
Education						
No education	4.6	419	551	7.7	310	379
Primary	19.6	1,798	1,914	23.5	944	978
Secondary	65.7	6,029	6,019	59.7	2,400	2,307
More than secondary	10.1	930	692	9.1	368	286
Wealth quintile						
Lowest	15.6	1,429	1,461	14.8	594	605
Second	17.7	1,625	1,661	19.1	769	768
Middle	19.6	1,795	1,903	22.0	886	897
Fourth	23.1	2,116	2,162	22.8	917	913
Highest	24.1	2,211	1,989	21.3	855	767
Total 15-49	100.0	9,176	9,176	100.0	4,021	3,950
50-64	0.0	797	842	0.0	460	531
Total 15-64	0.0	9,973	10,018	0.0	4,481	4,481

Note: Education categories refer to the highest level of education attended, whether or not that level was completed. ELCIN = Evangelical Lutheran Church in Namibia

Education is an important determinant of the other demographic and health characteristics of individuals and the societies to which they belong. The proportion of respondents with no education is low (5 percent of women and 8 percent of men). The majority of respondents (76 percent of women and 69 percent of men) have a secondary education or higher.

3.2 Educational Attainment by Background Characteristics

Tables 3.2.1 and 3.2.2 show the educational attainment of women and men age 15-49, respectively, by background characteristics. As mentioned above, the level of education in Namibia is high, with only 5 percent of women and 8 percent of men having no formal education. As expected, the proportion of respondents with no education increases with age, from 2 percent among women and men age 15-19 to 12 percent among women age 45-49 and 13 percent among men age 40-44. Respondents in rural areas are less likely to be educated than their urban counterparts; 7 percent of women and 11 percent of men in rural areas have no education, as compared with 3 percent and 5 percent, respectively, of women and men in urban areas. The proportion of women and men with no education is highest in Kunene (22 percent and 30 percent, respectively) and lowest in Erongo and Oshana among women (1 percent each) and Oshana among men (2 percent). The percentage of women and men with no education decreases with increasing wealth. Ten percent of women and 15 percent of men in the lowest wealth quintile have no education, as compared with less than 1 percent each among respondents in the highest wealth quintile.

Women are more likely to reach higher levels of education than men. For example, 48 percent of women have some secondary education, compared with 44 percent of men.

Tables 3.2.1 and 3.2.2 further show that women have a median of 9.1 years of schooling while men have a median of 8.7 years of schooling. Median number of years of schooling is higher among women and men age 20-29, those residing in urban areas and in Khomas, and those in the wealthiest quintile than among their counterparts in the other groups.

Overall, the results show that there have been improvements in educational attainment since the 2006-07 NDHS. For example, median number of years of schooling completed has increased from 8.5 to 9.1 among women and from 7.2 to 8.7 among men.

Table 3.2.1 Educational attainment: Women
Percent distribution of women age 15-49 by highest level of schooling attended or completed, and median years completed, according to background characteristics, Namibia 2013

Background characteristic	Highest level of schooling						Total	Median years completed	Number of women
	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary			
Age									
15-24	1.8	10.5	6.8	55.5	15.5	10.0	100.0	8.9	3,691
15-19	1.6	14.3	9.1	62.4	8.0	4.6	100.0	8.1	1,906
20-24	2.0	6.5	4.2	48.2	23.4	15.7	100.0	9.7	1,786
25-29	4.2	10.3	4.7	48.2	21.8	10.9	100.0	9.4	1,489
30-34	5.9	11.6	6.2	46.4	20.0	9.9	100.0	9.3	1,260
35-39	6.1	16.3	5.8	42.9	19.9	9.1	100.0	9.1	1,110
40-44	7.2	19.8	5.3	38.3	19.6	9.8	100.0	9.1	917
45-49	11.6	26.2	7.4	30.5	12.3	12.0	100.0	7.8	708
Residence									
Urban	3.1	8.3	4.3	44.7	24.4	15.2	100.0	9.7	5,190
Rural	6.5	20.2	8.5	52.1	9.3	3.5	100.0	8.0	3,986
Region									
Zambezi	5.0	12.6	4.6	57.8	15.0	5.0	100.0	8.7	457
Erongo	1.0	9.1	4.2	51.7	24.6	9.4	100.0	9.6	771
Hardap	3.2	12.8	7.1	54.8	16.9	5.2	100.0	9.0	304
//Karas	1.7	12.1	6.6	55.0	18.1	6.6	100.0	9.1	343
Kavango	6.6	31.4	10.8	36.0	12.5	2.7	100.0	7.1	835
Khomas	2.0	5.4	3.3	37.6	27.2	24.4	100.0	11.1	2,202
Kunene	21.9	18.1	4.1	42.7	9.3	3.9	100.0	7.6	258
Ohangwena	4.8	21.6	7.7	54.2	8.3	3.3	100.0	7.9	894
Omaheke	17.2	16.0	7.8	45.2	9.7	4.1	100.0	7.8	225
Omusati	4.4	14.7	9.8	59.2	7.9	3.9	100.0	8.2	884
Oshana	0.9	8.9	2.7	53.8	22.8	10.9	100.0	9.5	755
Oshikoto	5.2	12.8	7.5	52.3	15.9	6.3	100.0	8.7	707
Otjozondjupa	9.5	15.1	8.3	46.5	15.6	4.9	100.0	8.6	540
Wealth quintile									
Lowest	10.3	30.0	11.3	43.8	4.3	0.2	100.0	6.7	1,429
Second	7.5	20.3	9.1	55.2	7.1	0.9	100.0	7.8	1,625
Middle	4.7	13.4	6.5	56.3	15.3	3.9	100.0	8.8	1,795
Fourth	2.5	8.3	4.7	49.9	25.0	9.6	100.0	9.6	2,116
Highest	0.5	2.8	1.8	36.3	29.6	29.0	100.0	11.3	2,211
Total	4.6	13.5	6.1	47.9	17.8	10.1	100.0	9.1	9,176

${ }^{1}$ Completed 7th grade at the primary level
${ }^{2}$ Completed 5th grade at the secondary level

Percent distribution of men age 15-49 by highest level of schooling attended or completed, and median years completed, according to background characteristics, Namibia 2013									
Background characteristic	Highest level of schooling							Median years completed	Number of men
	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary	Total		
Age									
15-24	3.6	16.2	7.4	53.5	13.5	5.8	100.0	8.3	1,730
15-19	1.8	21.5	9.0	58.9	6.9	1.9	100.0	7.5	922
20-24	5.7	10.1	5.7	47.3	21.0	10.2	100.0	9.3	808
25-29	9.6	11.4	5.5	42.4	19.2	11.8	100.0	9.3	658
30-34	10.3	15.9	6.4	36.4	19.4	11.5	100.0	9.2	520
35-39	10.3	18.6	5.7	36.9	18.5	9.9	100.0	9.1	448
40-44	13.2	21.1	5.8	30.2	15.9	13.9	100.0	8.5	376
45-49	12.0	22.5	11.3	28.1	14.6	11.4	100.0	7.5	289
Residence									
Urban	4.9	9.8	4.5	45.7	22.1	13.1	100.0	9.5	2,282
Rural	11.4	25.4	10.1	40.9	8.2	4.0	100.0	7.0	1,739
Region									
Zambezi	4.5	19.7	4.6	40.7	24.8	5.7	100.0	9.2	218
Erongo	4.8	9.4	5.7	48.6	21.4	10.0	100.0	9.4	372
Hardap	5.4	18.8	6.8	48.4	17.1	3.5	100.0	9.0	152
//Karas	3.0	13.9	7.8	49.3	18.2	7.7	100.0	9.0	151
Kavango	12.1	21.5	8.0	42.8	9.7	5.9	100.0	7.3	316
Khomas	4.1	8.5	4.7	40.7	24.5	17.5	100.0	9.8	1,023
Kunene	30.2	17.8	7.4	30.0	8.7	5.9	100.0	6.2	104
Ohangwena	13.6	24.3	5.4	47.7	5.6	3.5	100.0	6.8	328
Omaheke	19.2	24.6	7.3	34.6	8.9	5.5	100.0	6.8	103
Omusati	3.5	25.2	16.2	44.4	6.1	4.7	100.0	7.2	342
Oshana	2.1	17.2	6.6	47.2	15.4	11.5	100.0	9.1	335
Oshikoto	13.7	25.6	7.9	39.7	7.5	5.6	100.0	7.1	335
Otjozondjupa	11.7	12.8	5.9	49.1	17.7	2.7	100.0	8.6	241
Wealth quintile									
Lowest	15.3	32.2	10.7	35.8	6.0	0.0	100.0	6.2	594
Second	13.1	24.8	9.1	43.8	8.1	1.1	100.0	7.0	769
Middle	8.9	19.7	9.2	47.8	9.7	4.7	100.0	7.9	886
Fourth	3.5	9.6	5.4	49.6	20.5	11.4	100.0	9.4	917
Highest	0.8	2.4	1.6	38.2	32.0	24.9	100.0	11.2	855
Total 15-49	7.7	16.5	6.9	43.6	16.1	9.1	100.0	8.7	4,021

${ }^{1}$ Completed 7th grade at the primary level
${ }^{2}$ Completed 5th grade at the secondary level

3.3 LITERACY

The ability to read and write is an important personal asset, enhancing people's ability to access information and connect with opportunities for enhancing their socioeconomic well-being. In addition, knowledge of the literacy level of the population can help health and development workers determine how to package and communicate their messages. In the 2013 NDHS, the literacy status of respondents who had not attended school or had attended only primary school was determined by assessing their ability to read all or part of a sentence. Respondents with a secondary education or higher were assumed to be literate.

Tables 3.3.1 and 3.3.2 show the percent distributions of women and men, respectively, by level of schooling attended and level of literacy, as well as the percentage of respondents who are literate, according to background characteristics. The literacy rate in Namibia is generally high, with more than nine in ten respondents being literate (93 percent of women and 91 percent of men). Literacy level tends to decrease with age, especially among women. Ninety-six percent of women age 15-24 are literate, as compared with 86 percent of women age 45-49.

Women and men in urban areas (96 percent and 95 percent, respectively) are more likely to be literate than those in rural areas (90 percent and 85 percent, respectively). Variations also exist by region. The literacy rate among women ranges from 77 percent in Kunene and Omaheke to 98 percent in Erongo and Oshana. Among men, literacy rate is highest in Khomas (97 percent) and lowest in Kunene and Omaheke (71 percent each). Literacy increases with increasing wealth among both women and men. For
example, 86 percent of women in the lowest wealth quintile are literate, as compared with 99 percent of those in the highest wealth quintile. The corresponding percentages for men are 79 percent and 99 percent, respectively.

Table 3.3.1 Literacy: Women
Percent distribution of women age 15-49 by level of schooling attended and level of literacy, and percentage literate, according to background characteristics, Namibia 2013

Background characteristic	Secondary school or higher	No schooling or primary school						$\begin{aligned} & \text { Percent- } \\ & \text { age } \\ & \text { literate }^{1} \end{aligned}$	Number of women
		Can read a whole sentence	Can read part of a sentence	Cannot read at all	No card with required language	Blind/visually impaired	Total		
Age									
15-24	80.9	11.7	3.3	3.0	0.7	0.0	100.0	95.9	3,691
15-19	75.0	17.2	3.6	2.9	1.1	0.1	100.0	95.7	1,906
20-24	87.3	5.9	2.9	3.1	0.3	0.0	100.0	96.2	1,786
25-29	80.8	9.0	4.1	5.0	0.7	0.0	100.0	93.9	1,489
30-34	76.3	12.9	3.7	6.0	0.6	0.1	100.0	92.9	1,260
35-39	71.9	14.7	4.4	7.5	0.9	0.0	100.0	91.0	1,110
40-44	67.7	17.0	7.0	5.4	2.4	0.0	100.0	91.7	917
45-49	54.8	22.8	8.6	11.4	1.8	0.3	100.0	86.2	708
Residence									
Urban	84.3	8.8	2.9	3.1	0.5	0.0	100.0	95.9	5,190
Rural	64.8	19.0	6.4	7.9	1.5	0.1	100.0	90.2	3,986
Region									
Zambezi	77.8	8.2	6.0	7.7	0.2	0.0	100.0	92.1	457
Erongo	85.7	9.3	2.5	2.1	0.0	0.0	100.0	97.6	771
Hardap	76.9	12.7	5.9	4.1	0.1	0.0	100.0	95.4	304
//Karas	79.6	11.2	5.1	2.0	1.6	0.1	100.0	95.9	343
Kavango	51.1	23.1	16.0	8.9	0.5	0.1	100.0	90.3	835
Khomas	89.2	5.4	1.8	2.4	0.6	0.0	100.0	96.5	2,202
Kunene	55.9	15.5	5.1	22.5	0.4	0.0	100.0	76.5	258
Ohangwena	65.9	21.5	4.2	3.2	4.8	0.2	100.0	91.6	894
Omaheke	59.0	10.3	7.9	20.9	1.5	0.0	100.0	77.2	225
Omusati	71.0	19.9	2.9	5.5	0.0	0.0	100.0	93.9	884
Oshana	87.5	10.1	0.4	1.9	0.0	0.0	100.0	98.0	755
Oshikoto	74.5	17.4	3.0	4.7	0.2	0.0	100.0	94.9	707
Otjozondjupa	67.0	14.9	5.4	9.3	2.8	0.2	100.0	87.3	540
Wealth quintile									
Lowest	48.4	26.0	11.2	11.5	2.4	0.2	100.0	85.6	1,429
Second	63.2	19.4	6.4	9.1	1.4	0.0	100.0	89.0	1,625
Middle	75.5	14.0	3.8	5.5	0.9	0.0	100.0	93.2	1,795
Fourth	84.5	9.3	2.5	2.7	0.4	0.0	100.0	96.3	2,116
Highest	94.9	3.4	0.9	0.5	0.3	0.0	100.0	99.2	2,211
Total	75.8	13.2	4.4	5.2	1.0	0.0	100.0	93.4	9,176

${ }^{1}$ Refers to women who attended secondary school or higher and women who can read a whole sentence or part of a sentence

Table 3.3.2 Literacy: Men
Percent distribution of men age 15-49 by level of schooling attended and level of literacy, and percentage literate, according to background characteristics, Namibia 2013

Background characteristic	Secondary school or higher	No schooling or primary school						Percentageliterate	Number of men
		Can read a whole sentence	Can read part of a sentence	Cannot read at all	No card with required language	Blind/ visually impaired	Total		
Age									
15-24	72.8	14.8	5.3	5.9	0.7	0.0	100.0	92.8	1,730
15-19	67.7	21.5	4.7	4.7	0.8	0.0	100.0	93.9	922
20-24	78.5	7.1	6.0	7.3	0.7	0.0	100.0	91.6	808
25-29	73.5	7.3	9.2	9.8	0.3	0.0	100.0	89.9	658
30-34	67.4	11.9	8.4	11.4	0.3	0.0	100.0	87.7	520
35-39	65.4	10.0	14.7	8.3	0.9	0.0	100.0	90.2	448
40-44	59.9	13.8	12.4	12.5	0.6	0.5	100.0	86.1	376
45-49	54.2	21.4	13.5	10.3	0.5	0.2	100.0	89.0	289
Residence									
Urban	80.8	7.8	6.1	4.3	0.5	0.0	100.0	94.7	2,282
Rural	53.1	19.9	12.0	13.9	0.7	0.1	100.0	84.9	1,739
Region									
Zambezi	71.2	9.1	8.0	9.6	0.5	0.0	100.0	88.3	218
Erongo	80.1	9.6	5.8	3.5	0.6	0.0	100.0	95.4	372
Hardap	69.0	10.6	11.0	6.8	2.1	0.4	100.0	90.6	152
//Karas	75.3	15.0	3.4	3.9	0.7	0.3	100.0	93.7	151
Kavango	58.4	12.2	11.3	14.1	2.5	0.4	100.0	82.0	316
Khomas	82.7	6.4	7.5	2.9	0.4	0.0	100.0	96.6	1,023
Kunene	44.6	11.8	14.7	27.9	0.4	0.1	100.0	71.2	104
Ohangwena	56.8	16.7	9.1	17.4	0.0	0.0	100.0	82.6	328
Omaheke	48.9	5.0	17.2	26.3	2.1	0.0	100.0	71.1	103
Omusati	55.2	25.5	13.9	5.4	0.0	0.0	100.0	94.6	342
Oshana	74.1	21.4	0.3	3.5	0.0	0.0	100.0	95.8	335
Oshikoto	52.8	19.5	13.5	13.9	0.3	0.0	100.0	85.8	335
Otjozondjupa	69.6	11.7	7.3	10.3	0.2	0.0	100.0	88.6	241
Wealth quintile									
Lowest	41.8	22.1	14.7	19.3	1.6	0.2	100.0	78.6	594
Second	53.0	18.7	12.4	14.3	0.8	0.0	100.0	84.1	769
Middle	62.2	16.3	11.1	9.3	0.8	0.0	100.0	89.6	886
Fourth	81.4	8.8	6.0	2.9	0.1	0.1	100.0	96.3	917
Highest	95.2	2.7	1.3	0.7	0.0	0.0	100.0	99.2	855
Total 15-49	68.8	13.0	8.6	8.4	0.6	0.1	100.0	90.5	4,021

${ }^{1}$ Refers to men who attended secondary school or higher and men who can read a whole sentence or part of a sentence

3.4 Exposure to Mass Media

The 2013 NDHS collected information on respondents’ exposure to common print and electronic media. Respondents were asked how often they read a newspaper, ${ }^{1}$ listened to the radio, or watched television. The mass media in Namibia serve as an important channel for conveying messages on family planning, malaria, HIV/AIDS awareness, and other health-related issues.

Tables 3.4.1 and 3.4.2 show the percentages of women and men, respectively, who were exposed to the different types of mass media by age, residence, region, level of education, and wealth quintile. Radio is the most commonly used type of mass media among both men and women, with 58 percent and 60 percent, respectively, listening to the radio at least once a week. More than four in ten women and men (42 percent and 44 percent, respectively) watch television at least once a week. Thirty-nine percent of women read a newspaper at least once a week.

Overall, 21 percent of women have access to all three media (radio, television, and newspaper) at least once per week. Urban women are substantially more likely to be exposed to all three media (33 percent) than rural women (6 percent). There exist wide regional variations with respect to media exposure. About four in ten women in Khomas (41 percent), Hardap (40 percent), and Erongo (38 percent)

[^3]are exposed to all three media, as compared with only 2 percent of women in Omusati and 5 percent of those in Kavango. Women's exposure to all three media increases notably with increasing education and wealth.

Among men, 34 percent have access to both media (radio and television) at least once per week (as noted, data for men who read a newspaper at least once a week are not shown). Similar to women, urban men (51 percent) are much more likely to be exposed to both of these types of media than rural men (11 percent). Access to the two specified media ranges from 8 percent among men in Omusati to 74 percent among those in Erongo. Men’s exposure to both radio and television increases steadily as their education and wealth increase.

Table 3.4.1 Exposure to mass media: Women
Percentage of women age 15-49 who are exposed to specific media on a weekly basis, by background characteristics, Namibia 2013

Background characteristic	Reads a newspaper at least once a week	Watches television at least once a week	Listens to the radio at least once a week	Accesses all three media at least once a week	Accesses none of the three media at least once a week	Number of women
Age						
15-19	36.0	40.2	52.5	17.9	30.6	1,906
20-24	43.7	47.0	56.9	24.1	24.4	1,786
25-29	40.8	45.8	57.3	21.8	25.6	1,489
30-34	40.1	40.6	59.7	21.2	25.6	1,260
35-39	35.6	38.1	60.7	21.4	28.4	1,110
40-44	38.7	37.8	60.7	21.7	26.5	917
45-49	35.4	36.8	62.3	21.8	29.0	708
Residence						
Urban	55.4	61.9	63.9	33.2	15.0	5,190
Rural	17.7	15.5	49.6	5.8	42.8	3,986
Region						
Zambezi	17.9	36.2	58.4	10.6	30.7	457
Erongo	60.4	65.3	66.4	38.4	11.5	771
Hardap	56.5	68.7	73.4	39.5	11.7	304
//Karas	34.0	51.8	53.4	17.5	23.7	343
Kavango	10.3	21.6	33.8	4.8	54.8	835
Khomas	69.8	67.2	67.3	40.9	8.6	2,202
Kunene	23.2	42.7	58.3	13.4	31.5	258
Ohangwena	15.7	15.4	58.4	5.6	35.6	894
Omaheke	22.3	33.9	66.4	10.7	23.9	225
Omusati	15.2	6.1	36.6	2.2	55.8	884
Oshana	41.3	33.4	61.4	19.8	27.2	755
Oshikoto	33.1	29.0	60.9	12.5	26.4	707
Otjozondjupa	35.5	51.7	56.4	22.8	28.3	540
Education						
No education	2.1	15.5	44.0	0.9	51.3	419
Primary	13.8	18.0	46.8	5.7	45.3	1,798
Secondary	43.4	45.1	61.0	23.3	23.0	6,029
More than secondary	76.0	77.8	63.3	47.5	7.2	930
Wealth quintile						
Lowest	9.9	4.0	40.5	1.4	55.4	1,429
Second	18.3	8.3	49.2	4.0	45.0	1,625
Middle	31.7	23.4	59.6	8.8	28.7	1,795
Fourth	48.1	65.8	63.5	30.0	14.5	2,116
Highest	70.4	82.6	68.0	48.6	6.4	2,211
Total	39.0	41.8	57.7	21.3	27.1	9,176

Table 3.4.2 Exposure to mass media: Men
Percentage of men age 15-49 who are exposed to specific media on a weekly basis, by background characteristics, Namibia 2013

Background characteristic	Watches television at least once a week	Listens to the radio at least once a week	Accesses both media at least once a week	Accesses neither of the two media at least once a week	Number of men
Age					
15-19	41.0	54.0	29.8	34.8	922
20-24	42.3	55.9	30.0	31.7	808
25-29	43.7	64.1	34.1	26.2	658
30-34	47.4	63.0	36.7	26.3	520
35-39	44.1	66.1	35.9	25.6	448
40-44	45.8	59.8	39.4	33.8	376
45-49	48.5	72.6	44.3	23.2	289
Residence					
Urban	63.9	68.3	51.3	19.1	2,282
Rural	17.7	50.1	11.4	43.7	1,739
Region					
Zambezi	29.2	49.1	19.7	41.4	218
Erongo	80.7	85.8	74.1	7.6	372
Hardap	52.2	49.1	27.4	26.1	152
//Karas	64.4	71.3	51.3	15.6	151
Kavango	22.9	40.6	14.3	50.8	316
Khomas	68.9	74.4	55.9	12.6	1,023
Kunene	38.2	54.5	28.9	36.3	104
Ohangwena	17.6	56.1	11.4	37.7	328
Omaheke	22.8	57.3	18.1	38.0	103
Omusati	15.1	41.1	7.8	51.6	342
Oshana	24.2	38.0	11.7	49.4	335
Oshikoto	20.0	63.7	14.6	30.9	335
Otjozondjupa	52.1	62.2	46.7	32.4	241
Education					
No education	13.7	51.1	12.8	48.1	310
Primary	25.0	52.4	18.6	41.2	944
Secondary	50.2	63.8	39.2	25.2	2,400
More than secondary	76.4	66.8	57.9	14.7	368
Wealth quintile					
Lowest	7.2	40.7	3.9	56.0	594
Second	14.7	57.5	10.9	38.8	769
Middle	27.7	55.7	20.2	36.8	886
Fourth	70.4	68.1	55.7	17.2	917
Highest	84.0	73.5	66.9	9.4	855
Total 15-49	43.9	60.4	34.0	29.7	4,021

Note: Data on men who read a newspaper at least once a week are not shown due to a problem in the data entry programme. The responses from men with a secondary education or higher were not entered, resulting in a gross underestimate of men's exposure to this type of media.

3.5 Employment

3.5.1 Employment Status

The 2013 NDHS asked respondents a number of questions regarding their employment status, including whether they were working in the seven days preceding the survey and, if not, whether they had worked in the 12 months preceding the survey. The results for women and men are presented in Tables 3.5.1 and 3.5.2, respectively. At the time of the survey, 43 percent of women were employed and 3 percent were not employed but had worked sometime during the past 12 months (Table 3.5.1 and Figure 3.1). Fifty-six percent of men were employed at the time of the survey, and 6 percent were employed at some point during the 12 months before the survey (Table 3.5.2).

The proportion of currently employed respondents is considerably lower among younger women and men, especially those age 15-19 (8 percent of women and 14 percent of men), probably because many are still in school. Also, never-married women and men are less likely to be working than those currently or formerly married. For example, 36 percent of women who have never been married are employed, as compared with 52 percent of those who are married or cohabiting and 57 percent of those who are divorced, separated, or widowed. Women and men with no children are less likely to be employed than respondents who have children.

The proportion of women and men who are employed is higher in urban areas (53 percent and 66 percent, respectively) than in rural areas (30 percent and 43 percent, respectively). By region, employment among women ranges from 25 percent in Zambezi to 56 percent each in Erongo and //Karas. Among men, employment is lowest in Omusati (28 percent) and highest in Hardap (73 percent).

In the case of women, there is a linear inverse relationship between level of education and unemployment. Three in ten women with no education (30 percent) are employed, as compared with more than six in ten (62 percent) women with more than a secondary education. Among men, those with more than a secondary education (77 percent) are more likely to be employed than men with less education or no education (53-59 percent). However, the patterns by education are not linear. Employment increases steadily with increasing wealth among both women and men.

Table 3.5.1 Employment status: Women					
Percent distribution of women age 15-49 by employment status, according to background characteristics, Namibia 2013					
Background characteristic	Employed in the 12 months preceding the survey		Not employed in the 12 months preceding the survey	Total	Number of women
	Currently employed ${ }^{1}$	Not currently employed			
Age					
15-19	8.3	1.7	90.0	100.0	1,906
20-24	31.0	5.7	63.3	100.0	1,786
25-29	54.2	3.2	42.6	100.0	1,489
30-34	61.2	2.6	36.0	100.0	1,260
35-39	58.0	2.8	39.0	100.0	1,110
40-44	62.7	1.8	35.5	100.0	917
45-49	58.1	1.2	40.8	100.0	708
Marital status					
Never married	36.0	3.2	60.8	100.0	5,458
Married or living together	51.7	2.2	46.0	100.0	3,121
Divorced/separated/widowed	57.0	4.9	38.0	100.0	597
Number of living children					
0	24.1	2.9	73.0	100.0	3,034
1-2	52.7	3.7	43.6	100.0	3,606
3-4	55.5	1.6	42.7	100.0	1,750
5+	39.8	2.8	57.3	100.0	785
Residence					
Urban	52.8	3.8	43.2	100.0	5,190
Rural	29.5	1.8	68.7	100.0	3,986
Region					
Zambezi	25.0	1.0	74.1	100.0	457
Erongo	56.3	3.5	40.1	100.0	771
Hardap	44.3	1.9	53.8	100.0	304
//Karas	56.1	6.5	37.4	100.0	343
Kavango	28.0	1.0	71.0	100.0	835
Khomas	54.2	4.5	41.2	100.0	2,202
Kunene	33.9	0.9	65.2	100.0	258
Ohangwena	34.9	1.5	63.6	100.0	894
Omaheke	35.5	4.8	59.7	100.0	225
Omusati	25.8	0.0	74.0	100.0	884
Oshana	44.8	1.6	53.6	100.0	755
Oshikoto	47.0	6.0	47.0	100.0	707
Otjozondjupa	44.1	4.2	51.6	100.0	540
Education					
No education	29.5	3.4	66.8	100.0	419
Primary	31.8	2.0	66.2	100.0	1,798
Secondary	43.9	3.2	52.8	100.0	6,029
More than secondary	62.0	2.8	35.0	100.0	930
Wealth quintile					
Lowest	21.8	1.7	76.5	100.0	1,429
Second	32.2	2.7	65.0	100.0	1,625
Middle	42.9	2.6	54.4	100.0	1,795
Fourth	52.0	3.8	44.2	100.0	2,116
Highest	54.8	3.5	41.6	100.0	2,211
Total	42.7	3.0	54.3	100.0	9,176

1 "Currently employed" is defined as having done work in the past 7 days. Includes persons who did not work in the past 7 days but who are regularly employed and were absent from work for leave, illness, vacation, or any other such reason.

Table 3.5.2 Employment status: Men
Percent distribution of men age 15-49 by employment status, according to background characteristics, Namibia 2013

Background characteristic	Employed in the 12 months preceding the survey		Not employed in the 12 months preceding the survey	Total	Number of men
	Currently employed ${ }^{1}$	Not currently employed			
Age					
15-19	14.3	5.6	80.1	100.0	922
20-24	56.0	5.6	38.4	100.0	808
25-29	70.1	7.7	21.9	100.0	658
30-34	72.8	5.9	21.2	100.0	520
35-39	77.5	4.3	18.1	100.0	448
40-44	72.4	3.9	23.7	100.0	376
45-49	70.8	3.9	25.2	100.0	289
Marital status					
Never married	44.9	6.5	48.5	100.0	2,745
Married or living together	80.3	3.2	16.5	100.0	1,160
Divorced/separated/widowed	72.7	7.3	20.1	100.0	116
Number of living children					
0	38.5	6.2	55.3	100.0	2,094
1-2	73.7	5.5	20.6	100.0	1,077
3-4	79.9	3.8	16.3	100.0	544
5+	70.0	4.1	25.8	100.0	305
Residence					
Urban	65.5	4.9	29.6	100.0	2,282
Rural	43.3	6.5	50.1	100.0	1,739
Region					
Zambezi	52.6	5.6	41.8	100.0	218
Erongo	71.7	3.3	25.0	100.0	372
Hardap	72.6	2.6	24.7	100.0	152
//Karas	69.5	4.4	25.8	100.0	151
Kavango	46.3	7.6	46.0	100.0	316
Khomas	69.3	5.9	24.8	100.0	1,023
Kunene	58.3	1.3	40.4	100.0	104
Ohangwena	28.6	9.7	61.3	100.0	328
Omaheke	67.1	4.2	28.7	100.0	103
Omusati	28.1	4.4	67.6	100.0	342
Oshana	54.2	6.4	39.5	100.0	335
Oshikoto	47.8	8.7	43.5	100.0	335
Otjozondjupa	56.1	0.3	43.6	100.0	241
Education					
No education	58.8	3.2	38.0	100.0	310
Primary	52.5	5.3	42.2	100.0	944
Secondary	53.7	6.1	40.1	100.0	2,400
More than secondary	76.9	4.4	18.8	100.0	368
Wealth quintile					
Lowest	40.9	7.0	52.0	100.0	594
Second	50.6	5.9	43.6	100.0	769
Middle	57.1	5.0	37.9	100.0	886
Fourth	61.7	4.3	34.0	100.0	917
Highest	63.9	6.2	29.9	100.0	855
Total 15-49	55.9	5.6	38.5	100.0	4,021

1 "Currently employed" is defined as having done work in the past 7 days. Includes persons who did not work in the past 7 days but who are regularly employed and were absent from work for leave, illness, vacation, or any other such reason.

Figure 3.1 Women's employment status in the past 12 months

NDHS 2013

3.5.2 Occupation

Respondents who are employed or had worked in the 12 months preceding the survey were asked to specify their occupation. The results for women and men are presented in Table 3.6.1 and Table 3.6.2, respectively, according to background characteristics.

In Namibia, women are most likely to be employed in sales and services (58 percent), followed by professional, technical, or managerial jobs (19 percent) and clerical jobs (12 percent). By contrast, men are most likely to be employed in skilled manual work (33 percent), followed closely by sales and services (30 percent). Sixteen percent of men are engaged in professional, technical, or managerial jobs. Three percent of women and 9 percent of men work in agriculture.

Urban-rural residence influences the type of work that men do but does not have a notable effect on women's occupations. Men who live in urban areas are most likely to be employed in skilled manual labour (39 percent), followed by sales and services (25 percent) and professional, technical, or managerial jobs (20 percent). Among rural men, the leading occupations are sales and services (38 percent), skilled manual labour (23 percent), and agriculture (21 percent). There are no major variations by region.

Women and men with more than a secondary education are more likely to be employed in professional, technical, or managerial occupations, while those with no education or a primary education are more likely to be employed in sales and services.

Table 3.6.1 Occupation: Women
Percent distribution of women age 15-49 employed in the 12 months preceding the survey by occupation, according to background characteristics, Namibia 2013

Background characteristic	Professional/ technical/ managerial	Clerical	Sales and services	Skilled manual	Unskilled manual	Agriculture	Missing	Total	Number of women
Age									
15-19	8.6	9.5	68.7	1.7	2.3	7.0	2.2	100.0	190
20-24	13.8	17.5	59.7	2.0	3.0	3.2	0.8	100.0	655
25-29	18.4	13.1	57.4	5.1	3.2	2.2	0.6	100.0	855
30-34	20.2	11.7	59.3	3.0	2.6	2.8	0.5	100.0	804
35-39	20.5	8.1	57.1	5.7	4.1	3.7	0.7	100.0	675
40-44	21.1	11.4	55.4	5.1	3.0	3.9	0.1	100.0	591
45-49	29.2	7.9	49.1	5.8	3.5	2.8	1.8	100.0	420
Marital status									
Never married	14.2	12.4	62.4	4.1	3.3	2.9	0.8	100.0	2,138
Married or living together	25.9	11.6	50.5	4.4	3.2	3.8	0.6	100.0	1,681
Divorced/separated/widowed	19.6	9.2	61.0	4.4	2.2	2.5	1.1	100.0	370
Number of living children									
0	22.2	18.2	48.8	3.8	2.7	3.0	1.3	100.0	820
1-2	20.9	13.1	56.2	3.6	3.5	2.4	0.4	100.0	2,034
3-4	17.8	7.1	63.0	5.1	3.2	2.9	0.8	100.0	1,001
5+	7.9	2.4	70.0	6.3	1.8	10.0	1.7	100.0	335
Residence									
Urban	21.9	14.8	53.4	4.3	3.6	1.3	0.7	100.0	2,941
Rural	13.4	4.7	67.1	4.0	2.0	7.9	0.9	100.0	1,248
Region									
Zambezi	14.6	8.3	60.7	6.7	4.2	4.9	0.6	100.0	118
Erongo	14.8	14.2	53.4	4.6	10.9	1.4	0.6	100.0	461
Hardap	18.7	18.4	56.5	2.5	1.4	2.4	0.0	100.0	140
//Karas	13.7	14.8	45.4	3.0	12.4	9.8	0.9	100.0	215
Kavango	14.3	5.8	64.9	3.1	0.5	9.8	1.6	100.0	242
Khomas	29.2	14.4	49.3	4.1	1.9	0.4	0.6	100.0	1,292
Kunene	20.0	9.3	57.8	6.9	2.3	3.3	0.5	100.0	90
Ohangwena	12.3	5.6	72.1	6.3	1.3	1.4	0.9	100.0	326
Omaheke	14.8	12.2	63.2	6.9	0.3	2.6	0.0	100.0	91
Omusati	18.8	3.0	71.4	5.2	0.0	1.6	0.0	100.0	228
Oshana	16.7	11.9	65.0	4.3	0.6	0.7	0.8	100.0	351
Oshikoto	11.9	11.1	60.4	2.2	1.6	11.0	1.8	100.0	374
Otjozondjupa	15.3	13.1	60.4	3.5	2.6	4.4	0.6	100.0	261
Education									
No education	1.5	0.0	83.3	3.4	3.6	6.1	2.1	100.0	138
Primary	2.4	0.7	84.0	3.6	2.1	6.9	0.3	100.0	607
Secondary	13.8	14.3	59.6	4.8	3.8	2.8	0.8	100.0	2,842
More than secondary	66.9	14.0	14.7	2.2	1.1	0.7	0.6	100.0	602
Wealth quintile									
Lowest	5.6	0.8	72.6	5.9	2.0	11.2	1.9	100.0	336
Second	5.2	4.4	76.6	3.4	2.2	7.2	1.1	100.0	567
Middle	9.0	7.8	70.7	5.7	2.9	3.6	0.4	100.0	817
Fourth	16.1	13.1	59.1	4.8	4.9	1.6	0.5	100.0	1,181
Highest	38.8	19.3	35.2	2.7	2.5	0.7	0.8	100.0	1,289
Total	19.4	11.8	57.5	4.2	3.2	3.2	0.8	100.0	4,189

Table 3.6.2 Occupation: Men
Percent distribution of men age 15-49 employed in the 12 months preceding the survey by occupation, according to background characteristics, Namibia 2013

Background characteristic	Profes- sional/ technical/ managerial	Clerical	Sales and services	Skilled manual	Unskilled manual	Agriculture	Missing	Total	Number of men
Age									
15-19	6.9	4.8	33.1	31.2	13.0	10.1	0.9	100.0	184
20-24	11.6	5.5	32.0	33.6	8.7	8.4	0.3	100.0	498
25-29	16.8	3.1	32.2	33.3	7.5	6.9	0.3	100.0	512
30-34	16.4	3.9	27.9	34.4	7.0	9.4	1.0	100.0	410
35-39	19.6	2.3	25.9	35.8	7.6	8.0	0.8	100.0	367
40-44	20.3	3.4	28.1	29.0	7.8	10.7	0.7	100.0	287
45-49	22.7	2.1	27.5	32.4	5.0	9.9	0.3	100.0	216
Marital status									
Never married	13.6	4.2	31.3	34.9	7.8	7.6	0.6	100.0	1,411
Married or living together	19.3	3.2	27.2	31.1	8.4	10.3	0.5	100.0	968
Divorced/separated/ widowed	26.1	0.6	31.0	28.2	4.6	8.8	0.6	100.0	93
Number of living children									
0	15.5	4.5	31.7	30.5	9.0	8.3	0.5	100.0	937
1-2	17.5	3.7	27.7	35.0	7.1	8.4	0.6	100.0	854
3-4	17.9	2.9	29.7	30.6	8.2	10.2	0.6	100.0	456
$5+$	11.9	2.0	28.7	42.4	6.0	8.4	0.7	100.0	226
Residence									
Urban	20.3	5.2	25.0	38.9	8.0	2.0	0.5	100.0	1,607
Rural	8.8	0.9	38.3	22.5	7.7	21.1	0.7	100.0	866
Region									
Zambezi	12.0	1.5	44.0	25.6	10.2	6.3	0.4	100.0	127
Erongo	18.7	3.3	18.8	42.0	10.9	4.7	1.6	100.0	279
Hardap	12.7	3.8	18.8	25.2	5.0	33.1	1.4	100.0	115
//Karas	13.6	2.4	23.1	25.1	19.6	16.0	0.3	100.0	112
Kavango	7.7	1.3	50.5	22.6	8.3	8.3	1.3	100.0	171
Khomas	22.8	6.4	21.6	41.7	5.5	1.9	0.1	100.0	769
Kunene	11.7	2.4	26.2	19.7	9.8	29.3	1.1	100.0	62
Ohangwena	10.1	1.8	38.5	34.3	13.6	1.7	0.0	100.0	126
Omaheke	7.4	1.7	27.8	19.6	9.8	33.0	0.8	100.0	74
Omusati	13.0	0.0	38.3	34.0	7.2	6.3	1.1	100.0	111
Oshana	20.2	3.3	31.0	40.2	3.3	2.0	0.0	100.0	203
Oshikoto	11.8	3.5	46.2	19.5	5.8	13.2	0.0	100.0	189
Otjozondjupa	10.0	2.0	35.6	21.1	8.8	20.7	1.8	100.0	136
Education									
No education	1.4	0.0	40.6	21.2	11.3	24.9	0.7	100.0	192
Primary	3.7	0.6	35.7	35.7	7.0	16.7	0.6	100.0	545
Secondary	13.3	4.9	29.3	37.9	9.2	4.9	0.5	100.0	1,437
More than secondary	63.4	5.5	13.8	13.5	1.3	1.9	0.6	100.0	299
Wealth quintile									
Lowest	1.6	1.2	53.0	23.8	6.1	14.3	0.0	100.0	284
Second	6.3	0.1	36.3	30.9	8.6	16.8	0.9	100.0	434
Middle	9.5	1.5	25.6	40.7	11.8	10.4	0.5	100.0	550
Fourth	17.9	6.1	25.9	35.6	8.8	5.1	0.6	100.0	605
Highest	35.2	7.0	21.4	29.8	3.8	2.1	0.7	100.0	599
Total	16.3	3.7	29.7	33.2	7.9	8.7	0.6	100.0	2,472

3.5.3 Earnings, Employers, and Continuity of Employment for Women

Table 3.7 shows the percent distribution of women employed in the 12 months preceding the survey by type of earnings, type of employer, continuity of employment, and type of employment (agricultural or nonagricultural).

The financial sector in Namibia is well developed by African standards, and the economy is largely monetised. Fifty-four percent of women engaged in agricultural work are paid in cash only, while 9 percent are paid in-kind. More than one-third (36 percent) of women who work in agriculture are not paid at all for their work. By contrast, 89 percent of women engaged in nonagricultural work are paid in cash, and only 7 percent are not paid at all.

Fifty-three percent of women who work in agriculture are employed by non-family members, 32 percent are employed by family members, and 16 percent are self-employed. Among women engaged in nonagricultural work, 70 percent are employed by non-family members, 23 percent are self-employed, and 7 percent are employed by family members.

With regard to continuity of employment, 77 percent of employed women work all year, 14 percent are seasonal workers, and 9 percent are considered occasional workers. Seventy-eight percent of women who work in the nonagricultural sector are employed all year, as compared with 43 percent of those who work in agriculture. On the other hand, 51 percent of women who work in agriculture are seasonal workers, compared with only 12 percent of those who do nonagricultural work.

Table 3.7 Type of employment

Percent distribution of women age 15-49 employed in the 12 months preceding the survey by type of earnings, type of employer, and continuity of employment, according to type of employment (agricultural or nonagricultural), Namibia 2013

Employment			
characteristic	Agricultural work	Nonagricultural work	Total
Type of earnings			
\quad Cash only	53.9	89.3	88.0
Cash and in-kind	9.0	3.2	3.4
In-kind only	1.6	0.7	0.7
\quad Not paid	35.5	6.6	7.6
Total	100.0	100.0	100.0
Type of employer			
\quad Employed by family member	31.6	7.4	8.3
Employed by non-family member	52.9	69.7	68.9
\quad Self-employed	15.5	22.6	100.0
Total	100.0	100.0	
Continuity of employment			77.1
\quad All year	42.7	78.4	13.6
Seasonal	51.2	9.3	9.1
\quad Occasional	6.1	100.0	100.0
Total	100.0		
Number of women employed during		4,023	4,189
the last 12 months	135		

Note: Total includes women with missing information on type of employment who are not shown separately.

Key Findings

- Thirty-four percent of women age 15-49 and 29 percent of men age 15-49 are either married or living together with a partner.
- Six percent of currently married women age 15-49 report being married to men who are in a polygynous union, while 2 percent of currently married men age 15-49 report having two or more wives.
- The median age at first sexual intercourse is 19 years among women and 18 years among men age 25-49.
- About four in ten women and men age 15-49 reported having had sexual intercourse in the past four weeks.

Marriage is a primary indication of the exposure of women to the risk of pregnancy and, therefore, is important for an understanding of fertility. Populations in which women marry at a young age tend to initiate childbearing early and have high fertility. More direct measures of the beginning of exposure to pregnancy are age at first sexual intercourse and frequency of sexual intercourse. Fertility is more closely linked to age at first sexual intercourse than to age at marriage in countries such as Namibia, where sexual initiation often occurs before marriage. This chapter addresses the principal factors, other than contraception, that affect a woman's risk of becoming pregnant. These factors include marriage, polygyny, and sexual activity.

4.1 Marital Status

Table 4.1 presents data on the current marital status of women and men age 15-49 interviewed in the survey. In this table, the term "married" is intended to mean legal, traditional, or formal marriage, while "living together" describes persons who live together in an informal union as husband and wife. Thirty-four percent of women of childbearing age are in a union; that is, they are either married or living with a man as if married. Sixty percent of women of childbearing age have never been married. The proportion of women who have never been married declines with age, from 94 percent among those age 15-19 to 24 percent among those age 45-49. Seven percent of women of childbearing age are divorced, separated, or widowed. The proportion of formerly married women increases with age. As expected, the proportion of women who are widowed is highest in the oldest age group 45-49 (12 percent).

Men tend to marry at a later age than women. Overall, 29 percent of men are either married or living with a woman as if married. Sixty-eight percent of men have never married. The proportion of men who have never married (or lived with a woman) declines with age, from 99 percent among those age 15-19 to 19 percent among those age 45-49. Three percent of men are divorced, separated, or widowed. As with women, the proportion of formerly married men increases with age.

Table 4.1 Current marital status
Percent distribution of women and men age 15-49 by current marital status, according to age, Namibia 2013

Age	Marital status							Percentage of respondents currently in union	Number of respondents
	Never married	Married	Living together	Divorced	Separated	Widowed	Total		
WOMEN									
15-19	94.1	0.6	4.8	0.0	0.5	0.0	100.0	5.4	1,906
20-24	77.9	5.0	14.6	0.1	2.3	0.1	100.0	19.5	1,786
25-29	57.8	13.8	23.7	0.3	4.1	0.4	100.0	37.5	1,489
30-34	44.2	27.1	23.3	0.9	3.9	0.7	100.0	50.3	1,260
35-39	36.5	32.1	21.3	1.8	5.5	2.8	100.0	53.4	1,110
40-44	30.6	38.1	16.2	3.2	5.9	6.0	100.0	54.2	917
45-49	24.1	41.4	13.1	3.5	5.6	12.3	100.0	54.5	708
Total 15-49	59.5	17.9	16.1	1.0	3.4	2.1	100.0	34.0	9,176
MEN									
15-19	99.3	0.0	0.7	0.0	0.0	0.0	100.0	0.7	922
20-24	90.0	1.2	8.2	0.0	0.6	0.0	100.0	9.4	808
25-29	72.1	8.1	16.9	0.3	2.6	0.0	100.0	25.0	658
30-34	53.4	17.6	25.6	0.6	2.8	0.0	100.0	43.2	520
35-39	40.9	30.6	24.0	0.8	3.1	0.6	100.0	54.6	448
40-44	30.2	45.0	18.4	1.7	3.7	1.1	100.0	63.4	376
45-49	18.6	51.2	19.8	6.1	3.2	1.1	100.0	71.0	289
Total 15-49	68.3	15.1	13.7	0.8	1.8	0.2	100.0	28.8	4,021

4.2 Polygyny

Polygyny (the practice of having more than one wife) has implications for frequency of exposure to sexual activity and, therefore, fertility. The extent of polygyny in Namibia was measured by asking all women currently married or living with a man the following question: "Does your husband/partner have other wives, or does he live with other women as if married?" If the answer was yes, the woman was asked "Including yourself, in total, how many wives or live-in partners does he have?" Currently married men or men living with a woman were asked "Do you have other wives, or do you live with other women as if married?" If the answer was yes, the man was asked "Altogether, how many wives or live-in partners do you have?"

Table 4.2.1 shows the distribution of currently married women by number of co-wives, according to selected background characteristics. Seventy-six percent of married women report that their husband or partner has no other wife, a decrease from the figure reported in the 2006-07 NDHS (81 percent). Six percent of women report that their husbands have more than one wife. Rural women are more likely to live in a polygynous union than urban women (9 percent versus 4 percent). Ten percent or more of women in Zambezi, Kunene, Kavango, and Ohangwena are in a polygynous union, as compared with less than 1 percent of women in Hardap. The proportion of women in a polygynous relationship declines with increasing education and, in general, with increasing household wealth.

Table 4.2.1 Number of women's co-wives
Percent distribution of currently married women age 15-49 by number of co-wives, according to background characteristics, Namibia 2013

Background characteristic	Number of co-wives				Total	Number of women
	0	1	$2+$	Don't know/ missing		
Age						
15-19	78.0	2.0	0.0	20.0	100.0	103
20-24	81.9	2.8	0.3	15.0	100.0	349
25-29	77.3	4.1	1.0	17.7	100.0	558
30-34	76.3	4.2	0.3	19.1	100.0	634
35-39	76.4	5.3	1.2	17.0	100.0	593
40-44	73.1	6.1	2.2	18.6	100.0	497
45-49	73.6	6.5	1.9	18.0	100.0	386
Residence						
Urban	74.0	2.8	0.9	22.3	100.0	1,819
Rural	79.6	7.4	1.4	11.6	100.0	1,301
Region						
Zambezi	85.1	10.0	1.3	3.5	100.0	204
Erongo	73.3	3.6	1.3	21.8	100.0	305
Hardap	91.9	0.9	0.0	7.2	100.0	131
//Karas	82.5	1.9	0.7	14.9	100.0	133
Kavango	85.5	9.5	0.6	4.4	100.0	429
Khomas	67.3	1.8	0.9	30.0	100.0	727
Kunene	78.6	7.2	3.4	10.8	100.0	108
Ohangwena	84.6	9.8	0.0	5.6	100.0	184
Omaheke	77.8	3.7	1.3	17.1	100.0	110
Omusati	67.3	7.0	1.2	24.5	100.0	187
Oshana	76.5	4.3	0.7	18.6	100.0	164
Oshikoto	79.8	2.0	3.4	14.7	100.0	208
Otjozondjupa	67.3	2.1	0.8	29.8	100.0	231
Education						
No education	75.5	7.6	1.8	15.1	100.0	233
Primary	77.8	7.8	1.7	12.8	100.0	718
Secondary	75.8	4.0	0.8	19.4	100.0	1,808
More than secondary	76.9	0.8	0.8	21.5	100.0	362
Wealth quintile						
Lowest	80.9	10.0	1.3	7.8	100.0	558
Second	77.8	5.4	2.2	14.6	100.0	539
Middle	71.7	5.8	1.4	21.1	100.0	598
Fourth	75.1	2.5	0.7	21.7	100.0	623
Highest	76.5	1.6	0.4	21.5	100.0	802
Total 15-49	76.3	4.8	1.1	17.8	100.0	3,121

Table 4.2.2 presents the distribution of currently married men age 15-49 by number of wives, according to background characteristics. The vast majority of men (98 percent) report having only one wife. Two percent of married men report having two or more wives, as compared with 6 percent of women who reported having co-wives. Men in Kunene (8 percent), those with no education (4 percent), and men living in households in the second and fourth wealth quintiles (4 percent each) are most likely to report having more than one wife.

Percent distribution of currently married men age 15-49 by number of wives, according to background characteristics, Namibia 2013				
Background characteristic	Number of wives		Total	Number of men
	1	2+		
Age				
15-19	*	*	100.0	7
20-24	98.9	1.1	100.0	76
25-29	97.8	2.2	100.0	165
30-34	96.4	3.6	100.0	225
35-39	96.8	3.2	100.0	245
40-44	99.3	0.7	100.0	238
45-49	98.4	1.6	100.0	205
Residence				
Urban	98.2	1.8	100.0	745
Rural	97.1	2.9	100.0	415
Region				
Zambezi	95.4	4.6	100.0	78
Erongo	98.4	1.6	100.0	137
Hardap	100.0	0.0	100.0	63
//Karas	97.3	2.7	100.0	53
Kavango	99.0	1.0	100.0	126
Khomas	97.9	2.1	100.0	307
Kunene	92.5	7.5	100.0	39
Ohangwena	(97.0)	(3.0)	100.0	42
Omaheke	100.0	0.0	100.0	37
Omusati	(96.8)	(3.2)	100.0	45
Oshana	(100.0)	(0.0)	100.0	50
Oshikoto	98.2	1.8	100.0	66
Otjozondjupa	96.8	3.2	100.0	117
Education				
No education	95.6	4.4	100.0	122
Primary	98.0	2.0	100.0	252
Secondary	97.9	2.1	100.0	635
More than secondary	98.8	1.2	100.0	151
Wealth quintile				
Lowest	98.0	2.0	100.0	175
Second	96.3	3.7	100.0	196
Middle	99.1	0.9	100.0	226
Fourth	96.5	3.5	100.0	285
Highest	99.1	0.9	100.0	277
Total 15-49	97.8	2.2	100.0	1,160

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.

4.3 Age at First Marriage

Age at first marriage has a major effect on childbearing. Women who marry early will, on average, have longer exposure to pregnancy and a greater number of lifetime births. Information on age at first marriage was obtained by asking all ever-married respondents the month and year they started living together with their first spouse.

Table 4.3 presents the percentages of both women and men age 15-49 who first married by specific exact ages. Fourteen percent of women age 25-49 married by age 20, as compared with 17 percent in the 2006-07 NDHS. Among men, 5 percent were married by age 20, same as the figure reported in the 2006-07 NDHS survey.

The median age at first marriage among women and men age 20-49 or 25-49 cannot be calculated since less than 50 percent of women and men began living with their spouses or partners for the first time before reaching the beginning of the age group. Similarly, median age at first marriage by background characteristics is not shown separately because, for most subgroups of women and men, less than 50 percent began living with their spouses or partners for the first time before reaching the beginning of the age group.

Table 4.3 Age at first marriage
Percentage of women and men age 15-49 who were first married by specific exact ages and median age at first marriage, according to current age, Namibia 2013

Current age	Percentage first married by exact age:					Percentage never married	Number	Median age at first marriage
	15	18	20	22	25			
WOMEN								
15-19	0.9	na	na	na	na	94.1	1,906	a
20-24	1.6	6.9	13.0	na	na	77.9	1,786	a
25-29	2.0	7.8	14.3	21.6	33.0	57.8	1,489	a
30-34	1.2	7.3	12.6	18.3	28.7	44.2	1,260	a
35-39	2.2	8.6	15.3	20.7	30.9	36.5	1,110	30.4
40-44	1.9	8.7	13.9	20.7	31.3	30.6	917	30.7
45-49	2.2	8.9	16.6	25.8	39.1	24.1	708	28.9
20-49	1.8	7.8	14.0	na	na	50.4	7,270	a
25-49	1.8	8.1	14.3	21.1	32.1	41.5	5,485	a
MEN								
15-19	0.0	na	na	na	na	99.3	922	a
20-24	0.0	1.4	3.9	na	na	90.0	808	a
25-29	0.0	2.4	5.5	10.5	20.4	72.1	658	a
30-34	0.0	1.7	4.6	10.1	19.6	53.4	520	a
35-39	0.0	2.6	5.0	9.8	19.8	40.9	448	34.1
40-44	0.0	2.3	5.5	9.3	19.5	30.2	376	33.5
45-49	0.0	3.0	5.7	9.4	19.1	18.6	289	34.7
20-49	0.0	2.1	4.9	na	na	59.0	3,099	a
25-49	0.0	2.4	5.2	9.9	19.8	48.1	2,291	a

Note: The age at first marriage is defined as the age at which the respondent began living with her/his first spouse/partner.
na = Not applicable due to censoring
a = Omitted because less than 50 percent of women or men began living with their spouse or partner for the first time before reaching the beginning of the age group

4.4 Age at First Sexual Intercourse

Age at first marriage can be used as a proxy for the beginning of exposure to the risk of pregnancy. However, because some women are sexually active before marriage, the age at which women initiate sexual intercourse more precisely marks the beginning of their exposure to reproductive risks. The 2013 NDHS asked women and men how old they were when they first had sexual intercourse.

Table 4.4 presents the percentages of women and men who had sexual intercourse by specific exact ages and the median ages at first sexual intercourse. The results show that men initiate sex at an earlier age than women. The median age at first intercourse is 19.0 years among women age 25-49 and 18.2 years among men the same age. Five percent of women and 10 percent of men age 25-49 reported that they had sexual intercourse by age 15 . The majority of women and men age 25-49 (62 percent and 74 percent, respectively) reported having had sexual intercourse by age 20.

Table 4.5 presents the median age at first sexual intercourse among women and men by background characteristics. Among women age 25-49, median age at first sexual intercourse ranges from a low of 17.0 years in Kavango to a high of 20.3 years in Omusati. Median age at first sexual intercourse increases with increasing education and wealth. For example, the median age is more than three years lower among women with no education than among women with more than a secondary education. There are smaller differences among men by residence, education, and wealth. However, there are noteworthy differences by region, with median age at first sexual intercourse ranging from 16.6 years in Kunene to 18.4 years in Omusati.

Table 4.4 Age at first sexual intercourse
Percentage of women and men age 15-49 who had first sexual intercourse by specific exact ages, percentage who never had sexual intercourse, and median age at first sexual intercourse, according to current age, Namibia 2013

Current age	Percentage who had first sexual intercourse by exact age:					Percentage who never had intercourse	Number	Median age at first intercourse
	15	18	20	22	25			
WOMEN								
15-19	6.8	na	na	na	na	54.9	1,906	a
20-24	3.9	39.7	72.5	na	na	9.2	1,786	18.6
25-29	6.1	36.8	63.7	79.3	88.5	1.8	1,489	18.8
30-34	5.2	39.3	63.2	77.7	86.1	1.1	1,260	18.7
35-39	4.5	34.6	59.1	74.3	82.2	0.8	1,110	19.2
40-44	4.1	30.6	52.3	68.6	79.1	1.1	917	19.7
45-49	4.2	28.5	50.2	65.3	77.4	0.8	708	20.0
20-49	4.7	36.0	62.3	na	na	3.2	7,270	a
25-49	5.0	34.8	59.0	na	na	1.2	5,485	19.0
15-24	5.4	na	na	na	na	32.8	3,691	19.0
MEN								
15-19	13.4	na	na	na	na	56.6	922	a
20-24	12.7	55.2	82.6	na	na	7.6	808	17.7
25-29	13.9	53.0	77.6	92.1	95.9	2.3	658	17.7
30-34	8.5	46.2	73.5	88.4	92.2	0.3	520	18.2
35-39	10.8	48.6	69.9	85.5	89.3	1.3	448	18.1
40-44	6.1	36.3	63.6	79.8	86.5	1.3	376	18.6
45-49	8.0	38.1	65.8	82.4	90.4	0.4	289	18.6
20-49	10.7	48.4	74.3	na	na	2.9	3,099	a
25-49	10.1	46.0	71.4	na	na	1.2	2,291	18.2
15-24	13.1	na	na	na	na	33.7	1,730	18.3

na = Not applicable due to censoring
$a=$ Omitted because less than 50 percent of respondents had sexual intercourse for the first time before reaching the beginning of the age group

Table 4.5 Median age at first sexual intercourse by background characteristics		
Median age at first sexual intercourse among women and men age 25-49, according to background characteristics, Namibia 2013		
Background characteristic	Women age 25-49	$\begin{gathered} \hline \text { Men age } \\ 25-49 \end{gathered}$
Residence		
Urban	19.1	18.3
Rural	18.6	18.2
Region		
Zambezi	18.1	18.1
Erongo	18.9	18.2
Hardap	19.1	18.4
//Karas	19.0	18.1
Kavango	17.0	18.1
Khomas	19.5	18.2
Kunene	17.8	16.8
Ohangwena	18.6	18.1
Omaheke	18.2	18.1
Omusati	20.3	18.4
Oshana	19.9	18.3
Oshikoto	19.5	18.4
Otjozondjupa	18.5	18.4
Education		
No education	17.3	18.4
Primary	17.9	18.4
Secondary	19.2	18.1
More than secondary	20.7	18.1
Wealth quintile		
Lowest	17.9	18.3
Second	18.6	18.2
Middle	18.9	18.2
Fourth	19.1	18.2
Highest	19.8	18.3
Total	19.0	18.2

4.5 Recent Sexual Activity

In the absence of effective contraception, the probability of pregnancy depends highly upon the frequency of intercourse. Information on sexual activity, therefore, can be used to refine measures of exposure to pregnancy. All women and men were asked how long ago they most recently had sexual intercourse. Tables 4.6 .1 and 4.6 .2 present the distribution of women and men by recent sexual activity, according to background characteristics.

Table 4.6.1 Recent sexual activity: Women							
Percent distribution of women age 15-49 by timing of last sexual intercourse, according to background characteristics, Namibia 2013							
Background characteristic	Timing of last sexual intercourse				Never had sexual intercourse	Total	Number of women
	Within the past 4 weeks	Within 1 year ${ }^{1}$	One or more years	Missing			
Age							
15-19	13.7	24.0	7.0	0.4	54.9	100.0	1,906
20-24	36.6	41.9	11.6	0.8	9.2	100.0	1,786
25-29	49.8	36.8	10.6	1.1	1.8	100.0	1,489
30-34	54.5	32.3	11.4	0.5	1.1	100.0	1,260
35-39	53.2	29.1	15.8	1.1	0.8	100.0	1,110
40-44	52.5	26.8	18.5	1.1	1.1	100.0	917
45-49	46.2	23.5	27.5	2.1	0.8	100.0	708
Marital status							
Never married	23.5	37.4	15.0	0.7	23.4	100.0	5,458
Married or living together	74.0	21.4	3.3	1.3	0.0	100.0	3,121
Divorced/separated/ widowed	24.7	31.8	43.1	0.4	0.0	100.0	597
Marital duration ${ }^{2}$							
0-4 years	74.6	22.0	2.2	1.2	0.0	100.0	958
5-9 years	75.6	20.7	2.8	1.0	0.0	100.0	679
10-14 years	70.4	23.9	4.5	1.3	0.0	100.0	464
15-19 years	73.1	20.5	4.0	2.4	0.0	100.0	310
20-24 years	74.9	19.6	4.8	0.7	0.0	100.0	224
25+ years	73.5	18.5	6.0	2.0	0.0	100.0	131
Married more than once	74.8	20.6	3.6	1.0	0.0	100.0	354
Residence							
Urban	45.4	29.6	11.4	1.3	12.4	100.0	5,190
Rural	34.8	34.2	14.8	0.3	15.9	100.0	3,986
Region							
Zambezi	45.7	33.9	12.6	1.0	6.8	100.0	457
Erongo	48.3	27.7	11.3	1.1	11.7	100.0	771
Hardap	47.1	23.6	15.2	1.2	12.9	100.0	304
//Karas	46.2	31.1	10.2	1.2	11.3	100.0	343
Kavango	40.3	29.8	22.4	0.3	7.2	100.0	835
Khomas	47.0	29.1	9.2	1.8	12.9	100.0	2,202
Kunene	49.1	35.8	11.1	0.0	4.1	100.0	258
Ohangwena	27.9	36.4	15.5	0.3	19.9	100.0	894
Omaheke	51.5	28.9	11.4	0.7	7.5	100.0	225
Omusati	30.2	33.1	12.4	0.4	23.9	100.0	884
Oshana	29.9	40.6	13.0	0.1	16.4	100.0	755
Oshikoto	34.2	35.0	13.1	0.2	17.5	100.0	707
Otjozondjupa	48.4	24.0	13.3	1.8	12.5	100.0	540
Education							
No education	54.8	26.4	15.5	0.2	3.1	100.0	419
Primary	40.7	28.3	16.7	0.4	14.0	100.0	1,798
Secondary	38.6	33.0	12.5	0.8	15.2	100.0	6,029
More than secondary	48.7	30.9	6.9	3.1	10.5	100.0	930
Wealth quintile							
Lowest	36.7	34.2	14.8	0.3	13.9	100.0	1,429
Second	38.5	33.6	14.7	0.2	13.0	100.0	1,625
Middle	41.6	32.6	13.2	0.5	12.0	100.0	1,795
Fourth	41.9	32.3	12.9	0.6	12.3	100.0	2,116
Highest	43.3	26.8	10.0	2.3	17.6	100.0	2,211
Total 15-49	40.8	31.6	12.9	0.9	13.9	100.0	9,176
${ }^{1}$ Excludes women who had sexual intercourse within the last 4 weeks ${ }^{2}$ Excludes women who are not currently married							

Table 4.6.1 shows that 41 percent of women age 15-49 were sexually active within the four weeks preceding the survey, 32 percent were sexually active within the past year, and 13 percent were sexually active one or more years prior to the survey. Fourteen percent of women reported never having had sexual intercourse. The proportion of women who were sexually active in the past four weeks increases with age,
from 14 percent at age 15-19 to 55 percent at age 30-34, before decreasing gradually to reach 46 percent at age 45-49. Women who are married or living together with a partner are most likely to have recently engaged in sexual intercourse (74 percent), while women who are divorced, separated, or widowed are only slightly more likely to be sexually active than those who have never been married (25 percent versus 24 percent). Among married women, those married for 10-14 years are least likely than other women to have recently engaged in sexual intercourse (70 percent).

Recent sexual activity is relatively lower among women in rural areas (35 percent) than among women in urban areas (45 percent). More than half of the women in Omaheke (52 percent) were sexually active in the last four weeks, compared with 28 percent in Ohangwena. Women with no education and those with more than a secondary education are more likely to have recently engaged in sexual intercourse than women with a primary or secondary education. The percentage of women who have recently been sexually active increases with increasing wealth.

Table 4.6.2 indicates that a slightly higher proportion of men than women age 15-49 have recently engaged in sexual intercourse (44 percent versus 41 percent). Thirty percent of men have been sexually active within the past year and 10 percent within one or more years. There has been a small increase in recent sexual activity over the last six years, with the 2006-07 NDHS reporting that 40 percent of men and 38 percent of women had recently been sexually active. Fifteen percent of men reported that they have never had sex. Men who are married or living together with a partner are more likely to be sexually active (76 percent) than men who have never been married (31 percent) and men who are divorced, separated, or widowed (40 percent). Men who have been married more than once are most sexually active (80 percent). As with women, men in urban areas (50 percent) are more likely to have engaged in recent sexual activity than men in rural areas (37 percent). About half of men in Zambezi, Erongo, Hardap, Kavango, Khomas, Kunene, and Omaheke have recently been sexually active. Recent sexual activity is highest among men with more than a secondary education (61 percent) and those in the highest wealth quintile (55 percent).

Table 4.6.2 Recent sexual activity: Men
Percent distribution of men age 15-49 by timing of last sexual intercourse, according to background characteristics, Namibia 2013

Background characteristic	Timing of last sexual intercourse				Never had sexual intercourse	Total	Number of men
	Within the past 4 weeks	Within 1 year ${ }^{1}$	One or more years	Missing			
Age							
15-19	11.6	21.4	10.2	0.2	56.6	100.0	922
20-24	40.1	38.9	13.1	0.3	7.6	100.0	808
25-29	52.4	35.5	8.4	1.5	2.3	100.0	658
30-34	61.5	27.5	10.5	0.2	0.3	100.0	520
35-39	56.7	32.1	8.8	1.1	1.3	100.0	448
40-44	60.7	28.2	7.5	2.3	1.3	100.0	376
45-49	67.0	19.8	10.3	2.5	0.4	100.0	289
Marital status							
Never married	30.8	33.4	13.3	0.4	22.3	100.0	2,745
Married or living together	75.9	20.2	1.9	2.0	0.0	100.0	1,160
Divorced/separated/ widowed	39.7	38.7	19.2	2.4	0.0	100.0	116
Marital duration ${ }^{2}$							
0-4 years	76.8	21.0	1.5	0.7	0.0	100.0	362
5-9 years	74.1	21.1	2.2	2.6	0.0	100.0	250
10-14 years	77.5	17.7	1.2	3.5	0.0	100.0	202
15-19 years	71.9	22.3	2.5	3.2	0.0	100.0	124
20-24 years	73.4	18.8	5.3	2.4	0.0	100.0	76
25+ years	(79.4)	(20.6)	(0.0)	(0.0)	(0.0)	100.0	27
Married more than once	79.6	19.0	0.7	0.6	0.0	100.0	118
Residence							
Urban	49.5	28.2	9.8	1.5	10.9	100.0	2,282
Rural	36.8	31.7	10.5	0.1	20.8	100.0	1,739
Region							
Zambezi	56.4	26.4	11.2	0.0	5.9	100.0	218
Erongo	53.2	25.7	8.5	0.3	12.3	100.0	372
Hardap	49.9	28.1	6.0	1.3	14.8	100.0	152
//Karas	39.9	28.4	11.3	1.1	19.3	100.0	151
Kavango	50.8	30.0	6.6	1.1	11.5	100.0	316
Khomas	50.6	27.4	11.9	1.6	8.5	100.0	1,023
Kunene	51.4	27.0	12.3	0.4	8.8	100.0	104
Ohangwena	30.4	37.0	8.3	0.0	24.4	100.0	328
Omaheke	49.0	32.4	9.0	0.0	9.6	100.0	103
Omusati	29.5	25.5	7.3	0.0	37.8	100.0	342
Oshana	30.8	39.3	8.2	1.5	20.2	100.0	335
Oshikoto	35.0	34.0	16.5	0.2	14.3	100.0	335
Otjozondjupa	46.2	27.1	10.4	2.3	13.9	100.0	241
Education							
No education	47.6	36.6	10.3	0.1	5.4	100.0	310
Primary	37.1	29.3	11.8	0.3	21.4	100.0	944
Secondary	43.7	29.6	10.1	1.0	15.7	100.0	2,400
More than secondary	61.4	25.7	6.0	2.5	4.4	100.0	368
Wealth quintile							
Lowest	38.0	32.9	11.9	0.4	16.9	100.0	594
Second	37.0	31.0	12.8	0.5	18.8	100.0	769
Middle	41.6	32.4	11.0	0.1	14.9	100.0	886
Fourth	46.6	31.0	7.6	0.7	14.2	100.0	917
Highest	54.5	22.3	8.4	2.8	12.2	100.0	855
Total 15-49	44.0	29.7	10.1	0.9	15.2	100.0	4,021

Note: Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Excludes men who had sexual intercourse within the last 4 weeks
${ }^{2}$ Excludes men who are not currently married

Key Findings

- The total fertility rate for Namibia is 3.6 children per woman. Overall, the TFR declined by 1.8 children per woman between the 1992 and 2006-07 NDHS surveys, from 5.4 to 3.6 , with no change in fertility over the last six years.
- Fertility is considerably lower among urban women (2.9 children per woman) than among rural women (4.7 children per woman). Fertility ranges from 2.6 births per woman in Khomas to 5.3 among women in Ohangwena.
- The median birth interval in Namibia is 45.1 months. About 14 percent of children are born less than 24 months after a previous birth.
- The median age at first birth among women age 25-49 is 21.6 years.
- Overall, 19 percent of young women age 15-19 have begun childbearing, an increase from 15 percent in the 2006-07 NDHS survey.
- Teenage pregnancy is more than three times higher among young women in the lowest wealth quintile than among those in the highest wealth quintile.

Fertility is one of the three principal components of population dynamics that determine the size, structure, and composition of the population in any country. This chapter focuses on a number of fertility indicators including levels, patterns, and trends in both current and cumulative fertility; the length of birth intervals; and the age at which women begin childbearing. Birth intervals are important because short intervals are associated with high childhood mortality. The age at which childbearing begins can also have a major impact on the health and well-being of both the mother and the child. Measures of several proximate determinants of fertility that influence exposure to the risk of pregnancy are presented as well, including duration of postpartum amenorrhoea, postpartum abstinence, and menopause.

The fertility indicators presented in this chapter are based on reports of reproductive histories provided by women age $15-49$. As in the previous NDHS surveys, each woman was asked to provide information on the total number of sons and daughters to whom she had given birth and who were living with her, the number living elsewhere, and the number who had died, in order to obtain the total number of live births. In the birth history, women reported the details of each live birth separately, including such information as name, month and year of birth, sex, and survival status. For children who had died, age at death was recorded.

5.1 Current Fertility

Measures of current fertility are presented in Table 5.1

Table 5.1 Current fertility
Age-specific and total fertility rates, the general fertility rate, and the crude birth rate for the three years preceding the survey, by residence, Namibia 2013

	Residence		
Age group	Urban	Rural	Total
$15-19$	66	101	82
$20-24$	134	226	168
$25-29$	144	207	168
$30-34$	122	187	149
$35-39$	84	144	110
$40-44$	29	59	42
$45-49$	8	12	10
TFR (15-49)	2.9	4.7	3.6
GFR	103	156	125
CBR	30.0	29.3	29.5

Note: Age-specific fertility rates are per 1,000 women. Rates for the $45-49$ age group may be slightly biased due to truncation. Rates are for the period 1-36 months prior to the interview.
TFR: Total fertility rate, expressed per woman
GFR: General fertility rate, expressed per 1,000 women age 15-44
CBR: Crude birth rate, expressed per 1,000 population for the three-year period preceding the survey, corresponding to the calendar period 2011-2013. A three-year period was chosen for calculating these rates to provide the most current information while also allowing the rates to be calculated for a sufficient number of cases so
as not to compromise the statistical precision of the estimates. Age-specific fertility rates (ASFRs) are useful in understanding the age pattern of fertility. Numerators for the ASFRs are calculated by identifying live births that occurred in the period 1 to 36 months preceding the survey (determined from the date of the interview and the date of birth of the child); they are then classified by the age of the mother (in five-year groups) at the time of the child's birth. The denominators for these rates are the number of woman-years lived by the survey respondents in each of the five-year age groups during the specified period. The total fertility rate (TFR) is a common measure of current fertility and is defined as the number of children a woman would have by the end of her childbearing years if she were to pass through those years bearing children at the current age-specific fertility rates. The general fertility rate (GFR) represents the number of live births per 1,000 women of reproductive age. The crude birth rate (CBR) is the number of live births per 1,000 population. The latter two measures are based on the birth history data for the three-year period before the survey and the age-sex distribution of the household population.

Table 5.1 shows the age-specific and aggregate fertility measures at the national level and by urban-rural residence. The TFR in Namibia is 3.6 children per woman, the same as in the 2006-07 NDHS. Fertility is considerably lower among urban women (2.9 children per woman) than among rural women (4.7 children per woman). The urban-rural difference in fertility is most pronounced among women in the 20-24 age group (134 births per 1,000 women in urban areas versus 226 births per 1,000 women in rural areas). As the ASFRs show, the pattern of higher rural fertility is prevalent in all age groups. The overall age pattern of fertility, as reflected in the ASFRs, indicates that childbearing begins early. Fertility is low among adolescents, increases to a peak of 168 births per 1,000 among women age $20-29$, and declines thereafter, with a sharp decline after age 39.

5.2 Fertility by Background Characteristics

Table 5.2 shows differentials in fertility by residence, region, education, and wealth quintile. The TFR varies between regions, ranging from 2.6 children per woman in Khomas to 5.3 children per woman in Ohangwena.

Education and wealth are closely linked to a woman's fertility. The TFR declines as women's education rises, from 5.3 children per woman among those with no education to 2.2 children per woman among those with more than a secondary education. Similarly, the TFR declines with increasing household wealth, from 5.5 children per woman in the lowest wealth quintile to 2.3 children per woman in the highest quintile. There are no significant differences from the rates reported in the 2006-07 NDHS.

Table 5.2 also allows for a general assessment of differential trends in fertility over time among population subgroups. The mean number of children ever born to women age 40-49 is a measure of past fertility. The mean number of children ever born to older women who are nearing the end of their reproductive period is an indicator of average completed fertility of women who began childbearing during the three decades preceding the survey. If fertility were to remain constant over time, and the reported data on children ever born and births during the three years preceding the survey were reasonably accurate, the TFR and the mean number of children ever born to women age

40-49 would be similar. If fertility levels have fallen, the TFR will be substantially lower than the mean number of children ever born. Overall, a comparison of past (completed) and current (TFR) fertility indicators suggests a very small difference. Current fertility is higher than past fertility in rural areas. A similar trend is seen in Hardap, Omaheke, and Omusati, with smaller increases in Ohangwena, Oshikoto, and Otjozondjupa. Current fertility is also higher than past fertility among women with a secondary education and among those in the lowest and middle wealth quintiles.

At the time of the survey, 7 percent of interviewed women reported that they were pregnant. This percentage is likely to be an underestimate because women in the early stages of pregnancy may be unaware that they are pregnant, and some may not want to declare that they are pregnant. Current pregnancy varies among regions, with the highest percentage in Ohangwena (10 percent) and the lowest in Hardap (4 percent). Women with no education were more likely to be pregnant at the time of the survey than women with some education. The percentage of women who were pregnant was lowest among those in the highest wealth quintile.

5.3 Fertility Trends

The data in Table 5.3 .1 provide evidence of fluctuations in fertility in Namibia over the past 20 years. The table uses information from the retrospective birth histories obtained from the 2013 NDHS respondents to examine trends in age-specific fertility rates for successive five-year periods before the survey. To calculate these rates, births were classified according to the period of time in which the birth occurred and the mother's age at the time of the birth. Because women age 50 and above were not interviewed in the survey, the rates are successively truncated for periods more distant from the survey date. For example, rates cannot be calculated for women age 35-39 for the period 15 to 19 years before the survey because these women would have been over age 50 at the time of the

Table 5.3.1 Trends in age-specific fertility rates				
Age-specific fertility rates for five-year periods preceding the survey, by mother's age at the time of the birth, Namibia 2013				
Number of years preceding survey				
Mother's age at birth	0-4	5-9	10-14	15-19
15-19	78	81	85	87
20-24	166	162	165	173
25-29	165	172	171	177
30-34	149	143	151	[190]
35-39	105	108	[124]	
40-44	45	[62]		
45-49	[9]			

Note: Age-specific fertility rates are per 1,000 women. Estimates in brackets are truncated. Rates exclude the month of the interview. survey and thus would not have been interviewed.

Fertility has fallen among women in all age groups over the past two decades. With the exception of the 20-24 and 30-34 age groups, there has been a gradual decline in fertility over the last 20 years. The decline in fertility is steepest among women age 25-29.

Table 5.3.2 and Figure 5.1 show trends in current fertility rates based on successive NDHS surveys from 1992 to 2013. Overall, the TFR declined by 1.8 births per woman between the 1992 and the 2006-07 NDHS surveys, from 5.4 births to 3.6 births per woman. There has been no change in fertility over the last six years.

Table 5.3.2 Trends in fertility				
Age-specific and total fertility rates (TFR), Namibia 1992, 2000, 2006-07 and 2013				
Mother's age at birth	$\begin{aligned} & \text { NDHS } 1992 \\ & (1990-1992) \end{aligned}$	$\begin{aligned} & \text { NDHS } 2000 \\ & (1998-2000) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NDHS 2006-07 } \\ & (2004 / 5-2006 / 7) \end{aligned}$	$\begin{aligned} & \text { NDHS } 2013 \\ & (2011-2013) \end{aligned}$
15-19	109	88	78	82
20-24	207	166	169	168
25-29	241	176	159	168
30-34	208	160	145	149
35-39	166	137	110	110
40-44	105	71	44	42
45-49	37	38	8	10
TFR	5.4	4.2	3.6	3.6

Note: Age-specific fertility rates are per 1,000 women.

Figure 5.1 Trends in fertility
Rate (per 1,000
women)

5.4 Children Ever Born and Living

Data on the number of children ever born reflect the accumulation of births over the past 30 years and therefore have limited relevance to current fertility levels, particularly when the country has experienced a decline in fertility. Moreover, the data are subject to recall error, which is typically greater for older than younger women. Nevertheless, information on children ever born (or parity) is useful in looking at a number of issues. For example, parity data show how average family size varies across age groups. Also, the percentage of currently married women in their 40 s who have never had children provides an indicator of level of primary infertility or inability to bear children. Comparisons of differences in the mean number of children ever born and the mean number surviving reflect the cumulative effects of mortality levels during the childbearing period.

Table 5.4 shows the percent distribution of all women and currently married women by number of children ever born, along with the mean number of children ever born and the mean number of living children. Eighty-six percent of women age 15-19 have never given birth. This proportion declines to

Table 5.4 Children ever born and living
Percent distribution of all women and currently married women age 15-49 by number of children ever born, mean number of children ever born, and mean number of living children, according to age group, Namibia 2013

Age	Number of children ever born											Total	Number of women	Mean number of children ever born	Mean number of living children
	0	1	2	3	4	5	6	7	8	9	10+				
ALL WOMEN															
15-19	86.2	12.4	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1,906	0.15	0.15
20-24	43.9	38.4	14.5	2.7	0.5	0.1	0.0	0.0	0.0	0.0	0.0	100.0	1,786	0.78	0.74
25-29	17.3	29.3	30.8	14.6	5.9	1.5	0.5	0.1	0.0	0.0	0.0	100.0	1,489	1.70	1.61
30-34	9.1	19.2	27.7	21.7	12.2	5.3	3.1	1.2	0.5	0.1	0.0	100.0	1,260	2.46	2.31
35-39	4.9	11.8	21.7	23.0	16.3	10.8	6.0	2.8	1.7	0.3	0.7	100.0	1,110	3.23	3.01
40-44	7.4	10.8	18.7	21.8	13.9	10.2	7.6	3.9	3.5	1.3	1.0	100.0	917	3.43	3.20
45-49	4.6	5.8	14.6	20.7	15.2	12.4	9.3	7.2	6.6	1.3	2.2	100.0	708	4.14	3.79
Total	32.2	20.4	17.5	12.4	7.3	4.3	2.7	1.5	1.1	0.3	0.4	100.0	9,176	1.85	1.73
CURRENTLY MARRIED WOMEN															
15-19	35.2	54.5	9.9	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	103	0.76	0.74
20-24	15.4	45.9	29.7	7.1	1.8	0.1	0.0	0.0	0.0	0.0	0.0	100.0	349	1.34	1.26
25-29	8.9	24.9	34.9	18.9	8.8	2.6	0.6	0.4	0.0	0.0	0.0	100.0	558	2.06	1.96
30-34	6.9	15.8	27.1	22.1	15.5	6.4	3.8	1.8	0.7	0.0	0.0	100.0	634	2.71	2.55
35-39	2.5	9.5	19.0	24.1	16.9	13.0	7.3	3.6	2.4	0.3	1.4	100.0	593	3.59	3.36
40-44	4.4	4.4	17.8	24.5	14.7	11.9	8.4	5.5	4.8	1.9	1.7	100.0	497	3.94	3.72
45-49	2.6	3.8	11.4	22.6	15.1	13.6	9.4	8.0	9.9	1.4	2.3	100.0	386	4.51	4.16
Total	7.4	17.6	23.3	19.9	12.3	7.8	4.8	3.0	2.6	0.5	0.8	100.0	3,121	2.96	2.78

17 percent among women age 25-29 and to 9 percent or less among women age 30 and above, indicating that childbearing among Namibian women is nearly universal. On average, women approaching the end of their reproductive years have attained a parity of 4.1 children. This is 0.5 children more than the total fertility rate. The same pattern is seen for currently married women, except that the mean number of children ever born is higher in this group (3.0 children) than among all women (1.9 children). Results at younger ages differ between currently married women and all women because of the large number of unmarried women in the latter group, who exhibit lower fertility. Differences at older ages generally reflect the impact of marital dissolution (either divorce or widowhood). Three percent of currently married women age 45-49 have never had a child. If the desire for children is universal in Namibia, this percentage represents a rough measure of primary infertility or inability to bear children. Of the 4.1 children ever born to women age 45-49, 3.8 survived to the time of the survey.

5.5 BIRTH Intervals

Information on the length of birth intervals provides insight into birth spacing patterns, which affect fertility as well as infant and child mortality. Research has shown that children born too soon after a previous birth are at increased risk of poor health, particularly when the interval is less than 24 months. Table 5.5 shows the distribution of births in the five years before the survey by the interval since the preceding birth, according to various background and demographic characteristics.

| Table 5.5 Birth intervals | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Percent distribution of non-first births in the five years preceding the survey by number of months since preceding birth, and median number of | | | | | | |
| months since preceding birth, according to background characteristics, | | | | | | |
| | | | | | | |

Note: First-order births are excluded. The interval for multiple births is the number of months since the preceding pregnancy that ended in a live birth. Figures in parentheses are based on 25-49 unweighted cases.

The median birth interval in Namibia is 45.1 months. About 14 percent of all children are born after too short an interval (less than 24 months). The median interval is shorter among births to women under age 30 than among births to older mothers.

The median birth interval in urban areas (50.6 months) is substantially higher than the interval in rural areas (40.9 months). Among the regions, the median birth interval ranges from 37.5 months in Ohangwena to 53.8 months in Erongo. Birth interval increases with increasing education, from 38.8 months among women with no education to 54 months among women with more than a secondary education. In addition, median birth interval increases from 36.4 months among women in the lowest wealth quintile to 51 or more months among women in the third through fifth quintiles.

5.6 Postpartum Amenorrhoea, Abstinence, and Insusceptibility

Postpartum amenorrhoea refers to the interval between childbirth and the return of menstruation. During this period, the risk of pregnancy is greatly reduced. The duration of this protection from conception after childbirth depends on the duration and intensity of breastfeeding and the length of time before the resumption of sexual intercourse. Women who gave birth during the three years prior to the survey were asked about their breastfeeding practices, the duration of amenorrhoea, and sexual abstinence. Women are considered insusceptible to pregnancy if they are not exposed to the risk of pregnancy either because they are amenorrhoeic or because they are still abstaining from sex after a birth. The results are shown in Table 5.6.

Percentage of births in the three years preceding the survey for which mothers are postpartum amenorrhoeic, abstaining, and insusceptible, by number of months since birth, and median and mean durations, Namibia 2013				
Months	Percentage of	irths for whic	the mother is:	Number of
since birth	Amenorrhoeic	Abstaining	Insusceptible ${ }^{1}$	births
<2	80.5	96.4	99.3	133
2-3	61.5	70.7	86.8	190
4-5	51.4	62.7	78.1	189
6-7	49.3	43.7	64.6	185
8-9	39.8	39.0	58.0	176
10-11	29.6	31.2	50.5	164
12-13	26.9	29.9	47.7	160
14-15	24.2	30.2	42.0	173
16-17	18.2	25.8	36.5	168
18-19	20.2	25.4	35.5	136
20-21	10.1	16.6	24.6	162
22-23	11.6	12.9	21.9	145
24-25	4.6	14.1	16.4	194
26-27	7.2	15.9	20.8	155
28-29	4.1	12.7	16.2	153
30-31	7.4	11.4	14.4	150
32-33	7.0	9.3	14.9	167
34-35	1.2	10.6	10.8	147
Total	25.7	31.4	41.7	2,947
Median	5.7	6.3	11.3	na
Mean	9.4	11.4	15.0	na
Note: Estimates are based on status at the time of the survey. na $=$ Not applicable ${ }^{1}$ Includes births for which mothers are either still amenorrhoeic or still abstaining (or both) following birth				

The period of postpartum abstinence is longer than the period of postpartum amenorrhoea, suggesting that the former is a stronger determinant of the length of postpartum insusceptibility in Namibia. The median duration of amenorrhoea is 5.7 months, women abstain for a median of 6.3 months, and they are insusceptible to pregnancy for a median of 11.3 months. Almost all women are virtually insusceptible to pregnancy during the first two months after a birth, and both amenorrhoea and abstinence are important factors in their insusceptibility. However, abstinence declines more slowly over time than amenorrhoea, with the percentage of abstaining mothers higher than the percentage of amenorrhoeic mothers at almost all time intervals evaluated.

5.7 Median Duration of Postpartum Insusceptibility by Background Characteristics

In the absence of contraception, variations in postpartum amenorrhoea and abstinence are the most important determinants of the interval between births and ultimately the completion of fertility. Table 5.7 shows the median durations of postpartum amenorrhoea, abstinence, and insusceptibility by selected background characteristics. Although the median duration of postpartum amenorrhoea among women age 30-49 and 15-29 is nearly the same (5.9 months and 5.5 months, respectively), the median duration of postpartum abstinence is much longer among women age 15-29 (7.3 months) than among women age 3049 (4.4 months), resulting in a 3.4-month difference in the median duration of postpartum insusceptibility between younger women (12.4) and older women (9.0). Women in rural areas have a longer median duration of amenorrhoea than women in urban areas (7.9 versus 3.6 months), and they differ from women in urban areas in median duration of postpartum abstinence by more than two months (7.5 versus 5.3 months). Median duration of postpartum insusceptibility is substantially longer among women in rural areas (14.1 months) than women in urban areas (8.1 months).

Postpartum insusceptibility is three months longer among women with a primary education than among women with a secondary education. The median duration of postpartum insusceptibility is more than twice as long among women in the poorest households as among women in the richest households.

Table 5.7 Median duration of amenorrhoea, postpartum abstinence, and postpartum insusceptibility			
Median number of months of postpartum amenorrhoea, postpartum abstinence, and postpartum insusceptibility following births in the three years preceding the survey, by background characteristics, Namibia 2013			
Background characteristic	Postpartum amenorrhoea	Postpartum abstinence	Postpartum insusceptibility ${ }^{1}$
Mother's age			
15-29	5.5	7.3	12.4
30-49	5.9	4.4	9.0
Residence			
Urban	3.6	5.3	8.1
Rural	7.9	7.5	14.1
Region			
Zambezi	(6.4)	(7.7)	(14.8)
Erongo	(1.7)	(4.2)	(4.7)
Hardap	(2.8)	(6.3)	(11.5)
//Karas	*	(6.9)	(11.4)
Kavango	5.5	3.8	(15.0)
Khomas	(6.0)	(4.6)	(8.6)
Kunene	3.8	5.7	(7.2)
Ohangwena	(9.5)	(8.0)	12.6
Omaheke	(7.7)	(4.6)	(11.3)
Omusati	(7.5)	(9.7)	(19.0)
Oshana	(3.4)	(6.7)	(10.9)
Oshikoto	(7.7)	(7.3)	(9.4)
Otjozondjupa	3.3	6.1	(11.4)
Education			
No education	(9.4)	(7.4)	(11.4)
Primary	8.6	5.8	13.9
Secondary	5.0	6.6	10.8
More than secondary	(1.4)	(2.8)	*
Wealth quintile			
Lowest	9.4	6.7	13.4
Second	5.8	7.3	11.4
Middle	5.5	5.2	14.6
Fourth	2.7	7.1	11.1
Highest	2.9	4.2	6.3
Total	5.7	6.3	11.3

Note: Medians are based on status at the time of the survey (current status). Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes births for which mothers are either still amenorrhoeic or still abstaining (or both) following birth

5.8 Menopause

Fecundity refers to the ability to have children. The risk of pregnancy declines with age as increasing proportions of women become infecund. Although the onset of infecundity is difficult to determine for an individual woman, there are ways of estimating it for a population. Table 5.8 presents data on menopause, an indicator of decreasing exposure to the risk of pregnancy among women age 30 and older.

The percentage of women who have reached menopause refers to the population of women who are neither pregnant nor postpartum amenorrhoeic and have not had a menstrual period in the six months preceding the survey, as well as women who report being menopausal. Table 5.8 shows that, overall, 11 percent of women age 30-49 are menopausal. The proportion of menopausal women increases with age, from 6 percent among those age $30-39$ to 34 percent among those age

Table 5.8 Menopause
Percentage of women age 30-49 who are menopausal, by age, Namibia 2013

Age	Percentage menopausal 1	Number of women
$30-34$	5.6	1,260
$35-39$	5.9	1,110
$40-41$	13.6	391
$42-43$	10.0	348
$44-45$	19.9	323
$46-47$	24.2	283
$48-49$	33.6	280
Total	11.3	3,995

${ }^{1}$ Percentage of all women who are not pregnant and not postpartum amenorrhoeic whose last menstrual period occurred 6 or more months preceding the survey 48-49.

5.9 Age at First Birth

The age at which childbearing begins has an impact on the health and welfare of a mother and her children. In many countries, postponement of first births has contributed to an overall fertility decline. Table 5.9 shows the distribution of women by age at first birth, according to their current age. The median age at first birth among women age 25-49 is 21.6 years, slightly higher than the figure reported in the 2006-07 NDHS (21.4 years). However, a more detailed analysis of trends in age at first birth reveals a slight increase in early childbearing. For example, whereas 14 percent of women age 45-49 gave birth by age 18,15 percent of women age 20-24 had their first birth by age 18 .

Table 5.9 Age at first birth
Percentage of women age 15-49 who gave birth by exact ages, percentage who have never given birth, and median age at first birth, according to current age, Namibia 2013

Current age	Percentage who gave birth by exact age					Percentage who have never given birth	Number of women	Median age at first birth
	15	18	20	22	25			
15-19	0.9	na	na	na	na	86.2	1,906	a
20-24	1.1	14.9	34.6	na	na	43.9	1,786	a
25-29	2.4	17.5	36.0	53.5	73.1	17.3	1,489	21.5
30-34	1.6	18.7	38.4	53.8	73.1	9.1	1,260	21.5
35-39	2.1	18.6	37.5	56.2	74.7	4.9	1,110	21.3
40-44	1.4	13.3	29.9	50.5	71.2	7.4	917	21.9
45-49	2.5	13.6	31.3	50.9	72.6	4.6	708	21.9
20-49	1.7	16.3	35.1	na	na	18.0	7,270	a
25-49	2.0	16.8	35.2	53.3	73.0	9.6	5,485	21.6

na $=$ Not applicable due to censoring
$\mathrm{a}=$ Omitted because less than 50 percent of women had a birth before reaching the beginning of the age group

5.10 Median Age at First Birth by Background Characteristics

Table 5.10 shows the median age at first birth for different age cohorts across residential, regional, educational, and wealth status subgroups. Among women age 25-49, median age at first birth is slightly higher in urban areas than in rural areas (22.1 versus 21.0 years). By region, median age at first birth ranges from 19.3 years in Kavango to 23.1 years in Khomas. Age at first birth increases slightly with increasing levels of education and wealth. Women with no education or a primary education have their first birth about two and a half years earlier than women with a secondary education (19.5 versus 22.1 years). Women in the lowest wealth quintile have their first birth four years earlier than women in the highest quintile (19.9 versus 23.9 years).

5.11 Teenage Pregnancy and Motherhood

The issue of adolescent fertility is important for both health and social reasons. Children born to very young mothers are at increased risk of sickness and death. Teenage mothers are more likely to experience adverse pregnancy outcomes and are more constrained in their ability to pursue educational opportunities than young women who delay childbearing.

Table 5.10 Median age at first birth
Median age at first birth among women age 25-49, according to background characteristics, Namibia 2013

Background characteristic	Women age
$25-49$	

Residence

Urban	22.1
Rural	21.0

Region
Zambezi 20.4

Erongo
21.7

Erongo
//Karas
Kavango
Khomas
Kunene
Ohangwena
Omaheke
Omusati
Oshana
Oshikoto
Otjozondjupa
Education
No education
Primary
Secondary
Wealth quintile
Lowest 19.9
Second $\quad 20.9$
Middle $\quad 21.2$

Fourth 21.9
Highest
23.9

Total21.6

Table 5.11 shows the percentage of women age 15-19 who have given birth or were pregnant with their first child at the time of the survey, according to selected background characteristics. Overall, 19 percent of women age 15-19 have begun childbearing (14 percent have had a live birth, and 5 percent are currently pregnant). This represents a 4 percentage point increase in teenage pregnancies in Namibia since the 2006-07 NDHS (15 percent). The proportion of teenagers who have had a live birth rises rapidly with age, increasing from 3 percent at age 15 to 27 percent at age 19. Rural teenagers and those with a primary education tend to start childbearing earlier than their urban and better educated peers.

Kunene has the highest proportion of teenage pregnancy in Namibia (39 percent), followed by Omaheke (36 percent). Oshana has the lowest proportion of teenage pregnancy (9 percent). Teenage pregnancy is more than three times higher among young women in the lowest wealth quintile than among those in the highest wealth quintile.

Table 5.11 Teenage pregnancy and motherhood
Percentage of women age 15-19 who have had a live birth or who are pregnant with their first child, and percentage who have begun childbearing, by background characteristics, Namibia 2013

Background characteristic	Percentage of women age $15-19$ who:		Percentage who have begun childbearing	Number of women
	Have had a live birth	Are pregnant with first child		
Age				
15	2.5	1.2	3.6	362
16	5.9	3.6	9.5	367
17	11.8	5.8	17.5	347
18	19.7	5.8	25.5	404
19	26.5	7.1	33.6	426
Residence				
Urban	11.6	5.2	16.7	901
Rural	15.8	4.4	20.3	1,005
Region				
Zambezi	22.7	5.4	28.1	95
Erongo	12.2	3.1	15.2	119
Hardap	15.8	3.4	19.3	52
//Karas	13.1	4.5	17.6	53
Kavango	27.0	7.4	34.4	201
Khomas	8.6	3.7	12.3	375
Kunene	28.8	10.1	38.9	40
Ohangwena	14.5	8.3	22.7	245
Omaheke	24.8	11.5	36.3	40
Omusati	9.7	1.4	11.1	252
Oshana	5.4	3.6	9.0	154
Oshikoto	9.7	3.5	13.2	177
Otjozondjupa	18.5	5.1	23.6	103
Education				
No education	(22.0)	(23.1)	(45.1)	31
Primary	21.2	4.5	25.7	446
Secondary	12.1	4.8	16.8	1,341
More than secondary	0.0	0.0	0.0	87
Wealth quintile				
Lowest	21.0	7.0	28.0	359
Second	19.6	6.1	25.6	354
Middle	13.4	4.2	17.6	360
Fourth	10.5	6.1	16.6	384
Highest	6.8	1.3	8.1	449
Total	13.8	4.8	18.6	1,906

Note: Figures in parentheses are based on 25-49 unweighted cases.

Key Findings

- Fifty-two percent of currently married women and 42 percent of currently married men want no more children or have been sterilised.
- The percentage of women who want to stop childbearing among currently married women has decreased from 60 percent in the 2006-07 NDHS to 52 percent in the 2013 NDHS.
- Women report an ideal family size of 3.2 children, and men report an ideal family size of 3.9 children.
- Overall, 49 percent of all births were wanted at the time of conception, 41 percent were reported as mistimed (wanted later), and 10 percent were unwanted.
- The total wanted fertility rate is 2.9 children per woman, as compared with the actual fertility rate of 3.6 children per woman.

Information on fertility preferences is of considerable importance to family planning programmes because it allows planners to assess the need for contraception, whether for spacing or limiting births, and the extent of unwanted and mistimed pregnancies. Data on fertility preferences can also be useful as an indicator of the direction that future fertility patterns may take.

In the 2013 NDHS, respondents were asked whether they wanted more children and, if so, how long they would prefer to wait before the next child. They were also asked, if they could start afresh, how many children they would want.

6.1 Fertility Preferences by Number of Living Children

Information about the desire for more children is important for understanding future reproductive behaviour. The provision of adequate and accessible family planning services depends on the availability of such information. In the 2013 NDHS, currently married women (whether pregnant or not) and men were asked about their intentions to have another child and, if they had such intentions, how soon they wanted the child. The question was phrased differently for pregnant women and for men whose wife or wives (girlfriend or girlfriends) were pregnant at the time of the interview to ensure the wantedness of subsequent children after completion of the current pregnancy. Sterilised women and men were considered to want no more children, and therefore they were not asked questions about their desire for more children.

Table 6.1 presents fertility preferences among currently married women and men by number of living children. Sixteen percent of currently married women and 18 percent of currently married men age 15-49 would like to have another child soon (within the next two years). Twenty percent of women and 18 percent of men would prefer to wait two or more years before having their next child. More than four in ten currently married respondents (45 percent of women and 41 percent of men) report that they want no more children; an additional 7 percent of women and 1 percent of men have been sterilised. Thus, about seven in ten women (72 percent) and six in ten men (59 percent) want to either delay their next birth for two or more years or end childbearing altogether.

The percentage of currently married women who want no more children or are sterilised has decreased from 60 percent in the 2006-07 NDHS to 52 percent in the 2013 NDHS.

As expected, women's and men's desire to have children decreases as number of living children increases. For example, 52 percent of currently married women who have no children want to have a child soon, as compared with only 4 percent of women who have six or more children. On the other hand, the proportion of women who do not want more children increases from 8 percent among those with no children to 77 percent among those with six or more children. Similar patterns are observed among currently married men.

Table 6.1 Fertility preferences by number of living children									
Percent distribution of currently married women and currently married men age 15-49 by desire for children, according to number of living children, Namibia 2013									
Desire for children	Number of living children							$\begin{aligned} & \text { Total } \\ & 15-49 \end{aligned}$	
	0	1	2	3	4	5	6+		
WOMEN ${ }^{1}$									
Have another soon ${ }^{2}$	51.7	28.3	14.8	11.1	6.3	6.1	3.9	16.1	
Have another later ${ }^{3}$	17.8	36.7	24.7	16.6	15.6	6.7	5.0	20.3	
Have another, undecided when	12.8	7.2	3.4	3.4	1.7	0.4	0.5	4.0	
Undecided	2.4	3.2	4.1	4.9	4.6	5.5	7.4	4.5	
Want no more	7.7	21.6	43.1	48.6	60.2	67.6	76.6	45.3	
Sterilised ${ }^{4}$	0.6	0.5	6.5	12.2	9.6	10.1	4.8	6.7	
Declared infecund	6.6	1.9	2.6	2.2	1.4	1.9	1.2	2.3	
Missing	0.5	0.6	0.8	1.1	0.7	1.7	0.6	0.8	
Total 15-49	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Number of women	207	562	775	633	407	214	321	3,121	
MEN ${ }^{5}$									
Have another soon ${ }^{2}$	37.7	33.7	12.3	11.8	11.7	14.8	10.6	17.6	
Have another later ${ }^{3}$	20.0	23.4	27.2	14.9	15.3	5.7	8.1	17.7	
Have another, undecided when	10.8	8.2	6.8	3.7	6.0	4.9	5.2	6.3	
Undecided	14.1	17.5	10.6	11.2	16.0	20.2	12.9	14.0	
Want no more	12.9	14.0	38.7	53.3	49.1	50.6	60.1	40.7	
Sterilised ${ }^{4}$	0.0	1.1	2.1	0.5	0.0	0.6	0.6	0.9	
Declared infecund	0.5	0.1	0.0	0.0	0.5	0.7	0.0	0.2	
Missing	4.0	2.0	2.3	4.6	1.4	2.5	2.5	2.7	
Total 15-49	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Number of men	80	205	246	222	150	98	160	1,160	
${ }^{1}$ The number of living children includes the current pregnancy. ${ }^{2}$ Wants next birth within 2 years ${ }^{3}$ Wants to delay next birth for 2 or more years ${ }^{4}$ Includes both female and male sterilisation ${ }^{5}$ The number of living children includes one additional child if the respondent's wife is pregnant (or if any wife is pregnant for men with more than one current wife).									

6.2 Desire to Limit Childbearing by Background Characteristics

Table 6.2 presents the percentages of currently married women and men age 15-49 who want no more children, by number of living children and selected background characteristics. Overall, there is no substantial difference in the desire to limit childbearing between urban and rural women (52 percent and 53 percent, respectively). However, among women with two or more children, those in urban areas are more likely to want to limit childbearing than those in rural areas. The reverse is true among women with one child.

At the regional level, Omaheke has the highest percentage of women who want to limit childbearing (66 percent), and Zambezi has the lowest (34 percent).

There is an inverse association between education and desire to limit childbearing. For example, 60 percent of women with no education want to limit childbearing, as compared with 47 percent of those with a secondary education or higher. There is no clear pattern by wealth.

Overall, 42 percent of currently married men age 15-49 want to limit childbearing or have been sterilised. There are too few cases to allow meaningful comparisons of men's desire to limit childbearing by various background characteristics or number of living children.

Table 6.2 Desire to limit childbearing: Women
Percentage of currently married women age 15-49 who want no more children, by number of living children, according to background characteristics, Namibia 2013

Background characteristic	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	6+	
Residence								
Urban	8.8	19.8	52.8	67.7	79.0	82.1	84.1	51.5
Rural	7.4	27.0	42.2	50.4	60.3	74.4	80.4	52.7
Region								
Zambezi	*	15.2	22.0	41.5	(43.9)	(55.9)	(77.9)	34.4
Erongo	(10.9)	19.6	53.2	66.3	(88.2)	*	*	52.1
Hardap	*	(31.4)	61.2	89.3	(88.5)	*	*	64.8
//Karas	*	(38.7)	52.1	62.9	(90.1)	*	*	61.0
Kavango	*	25.1	33.3	47.7	(45.2)	*	76.4	42.5
Khomas	(6.9)	16.2	61.1	63.5	(76.8)	*	*	48.0
Kunene	*	(42.4)	(49.2)	(74.6)	(77.6)	(73.8)	(65.0)	61.3
Ohangwena	*	*	(41.4)	*	*	*	(82.9)	56.8
Omaheke	*	(35.0)	66.7	77.4	(86.7)	(83.3)	*	66.4
Omusati	*	*	(36.6)	(44.3)	*	*	(84.3)	52.8
Oshana	*	*	(56.5)	(59.1)	*	*	*	55.7
Oshikoto	*	(22.7)	(52.4)	(64.5)	(79.3)	*	(80.7)	59.6
Otjozondjupa	*	(31.8)	46.8	74.0	(77.9)	(97.3)	(84.9)	60.1
Education								
No education	*	(32.7)	(53.5)	62.8	58.6	(77.9)	75.5	60.0
Primary	(21.7)	27.5	44.9	55.9	60.7	73.4	79.4	57.6
Secondary	3.5	23.1	47.3	61.0	75.2	80.8	88.5	49.8
More than secondary	(12.8)	10.1	62.2	66.6	*	*	*	46.8
Wealth quintile								
Lowest	(1.5)	32.8	33.8	36.0	45.5	66.9	75.6	48.2
Second	(19.7)	29.4	37.5	65.2	65.8	81.9	88.2	55.9
Middle	(9.3)	24.0	46.2	56.0	73.2	(77.6)	80.1	51.0
Fourth	2.8	16.3	48.4	64.2	79.7	87.2	(85.6)	49.7
Highest	10.2	15.1	61.7	72.8	89.1	(79.6)	*	54.6
Total 15-49	8.3	22.1	49.6	60.8	69.8	77.7	81.4	52.0

Note: Women who have been sterilised are considered to want no more children. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ The number of living children includes the current pregnancy.

6.3 Ideal Number of Children

Women and men, regardless of marital status, were asked what number of children they would choose to have if they could start afresh. Respondents who had no children were asked "If you could choose exactly the number of children to have in your whole life, how many would that be?" For respondents who had children, the question was rephrased as follows: "If you could go back to the time when you did not have any children and could choose exactly the number of children to have in your whole life, how many would that be?" Women's and men's responses to these questions are summarised in Table 6.3.

Table 6.3 shows that the mean ideal number of children is 3.2 for all women and 3.9 for all men, as compared with 3.7 children for currently married women and 4.6 for currently married men. Overall, more than seven in ten women (73 percent) and more than six in ten men (64 percent) ideally would want between two and four children.

The ideal number of children among currently married women is similar to the figure reported in the 2006-07 NDHS.

When interpreting the findings in Table 6.3, it is important to remember that the actual and stated ideal number of children tend to be related. There are several reasons for this. First, to the extent that women are able to fulfil their fertility desires, those who want large families will achieve large families. Second, because women with large families are, on average, older women, they may prefer a greater number of children because of the attitudes toward childbearing to which they were exposed during the early stages of their reproductive lives. Finally, some women may have difficulty admitting that they would prefer fewer
children than they currently have if they could begin childbearing again. Such women are likely to report their actual number as their preferred number. Indeed, women who have fewer children do report a smaller ideal number of children than women with more children. The mean ideal number of children among all women with no children is 2.6 , as compared with 5.4 among all women with six or more children. Similarly, the ideal number of children among men with no children is almost five fewer than the number among men with six or more children (3.2 children versus 8.1 children).

| Table 6.3 Ideal number of children by number of living children |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Percent distribution of women and men age $15-49$ by ideal number of children, and mean ideal number of children for |
| all respondents and for currently married respondents, according to number of living children, Namibia 2013 |

${ }^{1}$ The number of living children includes the current pregnancy.
${ }^{2}$ Means are calculated excluding respondents who gave non-numeric responses.
${ }^{3}$ The number of living children includes one additional child if the respondent's wife is pregnant (or if any wife is pregnant for men with more than one current wife).

6.4 Mean Ideal Number of Children by Background Characteristics

Table 6.4 shows the mean ideal number of children among all women age 15-49 by background characteristics. Mean ideal number of children increases consistently with age, from 2.4 among women age 15-19 to 4.4 among women age 45-49. Women in rural areas have a larger ideal family size than those in urban areas (3.5 children and 3.0 children, respectively). Among regions, women in Hardap have the lowest desired family size (2.4 children) and women in Ohangwena have the highest (4.1 children).

The mean ideal number of children decreases steadily with increasing education, from a high of 4.2 children among women with no education to a low of 2.9 children among women with a secondary education or higher. Mean ideal number of children also decreases with increasing wealth, from 3.9 children among women in the lowest quintile to 2.8 among those in the highest quintile.

6.5 Fertility Planning Status

Information collected in the 2013 NDHS can also be used to estimate levels of unwanted fertility. This information provides insight into the degree to which couples are able to control fertility. Women age 15-49 were asked a series of questions about each child born to them in the preceding five years, as well as any current pregnancy, to determine whether the birth or pregnancy was wanted then (planned), wanted later (mistimed), or not wanted at all (unplanned) at the time of conception. In assessing these results, it is important to recognise that women may declare a previously unwanted birth or current pregnancy as wanted, and this rationalisation would result in an underestimate of the true extent of unwanted births.

Table 6.5 shows the distribution of births in the five years before the survey by the planning status of the birth. Overall, 49 percent of births were wanted at the time of conception, 41 percent were reported as mistimed (wanted later), and 10 percent were unwanted. In general, the percentage of mistimed births decreases with increasing birth order, from 53 percent for first births to 32-34 percent for births of order three or higher. On the other hand, the proportion of unwanted births increases with birth order, from 5 percent for first births to 19 percent for births of order four or higher.

A much larger proportion of births to older women than younger women are unwanted. For example, only 6 percent of births to women who gave birth at age $20-24$ are unwanted, as compared with 27 percent of births to women who gave birth at age 40-44. The percentage of wanted pregnancies increases with age and peaks at 60 percent among women age $30-34$, after which it decreases steadily. The percentage of mistimed births decreases steadily with age, from 60 percent among women who gave birth before age 20 to 22 percent among women who gave birth at age 40-44.

Table 6.5 Fertility planning status
Percent distribution of births to women age 15-49 in the five years preceding the survey (including current pregnancies), by planning status of the birth, according to birth order and mother's age at birth, Namibia 2013

	Planning status of birth					
$\begin{array}{l}\text { Birth order and } \\ \text { mother's age at birth }\end{array}$	$\begin{array}{c}\text { Wanted } \\ \text { then }\end{array}$	$\begin{array}{c}\text { Wanted } \\ \text { later }\end{array}$	$\begin{array}{c}\text { Wanted } \\ \text { no more }\end{array}$	Missing		Total

births\end{array}\right]\)

Note: Women who have been sterilised are considered to want no more children. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

6.6 Wanted Fertility Rates

Responses to the question on ideal number of children are used to calculate the total "wanted" fertility rate. This measure is calculated in the same manner as the conventional total fertility rate, except that unwanted births are excluded from the numerator. A birth is considered wanted if the number of living children at the time of conception is less than the ideal number of children reported by the respondent. Wanted fertility rates express the level of fertility that theoretically would result if all unwanted births were prevented. Comparison of the actual fertility rate with the wanted rate indicates the potential demographic impact of eliminating unwanted births.

Table 6.6 shows that the wanted fertility rate is 2.9 children, as compared with the actual fertility rate of 3.6 children (rates were calculated over the three years prior to the survey). In other words, Namibian women are currently having an average of 0.7 children more than they actually want. The table also shows that regardless of place of residence, level of education, and wealth quintile, the wanted fertility rate is lower than the actual total fertility rate.

Women in rural areas have a larger gap between their actual and wanted fertility (1.2) than women in urban areas (0.5). Among regions, the largest difference between actual and wanted fertility is in Omaheke (1.5 children), and the narrowest gap is in Khomas and Oshana (0.3 children each). Women with no education and those in the lowest wealth quintile have the largest gap between wanted and actual fertility rates (1.6 children each).

Key Findings

- Knowledge of contraception is universal in Namibia: nearly all women and men have heard of at least one method.
- One in two (50 percent) women age 15-49 use a method of contraception. Injectables are the most commonly used method (21 percent).
- Use of a modern method is 53 percent among women in the highest wealth quintile versus 39 percent among women in the lowest wealth quintile.
- The majority of modern contraceptive users obtain their method from the public sector (73 percent).
- Fifty-seven percent of modern contraceptive users were informed of side effects or health problems associated with the method they used; 51 percent knew what to do if they experienced side effects, and 65 percent had been told of other methods available.
- Twelve percent of all women have an unmet need for family planning services (8 percent for spacing and 4 percent for limiting births). Eight in ten women's demand for family planning has been satisfied.
- Eighty-five percent of nonusers who had contact with a fieldworker or health facility in the 12 months preceding the survey did not use the opportunity to discuss family planning.

Family planning refers to a conscious effort to limit or space the number of children they want to have through the use of contraceptives. This chapter presents results from the 2013 NDHS on a number of aspects of contraception: knowledge of specific contraceptive methods, attitudes and behaviours regarding contraceptive use, current use, and sources of current contraceptive methods. The chapter focuses on women who are sexually active because these women have the greatest risk of exposure to pregnancy and therefore the greatest need for regulating their fertility. However, the results of interviews with men are presented along with those of women because men play an equally important role in making decisions about sexual reproductive health and family planning.

7.1 Knowledge of Contraceptive Methods

Information about contraceptive methods was collected by asking respondents if they had heard of various methods that can be used to delay or avoid a pregnancy. Specifically, the interviewer named a method, described it, and then asked whether the respondent had heard of it. In all, the interviewer asked about thirteen different contraceptive methods. Provision was also made in the questionnaire to record any additional methods the respondent had heard of but was not asked about by the interviewer.

Contraceptive methods are classified into two broad categories, modern methods and traditional methods. Modern methods include female sterilisation, male sterilisation, the pill, the intrauterine contraceptive device (IUCD), injectables, implants, male condoms, female condoms, the lactational amenorrhoea method (LAM), the contraceptive patch, and emergency contraception. Traditional methods include fertility awareness methods such as rhythm (periodic abstinence), withdrawal, and various folk methods such as use of strings and herbs.

Table 7.1 shows that knowledge of contraceptive methods is universal in Namibia, with nearly all women and men age 15-49 aware of at least one method of contraception. Modern methods are more widely known than traditional methods; almost all women know of a modern method, while 67 percent know of a traditional method. Male condoms (99 percent), injectables (96 percent), the pill (95 percent), and female condoms (94 percent) are the most commonly known modern methods among women, with relatively smaller percentages mentioning the other modern methods. The extent of and patterns in knowledge of a modern method of family planning are similar among currently married and sexually active unmarried women and men. Because knowledge of at least one method of contraception is universal, there are few differences in knowledge by background characteristics (data not shown).

Table 7.1 Knowledge of contraceptive methods						
Percentage of all respondents, currently married respondents, and sexually active unmarried respondents age 15-49 who know any contraceptive method, by specific method, Namibia 2013						
	Women			Men		
Method	All women	Currently married women	Sexually active unmarried women ${ }^{1}$	All men	Currently married men	Sexually active unmarried $m^{1}{ }^{1}$
Any method	99.6	99.8	99.8	99.7	100.0	100.0
Any modern method	99.6	99.8	99.8	99.7	100.0	100.0
Female sterilisation	69.8	75.3	72.2	66.9	74.8	73.1
Male sterilisation	42.6	44.6	43.5	52.9	57.1	58.7
Pill	94.5	97.1	96.2	89.0	94.1	93.3
Contraceptive patch	31.9	33.9	36.1	27.9	31.0	31.5
IUD	51.4	54.8	55.2	34.8	39.5	39.9
Injectables	95.8	98.3	97.4	88.3	93.0	93.7
Implants	28.4	32.4	30.0	30.1	36.0	35.4
Male condom	98.7	98.4	99.5	99.1	99.7	99.9
Female condom	94.2	94.1	95.7	92.5	93.0	97.0
Lactational amenorrhoea (LAM)	18.3	23.2	18.3	12.7	16.2	14.6
Emergency contraception	43.3	44.1	47.0	46.1	51.9	53.6
Any traditional method	67.3	70.7	74.0	73.2	77.5	83.8
Rhythm	48.5	50.9	54.0	47.5	50.8	55.7
Withdrawal	57.0	61.1	63.9	68.0	73.8	79.0
Other	4.2	5.5	3.4	4.1	4.4	5.1
Mean number of methods known by respondents age 15-49	7.8	8.1	8.1	7.6	8.2	8.3
Number of respondents	9,176	3,121	1,437	4,021	1,160	896
Mean number of methods known by respondents age 15-64	na	na	na	6.8	6.2	8.1
Number of respondents	na	na	na	4,481.0	1,526.5	914.3

na $=$ Not applicable
${ }^{1}$ Had last sexual intercourse within 30 days preceding the survey

With respect to traditional methods, withdrawal and the rhythm method are known by 49 percent and 57 percent of all women, respectively. Women know 7.8 contraceptive methods on average, while men know 7.6 methods. This is an increase from an average of 6.1 contraceptive methods known by both women and men in the 2006-07 NDHS.

7.2 Current Use of Contraception

The prevalence of contraceptive use among women in Namibia at the time of the survey is one of the principal determinants of fertility. Changes in prevalence that have occurred over time can indicate the overall success of family planning programmes.

Percentages of contraceptive use among all women, currently married women, and sexually active unmarried women age 15-49 are presented in Table 7.2.1. The results show that 50 percent of all women in Namibia are using a modern contraceptive method. This represents a very small increase from the figure reported in the 2006-07 NDHS (47 percent).
Table 7.2.1 Current use of contraception by age
Percent distribution of all women, currently marrie

			Modern method												Any traditional method	Traditional method			Not currently using	Total	Number of women
Age	Any method	Any modern method	Female sterilisation	Male sterilisation	Pill	IUD	Contraceptive patch	Injectables	Implants	Male condom	Female condom	Diaphragm	LAM	Other		Rhythm	Withdrawal	Other			
ALL WOMEN																					
15-19	24.5	24.1	0.0	0.0	1.1	0.0	0.0	9.2	0.0	13.3	0.4	0.0	0.0	0.0	0.3	0.0	0.0	0.3	75.5	100.0	1,906
20-24	56.4	55.9	0.1	0.0	3.9	0.3	0.7	24.3	0.1	25.7	0.8	0.0	0.0	0.0	0.5	0.2	0.0	0.3	43.6	100.0	1,786
25-29	62.7	62.4	0.2	0.0	6.0	0.3	0.8	31.4	0.3	23.0	0.2	0.0	0.1	0.2	0.3	0.2	0.0	0.1	37.3	100.0	1,489
30-34	59.1	58.4	2.1	0.1	7.3	1.1	1.0	28.4	0.2	17.8	0.2	0.0	0.2	0.1	0.7	0.2	0.5	0.0	40.9	100.0	1,260
35-39	55.9	55.7	5.4	0.2	6.4	0.9	0.5	23.3	0.1	18.3	0.4	0.0	0.1	0.0	0.3	0.0	0.1	0.2	44.1	100.0	1,110
40-44	54.9	54.6	7.9	0.4	5.1	0.9	0.4	20.1	0.1	18.7	0.7	0.0	0.1	0.1	0.3	0.2	0.0	0.1	45.1	100.0	917
45-49	46.1	45.2	13.8	0.1	3.9	1.5	0.4	8.8	0.1	15.6	0.8	0.2	0.0	0.1	0.9	0.2	0.5	0.3	53.9	100.0	708
Total	50.2	49.7	2.8	0.1	4.5	0.6	0.5	21.2	0.1	19.2	0.5	0.0	0.1	0.1	0.5	0.1	0.1	0.2	49.8	100.0	9,176
CURRENTLY MARRIED WOMEN																					
15-19	37.2	32.2	0.0	0.0	3.1	0.0	0.0	23.3	0.0	5.8	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	62.8	100.0	103
20-24	53.7	53.2	0.0	0.0	4.7	1.0	1.7	35.5	0.0	10.3	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	46.3	100.0	349
25-29	58.5	58.0	0.2	0.1	7.6	0.5	1.3	35.8	0.2	11.9	0.0	0.0	0.0	0.4	0.5	0.0	0.1	0.4	41.5	100.0	558
30-34	58.4	57.6	3.4	0.1	9.3	2.0	1.0	30.0	0.2	11.2	0.0	0.0	0.3	0.2	0.8	0.3	0.6	0.0	41.6	100.0	634
35-39	57.3	56.9	8.4	0.4	7.3	1.0	0.3	24.5	0.2	14.3	0.4	0.0	0.1	0.0	0.4	0.0	0.1	0.3	42.7	100.0	593
40-44	57.5	56.9	11.3	0.7	6.1	1.1	0.7	24.2	0.2	12.1	0.3	0.0	0.1	0.1	0.5	0.3	0.0	0.2	42.5	100.0	497
45-49	52.6	50.9	18.4	0.2	5.7	2.0	0.5	8.8	0.1	13.5	1.2	0.3	0.0	0.1	1.7	0.3	0.9	0.5	47.4	100.0	386
Total	56.1	55.3	6.4	0.3	7.0	1.2	0.9	26.8	0.2	12.0	0.3	0.0	0.1	0.1	0.8	0.2	0.3	0.4	43.9	100.0	3,121
SEXUALLY ACTIVE UNMARRIED WOMEN ${ }^{1}$																					
15-19	72.5	72.3	0.0	0.0	1.9	0.0	0.0	17.2	0.0	51.1	2.1	0.0	0.0	0.0	0.2	0.2	0.0	0.0	27.5	100.0	195
20-24	77.7	77.7	0.0	0.0	5.9	0.1	1.2	25.8	0.6	42.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.3	100.0	390
25-29	82.2	82.2	0.3	0.0	6.5	0.3	1.1	30.8	0.7	41.1	1.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	17.8	100.0	334
30-34	75.6	74.4	0.9	0.0	7.6	0.0	3.0	35.9	0.4	25.9	0.4	0.0	0.0	0.3	1.2	0.0	1.2	0.0	24.4	100.0	208
35-39	79.2	78.9	3.3	0.0	9.9	0.2	1.6	26.0	0.0	37.2	0.7	0.0	0.0	0.0	0.3	0.0	0.0	0.3	20.8	100.0	157
40-44	78.0	78.0	1.4	0.0	6.0	0.8	0.0	25.4	0.0	43.4	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.0	100.0	103
45-49	74.1	74.1	8.3	0.0	5.5	0.8	1.4	22.5	0.0	35.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.9	100.0	50
Total	77.8	77.6	0.9	0.0	6.2	0.2	1.2	27.1	0.4	40.2	1.1	0.0	0.0	0.1	0.2	0.0	0.2	0.0	22.2	100.0	1,437

[^4]Among all women, the contraceptive methods most commonly used are injectables (21 percent) and male condoms (19 percent). Five percent of all women use the pill and 3 percent use female sterilisation, while a total of 2 percent use the IUCD, contraceptive patch, female condom, male sterilisation, implants, LAM, diaphragm, or other modern methods.

The use of modern contraceptive methods among all women increases with age, from 24 percent among those age $15-19$ to 62 percent among those age 25-29, before gradually falling to a low of 45 percent among women age 45-49. A similar pattern emerges in the use of injectables.

7.3 Current Use of Contraception by Background Characteristics

Table 7.2.2 presents information on current use of contraceptives among all women age 15-49. Current use of any method of contraception varies by number of living children, residence, region, education, and wealth quintile. One in three women without children uses a contraceptive method (33 percent). The use of any contraceptive method increases from 59 percent among women with one to two children to 62 percent among women with three to four children before falling to 49 percent among women with five or more children.

Women in rural areas are less likely to use contraceptive methods than their counterparts in urban areas (43 percent versus 56 percent). Among regions, use of contraceptive methods is highest in //Karas (60 percent) and lowest in Omusati (37 percent).

Contraceptive use is positively associated with women's level of education and wealth. For example, 34 percent of women with no education use contraceptives, as compared with 58 percent of those with more than a secondary education. Similarly, only 40 percent of women in the lowest wealth quintile use contraceptives, compared with 54 percent of women in the highest wealth quintile.
Table 7.2.2 Current use of contraception by background characteristics
Percent distribution of all women age 15-49 by contraceptive method currently used, according to background characteristics, Namibia 2013

Background characteristic	Any method	Any modern method	Modern method												Any traditional method	Traditional method			Not currently using	Total	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { women } \\ & \hline \end{aligned}$
			Female sterilisation	Male sterilisation	Pill	IUCD	Contraceptive patch	Injectables	$\begin{aligned} & \text { Im- } \\ & \text { plants } \end{aligned}$	Male condom	Female condom	Diaphragm	LAM	Other		Rhythm	Withdrawal	Other			
Number of living children																					
0	33.1	32.7	0.1	0.0	2.0	0.1	0.4	5.8	0.0	23.4	0.8	0.0	0.0	0.0	0.4	0.2	0.0	0.1	66.9	100.0	3,034
1-2	59.0	58.6	1.6	0.2	6.2	0.7	0.7	29.3	0.3	19.1	0.2	0.0	0.1	0.2	0.4	0.0	0.1	0.2	41.0	100.0	3,606
3-4	62.0	61.3	8.4	0.0	6.2	1.1	0.4	29.4	0.1	14.9	0.6	0.1	0.1	0.0	0.7	0.2	0.3	0.2	38.0	100.0	1,750
5+	49.3	48.6	7.0	0.0	3.1	0.5	0.2	24.4	0.1	13.1	0.3	0.0	0.0	0.0	0.7	0.1	0.2	0.4	50.7	100.0	785
Residence																					
Urban	55.5	55.1	3.8	0.1	5.5	0.8	0.9	21.2	0.2	22.0	0.5	0.0	0.1	0.1	0.4	0.2	0.1	0.1	44.5	100.0	5,190
Rural	43.2	42.7	1.6	0.0	3.3	0.3	0.0	21.1	0.0	15.7	0.5	0.0	0.0	0.1	0.5	0.1	0.1	0.3	56.8	100.0	3,986
Region																					
Zambezi	49.8	49.5	0.2	0.0	3.8	0.0	0.3	39.8	0.0	5.3	0.2	0.0	0.0	0.0	0.2	0.2	0.0	0.0	50.2	100.0	457
Erongo	56.5	55.9	4.3	0.3	5.4	0.7	0.2	22.8	0.4	21.3	0.2	0.0	0.2	0.0	0.5	0.2	0.3	0.1	43.5	100.0	771
Hardap	49.8	49.8	9.0	0.2	7.3	0.3	0.2	24.4	0.3	8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.2	100.0	304
//Karas	59.5	58.8	6.8	0.2	6.2	0.7	0.2	29.1	0.0	15.1	0.1	0.0	0.1	0.3	0.7	0.2	0.1	0.4	40.5	100.0	343
Kavango	40.8	39.3	0.8	0.0	3.3	0.2	0.0	29.3	0.0	5.7	0.0	0.0	0.0	0.1	1.5	0.0	0.0	1.5	59.2	100.0	835
Khomas	56.3	55.7	3.4	0.1	5.2	1.3	1.7	18.1	0.2	25.2	0.5	0.0	0.0	0.0	0.6	0.2	0.3	0.1	43.7	100.0	2,202
Kunene	52.2	52.1	0.6	0.2	5.2	0.4	0.2	25.2	0.0	20.3	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.0	47.8	100.0	258
Ohangwena	39.4	39.2	1.7	0.0	2.4	0.1	0.0	15.0	0.0	19.6	0.2	0.0	0.0	0.2	0.1	0.1	0.0	0.0	60.6	100.0	894
Omaheke	55.4	55.2	6.6	0.3	5.3	0.5	0.5	26.0	0.5	15.2	0.0	0.0	0.1	0.2	0.2	0.2	0.0	0.0	44.6	100.0	225
Omusati	37.2	37.1	0.9	0.0	2.7	0.4	0.0	14.6	0.0	17.7	0.5	0.1	0.0	0.0	0.1	0.1	0.0	0.0	62.8	100.0	884
Oshana	57.9	57.5	2.9	0.0	4.2	0.1	0.3	15.3	0.2	32.6	1.9	0.0	0.0	0.0	0.4	0.1	0.0	0.3	42.1	100.0	755
Oshikoto	49.3	49.3	1.9	0.0	5.2	0.6	0.4	18.5	0.0	21.4	1.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	50.7	100.0	707
Otjozondjupa	51.6	51.1	3.7	0.1	6.1	0.1	0.1	24.5	0.1	15.2	0.3	0.0	0.5	0.3	0.5	0.1	0.4	0.0	48.4	100.0	540
Education																					
No education	33.7	32.7	2.4	0.0	2.6	0.0	0.0	16.2	0.0	10.8	0.2	0.0	0.4	0.0	1.0	0.0	0.4	0.6	66.3	100.0	419
Primary	42.8	42.4	3.2	0.0	2.9	0.1	0.0	23.7	0.0	12.4	0.1	0.0	0.0	0.0	0.4	0.0	0.0	0.4	57.2	100.0	1,798
Secondary	52.3	52.0	2.4	0.1	4.4	0.6	0.4	22.7	0.1	20.5	0.7	0.0	0.0	0.1	0.3	0.1	0.1	0.1	47.7	100.0	6,029
More than secondary	58.0	56.9	5.4	0.5	9.2	1.6	2.9	8.1	0.3	27.9	0.3	0.1	0.2	0.4	1.1	0.5	0.4	0.2	42.0	100.0	930
Wealth quintile																					
Lowest	39.6	38.9	1.2	0.0	2.5	0.0	0.0	21.6	0.0	13.2	0.3	0.0	0.0	0.0	0.8	0.1	0.0	0.7	60.4	100.0	1,429
Second	48.7	48.5	1.8	0.0	3.7	0.1	0.0	25.0	0.0	17.2	0.6	0.0	0.1	0.0	0.2	0.0	0.1	0.1	51.3	100.0	1,625
Middle	52.9	52.4	1.9	0.0	4.0	0.4	0.0	24.4	0.1	21.2	0.3	0.0	0.1	0.0	0.5	0.1	0.1	0.2	47.1	100.0	1,795
Fourth	52.5	52.1	2.5	0.0	4.5	0.2	0.5	22.3	0.1	21.1	0.7	0.1	0.0	0.1	0.3	0.1	0.1	0.2	47.5	100.0	2,116
Highest	53.7	53.1	5.8	0.3	6.9	1.8	1.7	14.2	0.3	21.3	0.4	0.0	0.1	0.2	0.5	0.3	0.2	0.0	46.3	100.0	2,211
Total	50.2	49.7	2.8	0.1	4.5	0.6	0.5	21.2	0.1	19.2	0.5	0.0	0.1	0.1	0.5	0.1	0.1	0.2	49.8	100.0	9,176

[^5]Table 7.3 and Figure 7.1 show trends in contraceptive use among all women over the past 21 years, as measured by the 1992, 2000, 2006-07, and 2013 NDHS surveys. Over this time period, use of contraception has risen from 23 percent to 50 percent.

Table 7.3 Trends in contraceptive use				
Percentage of all women who are currently using contraception, by specific method, Namibia 1992, 2000, 2006-07, and 2013				
Method	$\begin{gathered} 1992 \\ \text { NDHS } \end{gathered}$	$\begin{gathered} 2000 \\ \text { NDHS } \end{gathered}$	$\begin{gathered} \hline 2006-07 \\ \text { NDHS } \end{gathered}$	$\begin{gathered} \hline 2013 \\ \text { NDHS } \end{gathered}$
Any method	23.3	37.8	46.6	50.2
Any modern method	21.4	37.1	45.7	49.7
Female sterilisation	3.8	4.3	5.0	2.8
Male sterilisation	0.1	0.3	0.2	0.1
Pill	7.1	5.7	5.4	4.5
IUD	1.3	0.7	0.6	0.6
Injectables	8.6	17.0	17.1	21.2
Implants	u	u	0.1	0.1
Male condom	0.5	8.9	17.0	19.2
Female condom	u	u	0.3	0.5
Contraceptive patch	u	u	u	0.5
Any traditional method	1.8	0.7	0.9	0.5
Rhythm/periodic abstinence	0.6	0.1	0.3	0.1
Withdrawal	0.2	0.1	0.1	0.1
Other traditional methods	1.0	0.5	0.5	0.2
Number of women	5,421	6,755	9,804	9,176

$\mathrm{u}=$ Unknown

Figure 7.1 Trends in contraceptive use among all women age 15-49, Namibia 1992-2013

Percent

7.4 Source of Modern Contraceptive Methods

Information on where women obtain the contraceptive methods they use is useful for family planning programme managers and others who plan the distribution of contraceptives. In the 2013 NDHS, all women who reported that they were currently using any modern contraceptive method at the time of the survey were asked where they obtained the method the last time they used it. Sometimes women may know the name of the facility but not know whether it is a public or private sector source. In such cases, interviewers were instructed to note the full name of the source or facility. Supervisors were trained to
verify the name and type of source to maintain consistency and improve the accuracy of the information collected.

Table 7.4 shows that the majority of users obtain their contraceptives from public sector sources (73 percent). Government primary health care clinics and government hospitals are the most common public sources of contraceptives (48 percent and 22 percent, respectively). Twelve percent of users obtain their contraceptives from private sources and 11 percent from other sources.

Percent distribution of users of modern contraceptive methods age 15-49 by most recent source of method, according to method, Namibia 2013					
Source	Female sterilisation	Pill	Injectables	Male condom	Total
Public	64.9	71.8	95.4	53.4	73.0
Government hospital	64.5	11.3	17.1	22.6	21.6
Government health centre	0.4	1.4	3.5	0.8	2.0
Government primary health care clinic	0.0	57.6	73.8	27.7	47.9
Outreach point	0.0	0.6	0.2	0.7	0.4
Mobile clinic	0.0	0.9	0.5	0.7	0.6
Other public	0.0	0.0	0.3	0.9	0.5
Private	34.9	26.0	3.6	10.5	12.1
Private hospital	31.6	3.0	0.8	0.4	3.0
Private clinic	2.6	0.8	1.0	0.3	0.9
Pharmacy	0.0	10.7	0.2	9.6	5.3
Private doctor	0.7	11.4	1.6	0.1	2.8
Other source	0.0	0.1	0.2	27.9	11.1
Shop	0.0	0.1	0.0	24.7	9.7
Friend/relative	0.0	0.0	0.1	2.5	1.1
School	0.0	0.0	0.0	0.7	0.3
Other	0.0	0.7	0.2	6.4	2.8
Total	99.8	98.5	99.3	98.2	98.9
Number of women	261	417	1,941	1,765	4,549

Note: Total includes 8 users of male sterilisation, 51 users of the IUCD, 49 users of the contraceptive patch,
12 users of implants, 44 users of the female condom, and 1 user of the diaphragm who are not shown separately but excludes lactational amenorrhoea method (LAM).

The public sector is the primary source of injectables, supplying the vast majority of users (95 percent), with government primary health care clinics supplying 74 percent of users. More than one in two (53 percent) users of male condoms obtained their method from the public sector, with primary health care clinics the main supplier. Government health centres (23 percent) and shops (25 percent) are also an important source of male condoms, supplying about one in four users. Seventy-two percent of pill users obtained their method from the public sector, the majority (58 percent) from primary health care clinics. Not surprisingly, the public sector is also the main source of female sterilisation, with government hospitals most often providing this service (65 percent). The proportional distribution of contraceptive methods by public and private sector sources has not changed substantially over the last six years.

7.5 INFORMED CHOICE

Women age 15-49 who were currently using a modern contraceptive method and who started the last episode of use within five years of the survey were asked whether they had been informed about possible side effects or problems associated with their chosen method, what to do if they experienced side effects, and other methods that they could also use. Their responses offer a measure of the quality of family planning service provision. Table 7.5 shows the results by method and source.

Fifty-seven percent of users of modern contraceptives were informed about side effects or health problems associated with the method they used, 51 percent were informed about what to do if they experienced side effects, and 65 percent were told of other methods available. Women using the pill were most likely to be informed of side effects, what to do if they experienced side effects, and other methods they could use. Women who obtained their contraceptive from the private sector, typically a private doctor or a private hospital, were more likely than those who obtained their contraceptive from another source to be informed of side effects, what to do if they experienced side effects, and other methods they could use.

Table 7.5 Informed choice
Among current users of modern methods age 15-49 who started the last episode of use within the five years preceding the survey, the percentage who were informed about possible side effects or problems of that method, the percentage who were informed about what to do if they experienced side effects, and the percentage who were informed about other methods they could use, by method and initial source, Namibia 2013

Method/source	Among women who started last episode of modern contraceptive method within five years preceding the survey:			
	Percentage who were informed about side effects or problems of method used	Percentage who were informed about what to do if experienced side effects	Percentage who were informed by a health or family planning worker of other methods that could be used	Number of women
Method				
Female sterilisation	51.1	45.3	59.1	94
Pill	61.1	55.9	68.9	328
IUD	(76.7)	(74.9)	(84.9)	38
Injectables	55.9	49.5	63.7	1,705
Implants	*	*	*	9
Initial source of method ${ }^{1}$				
Public	56.4	50.5	65.1	1,941
Government hospital	62.1	57.9	69.9	483
Government health centre	64.8	54.9	71.4	83
Government primary health care clinic	53.7	47.7	63.0	1,353
Outreach point	*	*	*	9
Field worker/community health care provider	*	*	*	5
Other public	*	*	*	8
Private	69.0	60.2	70.7	198
Private hospital	63.0	55.4	69.0	76
Private clinic	*	*	*	17
Pharmacy	*	*	*	23
Private doctor	78.0	67.7	74.0	81
Other private medical	*	*	*	1
Other source	*	*	*	10
Friend/relative	*	*	*	2
School	*	*	*	8
Other	*	*	*	0
Total	56.8	50.7	64.8	2,174

Note: Table includes users of only the methods listed individually. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Source at start of current episode of use

7.6 Rates of Discontinuing Contraceptive Methods

Reproductive goals can only be realised when reliable methods of contraception methods are used consistently. Of particular concern for family planning programmes is the rate at which users discontinue contraceptive methods and the reasons for such discontinuation. Armed with this information, family planning providers are able to better advise potential users of the advantages and disadvantages of each contraceptive method, allowing women to make a more informed decision about the method that best suits their needs. The calendar section of the Woman's Questionnaire records all segments of contraceptive use from 3-59 months prior to the survey. The month of the interview and the two months prior to the survey are ignored in order to avoid bias that may be introduced by unrecognised pregnancies. One-year contraceptive discontinuation rates based on the calendar data are presented in Table 7.6.

Overall, 19 percent of episodes of contraceptive use were discontinued within 12 months of their initiation. Six percent of discontinuations occurred due to fear of side effects or health concerns. Discontinuation rates vary by method. The rate is highest for pills (9 percent), followed by injectables and male condoms (4 percent each).

Table 7.6 Twelve-month contraceptive discontinuation rates
Among women age 15-49 who started an episode of contraceptive use within the five years preceding the survey, the percentage of episodes discontinued within 12 months, by reason for discontinuation and specific method, Namibia 2013

	Method failure	Desire to become pregnant	Other fertility- related reasons 1	Side effects/ health concerns	Wanted more effective method	Other method- related reasons	Other reasons	Any reason	Switched to another method 4
Nethod episodes of use 5									
Pill	2.7	3.7	1.7	9.5	3.2	3.5	3.7	28.0	8.8
Injectables	0.2	2.1	1.0	9.9	0.2	2.5	3.7	19.7	3.6
Male condom	3.4	1.8	2.5	0.6	2.2	0.5	5.5	16.4	3.5
All methods	1.8	2.2	1.7	6.0	1.3	2.0	4.3	19.2	4.1

Note: Figures are based on life table calculations using information on episodes of use that began 3-62 months preceding the survey.
${ }^{1}$ Includes infrequent sex/husband away, difficult to get pregnant/menopausal, and marital dissolution/separation
${ }^{2}$ Includes lack of access/too far, costs too much, and inconvenient to use
${ }^{3}$ Reasons for discontinuation are mutually exclusive and add to the total given in this column.
${ }^{4}$ The episodes of use included in this column are a subset of the discontinued episodes included in the discontinuation rate. A woman is considered to have switched to another method if she used a different method in the month following discontinuation or if she gave "wanted a more effective method" as the reason for discontinuation and started another method within two months of discontinuation.
${ }^{5}$ Number of episodes of use includes both episodes of use that were discontinued during the period of observation and episodes of use that were not discontinued during the period of observation.

7.7 Reasons for Discontinuing Contraceptive Methods

Table 7.7 shows the percent distribution of discontinuations of contraceptive methods in the five years preceding the survey by main reason stated for the discontinuation, according to specific method. In total, 3,455 discontinuations occurred within this time period. Overall, across all contraceptive methods, the most common reason for discontinuation was side effects or health concerns (26 percent), followed by a desire to become pregnant (22 percent) and becoming pregnant while using the method (14 percent).

Table 7.7 Reasons for discontinuation				
Percent distribution of discontinuations of contraceptive methods in the five years preceding the survey by main reason stated for discontinuation, according to specific method, Namibia 2013				
Reason	Pill	Injection	Male condom	All methods
Became pregnant while using	13.2	3.5	28.4	14.1
Wanted to become pregnant	29.2	20.9	20.1	22.2
Husband disapproved	1.1	2.3	7.9	4.1
Wanted a more effective method	5.0	0.8	10.9	5.3
Side effects/health concerns	23.9	43.7	3.9	25.5
Lack of access/too far	4.8	7.2	0.8	4.4
Cost too much	0.1	0.0	0.0	0.1
Inconvenient to use	5.6	2.4	1.7	2.7
Up to God/fatalistic	0.0	0.2	0.2	0.2
Difficult to get pregnant/menopausal	0.3	0.2	0.1	0.2
Infrequent sex/husband away	4.8	3.5	7.5	5.1
Marital dissolution/separation	0.9	1.4	0.8	1.1
Other	4.3	5.5	2.7	4.3
Don't know	0.0	0.0	0.2	0.1
Missing	6.8	8.5	14.8	10.6
Total	100.0	100.0	100.0	100.0
Number of discontinuations	493	1,614	1,225	3,455

Note: Total includes 124 cases in which women reported discontinuation while using male sterilisation, IUCD, contraceptive patch, implants, female condom, lactational amenorrhoea method (LAM), rhythm, withdrawal, and other methods.

There were variations in reasons for discontinuation across specific contraceptive methods. For example, among pill users, 29 percent of discontinuations occurred because women wanted to become pregnant, 24 percent were due to side effects or health concerns, and 13 percent occurred because of method failure (i.e., the woman became pregnant while using the method). Among users of injectables, side effects or health concerns were the most common reason for discontinuations (44 percent), followed by a desire to become pregnant (21 percent); method failure resulted in only 4 percent of discontinuations. Method failure was the most common reason for discontinuations among male condom users (28 percent), followed by a desire to become pregnant (20 percent); 11 percent of discontinuations were due to the need for a more effective method.

7.8 Knowledge of the Fertile Period

The fertile period refers to the time when a woman can become pregnant. Such knowledge is particularly critical in the use of fertility awareness methods. The 2013 NDHS included a question designed to obtain information on the respondent's understanding of when a woman is most likely to become pregnant during the menstrual cycle. Respondents were asked, "From one menstrual period to the next, are there certain days when a woman is more likely to get pregnant if she has sexual relations?" If the reply was yes, the respondent was further asked whether that time was just before a woman's period begins, during her period, right after her period has ended, or halfway between two periods.

The results show that only 16 percent of women know that they are most fertile midway between two menstrual periods. Due to small group numbers, breakdowns by perceived fertile period are not shown separately.

7.9 Need and Demand for Family Planning

The proportion of women who want to stop childbearing or who want to space their next birth is a crude measure of the extent of the need for family planning, given that not all of these women are exposed to the risk of pregnancy and some may already be using contraception. This section discusses the extent of need and the potential demand for family planning services. Women who want to postpone their next birth for two or more years or who want to stop childbearing altogether but are not using a contraceptive method are said to have an unmet need for family planning. Pregnant women are considered to have an unmet need for spacing or limiting if their pregnancy was mistimed or unwanted. Similarly, amenorrhoeic women are categorised as having an unmet need if their last birth was mistimed or unwanted. Women who are currently using a family planning method are said to have a met need for family planning. Total demand for family planning services comprises those who fall in the met need and unmet need categories.

Table 7.8 presents data on unmet need, met need, and total demand for family planning among all women. These indicators help to evaluate the extent to which family planning programmes in Namibia meet the demand for services. The definition of unmet need for family planning has been revised to make levels of unmet need comparable over time and across surveys. Twelve percent of all women have an unmet need for family planning (8 percent for spacing and 4 percent for limiting births). Fifty percent of women are currently using a contraceptive method (28 percent for spacing and 22 percent for limiting). More than six in ten women (62 percent) have a demand for family planning. At present, 81 percent of the potential demand for family planning is being met. Thus, if all women who said they want to space or limit their children were to use family planning methods, the contraceptive prevalence rate would increase from 50 percent to 62 percent.

Unmet need for spacing is highest among women age 20-24 (12 percent), while unmet need for limiting childbearing is highest among women age 45-49 (8 percent). Unmet need is much higher in rural than urban areas (15 percent and 9 percent, respectively) and it ranges from a low of 7 percent in Erongo to a high of 18 percent in Kunene.

Unmet need varies substantially by education; women with no education are most likely to have an unmet need for family planning (24 percent), while women with more than a secondary education have the lowest unmet need (7 percent). Unmet need is inversely associated with a woman's wealth status. Eighteen percent of women in the lowest wealth quintile have an unmet need, as compared with 7 percent of those in the highest quintile.

Recalculation of unmet need among women age 15-49 using the new definition shows an increase from 9 percent in the 2006-07 to 12 percent in the 2013 NDHS survey. ${ }^{1}$

Table 7.8 Need and demand for family planning for all women
Percentage of all women age 15-49 with unmet need for family planning, percentage with met need for family planning, the total demand for family planning, and the percentage of the demand for contraception that is satisfied, by background characteristics, Namibia 2013

Background characteristic	Unmet need for family planning			Met need for family planning\qquad			Total demand for family planning ${ }^{1}$			Percentage of demand satisfied ${ }^{2}$	Percentage of demand satisfied by modern methods ${ }^{3}$	Number of women
	For spacing	For limiting	Total	For spacing	For limiting	Total	For spacing	For limiting	Total			
Age												
15-19	7.8	1.2	9.0	19.3	5.2	24.5	27.0	6.4	33.5	73.1	72.1	1,906
20-24	12.0	1.8	13.8	44.6	11.8	56.4	56.5	13.7	70.2	80.3	79.6	1,786
25-29	9.6	3.8	13.5	42.3	20.4	62.7	51.9	24.3	76.2	82.3	81.9	1,489
30-34	8.2	4.5	12.6	32.2	26.9	59.1	40.4	31.4	71.8	82.4	81.4	1,260
35-39	6.3	5.8	12.1	22.1	33.9	55.9	28.4	39.7	68.1	82.2	81.8	1,110
40-44	3.9	7.1	11.1	13.1	41.8	54.9	17.1	49.0	66.0	83.2	82.8	917
45-49	0.6	7.6	8.2	4.1	42.1	46.1	4.7	49.7	54.4	84.8	83.1	708
Residence												
Urban	6.3	3.1	9.4	32.3	23.2	55.5	38.6	26.3	65.0	85.5	84.8	5,190
Rural	9.8	4.8	14.6	23.0	20.2	43.2	32.8	25.0	57.8	74.7	73.9	3,986
Region												
Zambezi	7.1	4.2	11.3	32.8	16.9	49.8	40.0	21.1	61.1	81.5	81.1	457
Erongo	4.3	2.8	7.2	31.9	24.6	56.5	36.2	27.4	63.6	88.7	87.9	771
Hardap	7.1	7.1	14.1	18.1	31.7	49.8	25.1	38.8	63.9	77.9	77.9	304
//Karas	5.3	3.5	8.8	25.5	34.0	59.5	30.8	37.4	68.3	87.2	86.1	343
Kavango	10.8	5.5	16.3	21.0	19.9	40.8	31.7	25.4	57.1	71.5	68.8	835
Khomas	6.2	2.7	8.9	34.7	21.5	56.3	40.9	24.2	65.1	86.4	85.5	2,202
Kunene	11.2	7.1	18.3	26.1	26.1	52.2	37.4	33.2	70.5	74.0	73.8	258
Ohangwena	12.4	3.8	16.1	22.5	16.9	39.4	34.9	20.7	55.5	70.9	70.7	894
Omaheke	9.5	6.7	16.3	19.4	36.0	55.4	28.9	42.8	71.7	77.3	77.0	225
Omusati	9.2	3.3	12.5	23.3	13.9	37.2	32.6	17.1	49.7	74.9	74.6	884
Oshana	5.9	1.9	7.8	38.1	19.8	57.9	44.0	21.7	65.7	88.1	87.5	755
Oshikoto	8.4	5.3	13.7	26.7	22.6	49.3	35.2	27.9	63.0	78.3	78.3	707
Otjozondjupa	7.4	4.9	12.3	22.1	29.5	51.6	29.5	34.4	63.9	80.8	80.0	540
Education												
No education	14.1	10.1	24.2	12.7	21.0	33.7	26.8	31.1	57.9	58.2	56.5	419
Primary	9.2	6.0	15.2	16.5	26.3	42.8	25.7	32.3	58.0	73.8	73.1	1,798
Secondary	7.3	3.1	10.4	31.0	21.3	52.3	38.3	24.4	62.7	83.4	82.8	6,029
More than secondary	5.9	1.4	7.4	40.0	18.0	58.0	45.9	19.4	65.4	88.8	87.1	930
Wealth quintile												
Lowest	12.0	5.8	17.8	20.1	19.5	39.6	32.1	25.3	57.4	69.0	67.7	1,429
Second	9.1	4.2	13.3	23.9	24.8	48.7	33.0	29.0	62.0	78.5	78.2	1,625
Middle	8.6	4.1	12.7	31.4	21.5	52.9	40.1	25.6	65.6	80.6	79.9	1,795
Fourth	7.0	3.8	10.8	31.3	21.2	52.5	38.3	25.0	63.3	82.9	82.4	2,116
Highest	4.4	2.2	6.5	31.3	22.4	53.7	35.6	24.6	60.2	89.1	88.2	2,211
Total	7.8	3.9	11.7	28.3	21.9	50.2	36.1	25.8	61.9	81.1	80.4	9,176
Currently married women	9.1	8.4	17.5	23.5	32.6	56.1	32.6	41.0	73.6	76.2	75.0	3,121
Sexually active unmarried women ${ }^{4}$	10.7	3.7	14.4	54.1	23.7	77.8	64.8	27.4	92.2	84.4	84.1	1,437

Note: Numbers in this table correspond to the revised definition of unmet need described in Bradley et al., 2012.
${ }^{1}$ Total demand is the sum of unmet need and met need.
${ }^{2}$ Percentage of demand satisfied is met need divided by total demand.
${ }^{3}$ Modern methods include female sterilisation, male sterilisation, pill, IUD, injectables, implants, male condom, female condom, and lactational amenorrhoea method (LAM).
${ }^{4}$ Women who had sexual intercourse within 30 days preceding the survey

[^6]
7.10 Future Use of Contraception

An important indicator of the changing demand for family planning is the extent to which nonusers plan to use contraceptive methods in the future, as this is a forecast of potential demand for services.

Women age 15-49 who were not using contraceptives at the time of the survey were asked about their intention to use family planning in the future. Table 7.9 shows that 64 percent of nonusers indicated that they intend to use family planning methods in the future, while 28 percent said that they do not intend to use a method in the future. The proportion of women who intend to use a method is highest among those with one child and lowest among those with four or more children.

Table 7.9 Future use of contraception						
Percent distribution of all women age 15-49 who are not using a contraceptive method by intention to use in the future, according to number of living children, Namibia 2013						
		Num	of living	dren ${ }^{1}$		
Intention	0	1	2	3	4+	Total
Intends to use	63.9	70.3	67.7	60.7	54.7	64.0
Unsure	11.1	3.6	3.0	3.5	4.2	6.6
Does not intend to use	24.3	24.3	26.0	32.0	39.7	27.7
Missing	0.7	1.9	3.3	3.8	1.3	1.7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	1,814	893	706	430	729	4,572
${ }^{1}$ Includes current pregnancy						

7.11 Exposure to Family Planning Messages in the Media

Radio, television, and newspapers and/or magazines are the major media sources of information about family planning in Namibia. Information on the level of public exposure to a particular type of media allows policymakers to ensure the use of the most effective media for various target groups. To assess the effectiveness of such media in disseminating family planning information, women and men in the 2013 NDHS were asked whether they had heard messages about family planning on the radio or seen them on television or in newspapers/magazines during the last few months preceding the survey (Table 7.10).

Overall, 39 percent of women reported that they had recently heard a family planning message on the radio, 31 percent had seen a message in newspapers or magazines, and 28 percent saw messages on television. Nearly one in two women (49 percent) had no exposure to any of the three media. Nonexposure to any of the three media sources was highest among women age 15-19, women living in rural areas and in Ohangwena, women with no education, and those in the lowest wealth quintile.

In general, the pattern of exposure to family planning messages among men was similar to that among women. However, men in Hardap were most likely to have had no exposure to media messages on family planning.

Table 7.10 Exposure to family planning messages
Percentage of women and men age 15-49 who heard or saw a family planning message on radio, on television, or in a newspaper or magazine in the past few months, according to background characteristics, Namibia 2013

Background characteristic	Women					Men				
	Radio	Television	Newspaper/ magazine	None of these three media sources	Number of women	Radio	Television	Newspaper/ magazine	None of these three media sources	Number of men
Age										
15-19	29.4	22.7	25.7	56.5	1,906	26.6	20.3	24.0	58.3	922
20-24	42.0	32.4	37.0	43.2	1,786	36.9	22.9	31.7	46.1	808
25-29	39.2	28.6	32.1	48.3	1,489	42.4	28.7	32.2	46.3	658
30-34	42.3	27.6	30.8	46.7	1,260	42.5	28.8	36.0	43.8	520
35-39	40.2	25.8	29.4	49.6	1,110	45.2	27.1	34.8	43.8	448
40-44	42.1	26.1	30.7	47.1	917	44.5	30.4	31.6	47.2	376
45-49	44.3	30.0	29.6	47.0	708	50.3	29.3	35.0	42.2	289
Residence										
Urban	45.6	40.4	43.0	36.8	5,190	43.2	37.2	40.5	40.0	2,282
Rural	30.3	10.7	15.1	64.3	3,986	32.9	10.5	18.8	59.0	1,739
Region										
Zambezi	38.0	18.5	17.3	55.9	457	40.3	21.9	24.3	52.3	218
Erongo	46.1	43.7	43.3	36.3	771	55.0	48.0	50.7	31.0	372
Hardap	48.6	44.8	37.9	36.2	304	21.9	14.0	8.4	71.2	152
//Karas	45.7	40.1	42.5	35.7	343	41.5	35.0	35.0	40.5	151
Kavango	43.2	17.1	18.0	52.5	835	33.7	15.9	19.1	59.5	316
Khomas	43.7	42.1	47.0	35.0	2,202	42.2	38.1	40.6	41.1	1,023
Kunene	24.2	22.0	17.5	66.6	258	40.3	23.1	22.0	56.0	104
Ohangwena	22.3	7.3	11.3	74.1	894	30.7	10.0	21.2	58.2	328
Omaheke	48.2	22.0	25.2	43.7	225	37.9	10.9	12.2	59.7	103
Omusati	23.0	7.4	14.6	72.4	884	24.5	7.2	17.2	64.7	342
Oshana	36.9	18.2	28.5	53.3	755	35.9	18.0	35.3	44.0	335
Oshikoto	36.7	16.2	25.3	51.8	707	37.4	13.6	23.8	49.9	335
Otjozondjupa	56.6	49.6	46.1	28.6	540	49.7	38.2	44.1	35.2	241
Education										
No education	24.5	4.7	1.5	73.9	419	26.3	8.3	5.8	71.8	310
Primary	29.2	11.0	9.5	66.3	1,798	32.0	11.3	13.7	62.1	944
Secondary	42.2	30.5	34.9	44.9	6,029	41.9	29.6	37.1	42.8	2,400
More than secondary	43.3	49.9	59.8	28.2	930	45.9	50.8	57.8	28.1	368
Wealth quintile										
Lowest	24.3	2.5	7.4	73.2	1,429	30.2	7.3	15.3	64.1	594
Second	30.5	7.1	14.8	65.5	1,625	32.8	10.4	18.3	59.4	769
Middle	40.1	18.7	25.0	51.9	1,795	38.0	14.4	24.1	52.5	886
Fourth	48.9	43.1	40.8	35.9	2,116	45.3	38.9	40.4	38.4	917
Highest	44.2	50.8	53.1	30.4	2,211	43.7	49.5	51.0	33.3	855
Total 15-49	39.0	27.5	30.9	48.7	9,176	38.7	25.6	31.1	48.2	4,021

7.12 Contact of Nonusers with Family Planning Providers

In the 2013 NDHS, women who were not using any contraceptive method were asked whether a fieldworker had talked with them about family planning in the 12 months preceding the survey. This information is especially useful for determining whether family planning outreach programmes reach nonusers. Nonusers were also asked if they had visited a health facility in the preceding 12 months for any reason and, if so, whether any staff member at the facility had spoken to them about family planning. These questions help to assess the extent of missed opportunities to inform women about contraception.

The results shown in Table 7.11 indicate that 7 percent of nonusers reported discussing family planning when a fieldworker visited them. Eleven percent of nonusers visited a health facility and discussed family planning, while 37 percent visited a facility but did not discuss family planning.

Table 7.11 Contact of nonusers with family planning providers
Among women age 15-49 who are not using contraception, the percentage who during the past 12 months were visited by a fieldworker who discussed family planning, the percentage who visited a health facility and discussed family planning, the percentage who visited a health facility but did not discuss family planning, and the percentage who did not discuss family planning either with a fieldworker or at a health facility, by background characteristics, Namibia 2013

Background characteristic	Percentage of women who were visited by fieldworker who discussed family planning	Percentage of women who visited a health facility in the past 12 months and who:		Percentage of women who did not discuss family planning either with fieldworker or at a health facility	Number of women
		Discussed family planning	Did not discuss family planning		
Age					
15-19	5.0	3.9	29.6	91.7	1,439
20-24	7.3	16.1	35.9	80.5	779
25-29	9.1	17.9	37.6	77.8	555
30-34	7.2	14.9	46.8	81.7	515
35-39	6.1	12.5	43.0	85.1	489
40-44	6.9	14.2	38.7	82.5	413
45-49	5.8	9.3	42.7	86.9	381
Residence					
Urban	6.1	11.0	37.1	85.4	2,308
Rural	6.9	11.4	36.8	84.7	2,264
Region					
Zambezi	8.2	10.2	49.7	84.2	229
Erongo	5.4	15.5	36.9	81.3	336
Hardap	4.5	7.1	14.3	89.7	153
//Karas	4.2	10.8	34.1	86.0	139
Kavango	9.5	17.3	35.0	77.9	494
Khomas	5.3	9.2	38.1	87.9	963
Kunene	8.8	8.7	18.0	86.3	123
Ohangwena	8.8	9.2	37.1	85.5	542
Omaheke	10.8	20.0	17.3	74.2	100
Omusati	1.3	8.7	45.5	90.9	555
Oshana	8.5	13.2	43.1	81.8	318
Oshikoto	7.0	11.8	41.0	84.5	358
Otjozondjupa	7.7	9.0	24.9	85.2	261
Education					
No education	6.8	8.7	32.7	87.5	278
Primary	6.1	8.9	34.6	87.3	1,028
Secondary	6.8	12.5	37.2	83.7	2,876
More than secondary	5.2	9.5	44.1	87.1	390
Wealth quintile					
Lowest	8.3	11.6	34.8	83.5	863
Second	5.2	10.9	39.5	86.6	834
Middle	8.5	14.3	37.9	81.2	845
Fourth	5.8	11.8	35.4	85.2	1,006
Highest	5.1	8.0	37.4	88.0	1,024
Total	6.5	11.2	36.9	85.0	4,572

Overall, 85 percent of nonusers did not discuss family planning with a fieldworker or a staff member at a health facility. This indicates a missed opportunity for potential users of family planning who could be targeted for family planning information and counselling. Outreach services provided by health extension workers could be practical in reaching these women. Variations in the percentages of nonusers who did not discuss family planning either with a fieldworker or at a health facility were relatively small across the different background characteristics.

Key Findings

- Infant and under-5 mortality rates in the past five years are 39 and 54 deaths per 1,000 live births, respectively. At these mortality levels, one in every 26 Namibian children die before reaching age 1, and one in every 19 do not survive to their fifth birthday.
- Data from the 2013 NDHS show that infant mortality has declined by 19 percent over the last 15 years, while under- 5 mortality has declined by 18 percent over the same period. A comparison of childhood mortality rates across all NDHS surveys shows a decline between 1992 and 2013. However, this decline is more pronounced between 1992 and 2000. Since then there have not been any substantial declines.
- The neonatal mortality rate in the past five years is 20 deaths per 1,000 live births, similar to the postneonatal mortality rate (19). The perinatal mortality rate is 24 per 1,000 pregnancies.
- Infant mortality is more than twice as high in the lowest wealth quintile (51 per 1,000 live births) as in the highest wealth quintile (22 per 1,000 live births). A similar picture emerges for all other mortality rates.

Neonatal, infant, and child mortality are important indicators of a country's socioeconomic development and quality of life, as well as health status. Measures of childhood mortality also contribute to a better understanding of the progress of population and health programmes and policies and are useful for population projections. Disaggregation of mortality measures by socioeconomic and demographic characteristics helps to identify differentials in population subgroups and target high-risk groups for effective programmes. This chapter describes levels of and trends and differentials in early childhood mortality and high-risk fertility behaviour in Namibia.

8.1 Background and Assessment of Data Quality

Childhood mortality rates presented in this chapter are defined as follows:

> Neonatal mortality (NN): Postneonatal mortality (PNN): Infant mortality ($\mathbf{1 q}_{0}$): Child mortality ($4 \mathrm{q}_{1}$): Under-5 mortality ($\mathbf{5} \mathbf{q}_{0}$):
the probability of dying within the first month of life the arithmetic difference between infant and neonatal mortality the probability of dying between birth and the first birthday the probability of dying between the first and the fifth birthday the probability of dying between birth and the fifth birthday

All rates are expressed as deaths per 1,000 live births, except in the case of child mortality, which is expressed as deaths per 1,000 children surviving to their first birthday.

Information on childhood mortality was obtained from the birth history section of the Woman's Questionnaire. Respondents were first asked a series of questions about their childbearing experience. In particular, they were asked to report the number of sons and daughters living with them, the number living elsewhere, and the number who have died. For each live birth reported in the birth history, information was collected on sex, month and year of birth, survivorship status, and current age or, if the child has died, age at death.

The accuracy of mortality estimates depends on the sampling variability of the estimates and on nonsampling errors. Sampling variability and sampling errors are discussed in detail in Appendix B. Nonsampling errors depend on the extent to which date of birth and age at death are accurately reported and recorded and the completeness with which child deaths are reported. Omission of births and deaths affects mortality estimates, displacement of birth and death dates impacts mortality trends, and misreporting of age at death may distort the age pattern of mortality. Typically, the most serious source of nonsampling errors in a survey that collects retrospective information on births and deaths is the underreporting of births and deaths of children who were dead at the time of the survey. The possible occurrence of these data problems in the 2013 NDHS is discussed with reference to the data quality tables in Appendix C. Underreporting of births and deaths is generally more severe the further back in time an event occurred.

An unusual pattern in the distribution of births by calendar years is an indication of omission of children or age displacement. In the 2013 NDHS, the cutoff for asking health questions was January 2008. Table C. 4 shows that the overall percentage of births for which a month and year of birth were reported is almost 100 percent for both children who have died and children who are alive.

Table C. 4 also shows some age displacement across this boundary for both living and dead children. The distribution of living children and the total number of children show a deficit in 2008 in relation to 2007 and 2009, as denoted by the calendar year ratios. However, this transference is proportionately higher for living children than dead children. The excess in 2007 could have resulted from interviewers knowingly recording a birth as occurring after the cutoff year to cut down on their overall workload, because live births occurring during the five years preceding the interview were the subject of a lengthy set of additional questions. The transference of children, especially deceased children, out of the five-year period preceding the survey is likely to underestimate the true level of childhood mortality for that period, but this does not appear to be the case in Namibia, where the transference is much higher for living than deceased children.

Underreporting of deaths is usually assumed to be higher for deaths that occur very early in infancy. Omission of deaths or misclassification of deaths as stillbirths may also be more common among women who have had several children or in cases where a death took place in the distant past. Two indicators are used to assess the impact of omission on measures of child mortality: the percentage of deaths that occurred in the first seven days to the number that occurred in the first month; and, the percentage of neonatal deaths to infant deaths. It is hypothesised that omission will be more prevalent among those who died immediately after birth than among those who lived longer and that it will be more serious for events that took place in the distant past than for those that occurred in the more recent past. Table C. 5 shows data on age at death for early infant deaths. Selective underreporting of early neonatal deaths would result in an abnormally low ratio of deaths within the first seven days of life to all neonatal deaths. Early infant deaths were not severely underreported in the 2013 NDHS, as suggested by the high ratio of deaths in the first seven days of life to all neonatal deaths (82 percent in the five years preceding the survey).

Heaping of age at death on certain digits is another problem that is inherent in most retrospective surveys. Misreporting of age at death biases age pattern estimates of mortality if the net result is transference of deaths between age segments for which the rates are calculated; for example, child mortality may be overestimated relative to infant mortality if children who died in the first year of life are reported as having died at age 1 or older. In an effort to minimise misreporting of age at death, interviewers were instructed to record deaths under one month in days and deaths under two years in months. In addition, they were trained to probe deaths reported at exactly one year or 12 months to ensure that they had actually occurred at 12 months. The distribution of deaths under two years during the 20 years prior to the survey by month of death shows that there is heaping at age 12 months, with corresponding deficits in adjacent months (Table C.6). This is likely to underestimate infant mortality and overestimate child mortality.

8.2 Infant and Child Mortality Levels and Trends

Table 8.1 presents neonatal, postneonatal, infant, child, and under-5 mortality rates for three fiveyear periods preceding the 2013 NDHS. Neonatal mortality in the most recent period is 20 deaths per 1,000 live births. This rate is similar to the postneonatal rate (19 deaths per 1,000 live births) during the same period. The infant mortality rate in the five years preceding the survey is 39 deaths per 1,000 live births, and the under-5 mortality rate is 54 deaths per 1,000 live births. This means that one in every 26 Namibian children die before reaching age 1, while one in every 19 do not survive to their fifth birthday. Neonatal mortality represents 51 percent of infant mortality. Thus, half of the deaths taking place before the first birthday occur during the first month of life.

Table 8.1 Early childhood mortality rates						
Neonatal, postneonatal, infant, child, and under-5 mortality rates for five-year periods preceding the survey, Namibia 2013						
Years preceding the survey	Approximate calendar years	Neonatal mortality (NN)	Postneonatal mortality (PNN) ${ }^{1}$	Infant mortality ($1 q_{0}$)	Child mortality (4 q_{1})	Under-5 mortality ($5 q_{0}$)
0-4	2008-2012	20	19	39	16	54
5-9	2003-2007	17	25	42	23	64
10-14	1998-2002	25	23	48	18	66
${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates						

Mortality trends can be examined in two ways: by comparing mortality rates for three five-year periods preceding a single survey and by comparing mortality estimates obtained from various DHS surveys. However, comparisons between surveys should be interpreted with caution because of variations in quality of data, time references, and sample coverage. In particular, sampling errors associated with mortality estimates are large and should be taken into account when examining trends between surveys.

Data from the 2013 NDHS show that neonatal mortality declined by 20 percent over the 15 -year period preceding the survey, from 25 to 20 deaths per 1,000 live births. The corresponding declines in postneonatal, infant, and under-5 mortality over the 15 -year period were 17 percent, 19 percent, and 18 percent.

Mortality trends can also be observed by comparing data from the 2013 NDHS with data from the 1992, 2000, and 2006-07 NDHS surveys (Figure 8.1). Infant and under-5 mortality rates in the five years preceding the four surveys confirm a declining trend in mortality. Infant mortality has declined by 32 percent over the last 25 years, from 57 deaths per 1,000 live births in 1987-1991 to 39 deaths per 1,000 live births in 2008-2012. Under-5 mortality declined by 35 percent over the same period, from 83 deaths per 1,000 live births to 54 deaths per 1,000 live births. The data also show 38 percent and 24 percent declines in neonatal and postneonatal mortality, respectively.

However, the data show that there has not been a significant decline in neonatal and infant mortality since 2000. Neonatal mortality remained at 20 deaths per 1,000 live births during 1995-1999 and 2008-2012. Similarly, infant mortality was 38 deaths per 1,000 live births in 1995-1999 and 39 deaths per 1,000 live births in 2008-2012. On the other hand, under-5 mortality declined from 62 to 54 deaths per 1,000 live births during the same time period.

Figure 8.1 Trends in childhood mortality, 1987-2012
Percent

$\square 1992$ NDHS $\square 2000$ NDHS ■2006-07 NDHS ■ 2013 NDHS

8.3 Socioeconomic Differentials in Early Childhood Mortality

Table 8.2 shows differentials in infant and child mortality by residence, region, mother's education, and wealth quintile. Mortality estimates are calculated for the 10-year period before the survey so that the rates are based on a sufficient number of cases in each category to ensure statistically reliable estimates.

Table 8.2 Early childhood mortality rates by socioeconomic characteristics					
Neonatal, postneonatal, infant, child, and under-5 mortality rates for the 10-year period preceding the survey, by background characteristics, Namibia 2013					
Background characteristic	Neonatal mortality (NN)	Postneonatal mortality (PNN) ${ }^{1}$	Infant mortality ($1 q_{0}$)	Child mortality (4 q_{1})	Under-5 mortality ($5 \mathrm{q}_{0}$)
Residence					
Urban	16	19	35	20	54
Rural	22	25	46	18	64
Region					
Zambezi	23	30	53	(21)	(73)
Erongo	19	18	37	16	53
Hardap	11	18	29	(9)	(38)
//Karas	17	19	36	9	44
Kavango	27	35	62	38	97
Khomas	12	15	27	15	41
Kunene	25	14	39	6	45
Ohangwena	22	31	53	28	79
Omaheke	30	12	41	5	46
Omusati	11	20	30	15	45
Oshana	13	(24)	(37)	(10)	(46)
Oshikoto	27	20	47	22	68
Otjozondjupa	15	14	30	22	51
Mother's education					
No education	26	30	56	22	76
Primary	20	29	50	23	71
Secondary	18	20	38	17	55
More than secondary	(10)	(0)	(10)	(14)	(24)
Wealth quintile					
Lowest	23	28	51	17	67
Second	19	26	45	24	68
Middle	19	23	41	25	66
Fourth	19	19	37	19	56
Highest	11	11	22	8	31

Note: Figures in parentheses are based on 250 to 499 children exposed to the risk of mortality.
${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates

Infant and under-5 mortality are higher in rural areas than in urban areas. For example, infant mortality in rural areas is 46 deaths per 1,000 live births, as compared with 35 deaths per 1,000 live births in urban areas. Rural-urban differences are also noticeable in the case of neonatal and postneonatal mortality rates. However, child mortality is slightly lower in rural areas than in urban areas.

There are wide differentials in infant and under-5 mortality by region. For example, under-5 mortality ranges from 41 deaths per 1,000 live births in Khomas to 97 deaths per 1,000 live births in Kavango.

Mother's education and household wealth also directly affect the survival of young children. For example, under- 5 mortality decreases from 76 deaths per 1,000 live births among children of mothers with no education to 55 deaths among children of mothers with a secondary education.

Similarly, under-5 mortality is 67 deaths per 1,000 live births among children in the poorest households, as compared with 31 deaths per 1,000 live births among children in the wealthiest households. Thus, under-5 mortality is more than twice as high in the lowest wealth quintile as in the highest quintile. A similar pattern is observed for all other mortality rates. These findings point to the potential for mortality reduction that could result from successful efforts to target the most vulnerable populations, such as the poorly educated and socioeconomically disadvantaged groups of women.

8.4 Demographic Differentials in Early Childhood Mortality

The relationship between early childhood mortality and various demographic variables is examined in Table 8.3. With the exception of postneonatal mortality, childhood mortality is higher for male than female children. The largest difference is in the under-5 mortality rate (54 deaths per 1,000 live births among girls and 64 deaths per 1,000 live births among boys).

Table 8.3 Early childhood mortality rates by demographic characteristics
Neonatal, postneonatal, infant, child, and under-5 mortality rates for the 10 -year period preceding the survey, by demographic characteristics, Namibia 2013

Demographic characteristic	Neonatal mortality (NN)	Postneonatal mortality (PNN) ${ }^{1}$	Infant mortality ($1 q_{0}$)	Child mortality (4 q_{1})	Under-5 mortality (590)
Child's sex					
Male	23	21	44	21	64
Female	14	23	37	18	54
Mother's age at birth					
<20	19	23	42	15	56
20-29	18	20	38	20	58
30-39	19	26	45	17	62
40-49	(20)	(13)	(33)	*	*
Birth order					
1	19	18	37	18	55
2-3	18	22	41	17	57
4-6	17	25	42	24	65
7+	(26)	(34)	(59)	(23)	(81)
Previous birth interval ${ }^{2}$					
<2 years	35	38	73	24	96
2 years	18	23	41	16	56
3 years	18	15	33	10	43
4+ years	14	22	36	24	59
Birth size ${ }^{3}$					
Small/very small	43	30	73	*	*
Average or larger	11	16	28	na	na

Note: Figures in parentheses are based on 250 to 499 unweighted children exposed to the risk of mortality. An asterisk indicates that an estimate is based on fewer than 250 unweighted children and has been suppressed.
na = Not available
${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates
${ }^{2}$ Excludes first-order births
${ }^{3}$ Rates for the five-year period before the survey

The relationship between maternal age at birth and neonatal, postneonatal, and infant mortality is U-shaped, with rates being relatively higher among children born to mothers under age 20 and over age 30 than among children born to mothers in the 20-29 age group. However, under-5 mortality increases with mother's age at birth. There is an inverted U-shaped relationship between child mortality and mother's age. With the exception of neonatal mortality, childhood mortality generally increases with increasing birth order. For example, under- 5 mortality rises from 55 deaths per 1,000 live births among first births to 65 deaths among births of order four to six.

Studies have shown that a longer birth interval seems to increase a child's chance of survival. Data from the 2013 NDHS support this observation. For example, under-5 mortality decreases from 96 deaths per 1,000 live births among children born less than two years after a preceding sibling to 43-59 deaths per 1,000 live births among children born two years or longer after a preceding sibling. Child, infant, postneonatal, and neonatal mortality rates also generally decline as the interval between births increases. These findings point to the potential for mortality reduction that could result from successful efforts to promote birth spacing in Namibia.

A child's size at birth is an indicator of the risk of dying during infancy, particularly during the first month of life. In the 2013 NDHS, in addition to recording the actual birth weight, interviewers asked mothers whether their children born in the last five years were very small, small, average in size, large, or very large at birth. This type of subjective assessment has been shown to correlate closely with actual birth weight. Survey results indicate that newborns perceived by their mothers to be very small or small were more likely to die in their first year than those perceived as average or larger in size; the differential was especially great with respect to infant mortality.

8.5 Perinatal Mortality

Pregnancy losses occurring after seven completed months of gestation (stillbirths) and deaths of live births within the first seven days of life (early neonatal deaths) are defined as perinatal deaths. The distinction between a stillbirth and an early neonatal death is recognised as a fine one, often depending on observing and then remembering sometimes faint signs of life after delivery. Furthermore, the causes of stillbirths and early neonatal deaths are closely linked, and examining just one or the other can understate the true level of mortality around the time of delivery. For this reason, deaths around the time of delivery are combined to provide the perinatal mortality rate. Information on stillbirths is available for the five years preceding the survey and was collected using the calendar section of the Woman's Questionnaire.

Table 8.4 indicates that the perinatal mortality rate for the country as a whole is 24 deaths per 1,000 pregnancies of seven or more months in duration. Differentials in perinatal mortality across selected maternal background characteristics vary widely. For example, perinatal mortality is particularly high in Zambezi and Kunene (34 deaths and 32 deaths per 1,000 pregnancies, respectively) compared with 11 deaths and 12 deaths per 1,000 pregnancies in Omusati and Otjozondjupa, respectively. Perinatal mortality is higher among mothers age 30-39 than among mothers in the other age groups and slightly higher in urban than rural areas. In addition, it is highest for pregnancies with a previous pregnancy interval of 27 to 38 months. There is no consistent relationship between perinatal mortality and mother's education or wealth quintile.

Table 8.4 Perinatal mortality				
Number of stillbirths and early neonatal deaths, and the perinatal mortality rate for the five-year period preceding the survey, by background characteristics, Namibia 2013				
Background characteristic	Number of stillbirths ${ }^{1}$	Number of early neonatal deaths ${ }^{2}$	Perinatal mortality rate ${ }^{3}$	Number of pregnancies of 7+ months' duration
Mother's age at birth				
<20	3	12	20	768
20-29	11	38	20	2,458
30-39	23	25	33	1,418
40-49	2	3	25	198
Previous pregnancy interval in months ${ }^{4}$				
First pregnancy	11	22	20	1,614
<15	0	7	17	425
15-26	5	11	25	659
27-38	5	11	32	509
39+	19	25	26	1,635
Residence				
Urban	21	37	25	2,367
Rural	18	39	23	2,476
Region				
Zambezi	3	7	34	299
Erongo	1	6	21	336
Hardap	1	2	18	174
//Karas	1	3	19	166
Kavango	5	12	30	583
Khomas	12	13	28	899
Kunene	2	4	32	181
Ohangwena	3	8	19	602
Omaheke	1	3	27	151
Omusati	2	3	11	456
Oshana	5	4	30	315
Oshikoto	3	8	29	375
Otjozondjupa	0	4	12	308
Mother's education				
No education	1	6	23	299
Primary	9	20	25	1,134
Secondary	27	46	23	3,100
More than secondary	3	5	26	310
Wealth quintile				
Lowest	10	16	24	1,057
Second	5	18	21	1,058
Middle	11	17	28	1,008
Fourth	6	19	26	1,006
Highest	7	7	20	714
Total	39	77	24	4,843

${ }^{1}$ Stillbirths are foetal deaths in pregnancies lasting 7 or more months.
${ }^{2}$ Early neonatal deaths are deaths at age 0-6 days among live-born children.
${ }^{3}$ The sum of the number of stillbirths and early neonatal deaths divided by the number of pregnancies of 7 or more months' duration, expressed per 1,000 ${ }^{4}$ Categories correspond to birth intervals of <24 months, 24-35 months, 36-47 months, and 48+ months.

8.6 High-Risk Fertility Behaviour

Typically, infants and young children have a higher risk of dying if they are born to very young mothers or older mothers, if they are born after a short birth interval, or if their mothers have already had many children. In this analysis, mothers are classified as at risk if they are younger than age 18 or older than age 34 at the time of childbirth. A short birth interval is defined as less than 24 months, and a highorder birth is defined as occurring after three or more previous births (i.e., birth order three or higher). A child may be at an elevated risk of dying due to a combination of factors.

The first column of Table 8.5 shows the percentage of births in the five years before the survey classified by various risk categories. Overall, 40 percent of births involved at least one avoidable risk factor, with about 27 percent involving a single risk factor and about 14 percent involving multiple risk factors.

Table 8.5 High-risk fertility behaviour
Percent distribution of children born in the five years preceding the survey by category of elevated risk of mortality and the risk ratio, and percent distribution of currently married women by category of risk if they were to conceive a child at the time of the survey, Namibia 2013
$\left.\begin{array}{lccc}\hline & \text { Births in the } 5 \text { years preceding the } \\ \text { survey }\end{array}\right)$

Note: Risk ratio is the ratio of the proportion dead among births in a specific high-risk category to the proportion dead among births not in any high-risk category. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.
na = Not applicable
${ }^{1}$ Women are assigned to risk categories according to the status they would have at the birth of a child if they
were to conceive at the time of the survey: current age less than 17 years and 3 months or older than 34 years
and 2 months, latest birth less than 15 months ago, or latest birth being of order 3 or higher.
${ }^{2}$ Includes the category age <18 and birth order >3
a Includes sterilised women

The second column in Table 8.5 presents risk ratios, which represent the increased risk of mortality among births in various high-risk categories relative to births not having any high-risk characteristics. Young mothers whose age at birth is less than 18 (risk ratio of 1.26) and birth order higher than three (risk ratio of 1.08) are the single factors most associated with an increased risk of under-5 mortality in Namibia. Overall, the risk ratio for births involving a single risk factor was 0.97 . Multiple risk factor births were generally associated with higher risk ratios than single risk factor births, with an overall risk ratio of 1.24. The most vulnerable births are those to women older than age 34 with a birth interval of less than 24 months and a birth order higher than three. This group of children is more than twice as likely to die as children not in any high-risk category. However, only 1 percent of births fall in this category.

The third column of Table 8.5 shows the distribution of currently married women by the risk category into which a birth conceived at the time of the survey would fall. The data show that 34 percent of women are not in any high-risk category, and only 5 percent are at risk of having their first birth between age 18 and age 34 , which is considered to be an unavoidable risk. Sixty-one percent of currently married women have at least one avoidable risk factor, with 25 percent having a single risk factor and 36 percent having multiple risk factors.

Key Findings

- Direct estimates of mortality show that the level of adult mortality is higher among men than among women (7.3 deaths and 5.2 deaths per 1,000 population, respectively).
- Nineteen percent of women and 27 percent of men are likely to die between exact ages 15 and 50. Comparisons with previous NDHS surveys do not show a consistent trend in these probabilities over time.
- Maternal deaths account for 9 percent of all deaths among women age 15-49. The maternal mortality rate for the 10-year period preceding the survey was 0.44 maternal deaths per 1,000 woman-years of exposure.
- The maternal mortality ratio was 385 maternal deaths per 100,000 live births during the 10 years preceding the survey. The 2013 estimate of the MMR is lower than the MMR in the 2006-07 NDHS (449) but higher than in 2000 and 1992 (271 and 249, respectively). However, this difference between the 2013 NDHS and the three previous surveys is not statistically significant.

Following the launch of the Safe Motherhood Initiative in 1987, attention to reproductive health has increased worldwide, as has the need for reliable countrywide estimates of maternal deaths. The estimate of maternal mortality that is most commonly used in developing countries (pregnancyrelated mortality) is based only on the timing of death relative to pregnancy. Pregnancy-related deaths are any deaths among women during pregnancy or within two months following the termination of a pregnancy, including deaths from accidental or incidental causes. Discussions of pregnancy-related deaths generally include four measures. The pregnancy-related mortality ratio, which is the most common measure, is defined as the number of pregnancy-related deaths during a given time period per 100,000 live births during the same time period. The pregnancy-related mortality rate refers to the number of pregnancy-related deaths in a given time period per 1,000 woman-years of exposure during the same period. The probability of dying from a pregnancy-related cause during a woman's reproductive life is the adult lifetime risk of pregnancy-related death. The final measure is the proportion of all deaths among women that are pregnancy related (proportion of pregnancy-related deaths).

The Maternal Mortality Estimation Inter-agency Group (WHO et al., 2014) estimated that, from 1990 to 2013, the global maternal mortality ratio declined by 45 percent, from 380 deaths to 210 deaths per 100,000 live births. This translates to an average annual rate of reduction of 2.6 percent. While impressive, this is less than half of the 5.5 percent rate needed to achieve the three-quarters reduction in maternal mortality targeted for 2015 in Millennium Development Goal 5. The number of women and girls who died each year from complications of pregnancy and childbirth declined from 523,000 in 1990 to 289,000 in 2013. Almost all of these deaths (99 percent) occur in developing countries. The risks of dying during pregnancy and childbirth are increased by women's lack of empowerment, education, and access to economic resources, as well as poor nutrition and a heavy physical workload during pregnancy. Most maternal deaths could be prevented by ensuring good-quality maternal health services, such as antenatal and postnatal care, and skilled assistance during childbirth, including emergency obstetric care. Prevention of unwanted pregnancies and provision of safe abortion services, as allowed by law, could reduce maternal deaths and injuries caused by unsafe abortions. High-quality family planning services, counselling, and information could further reduce maternal deaths and injuries.

This chapter includes results based on sibling history data collected in the sibling survival module (commonly referred to as the maternal mortality module) of the 2013 NDHS Woman's Questionnaire. In addition to adult mortality rates for five-year age groups, a summary measure ($35 \mathrm{q}_{15}$) is included that represents the probability of dying between exact ages 15 and 50. Also, data collected in the 1992, 2000, 2006-07, and 2013 NDHS surveys are used to examine trends in adult mortality probabilities.

The term maternal mortality used in this chapter (and in previous NDHS surveys) corresponds to the term pregnancy-related mortality as defined by WHO. In keeping with this definition, the sibling survival module used in the DHS surveys measures only the timing of deaths and not the cause. The data collected in the NDHS questionnaire are based on information about deaths during the two months following a birth.

9.1 Assessment of Data Quality

To obtain a sibling history, the 2013 NDHS first asked each female respondent to list all children born to her biological mother, starting with the firstborn. The respondent was then asked whether each of these siblings was still alive. For living siblings, the interviewer asked the current age of each sibling. For deceased siblings, the age at death and the number of years since death were recorded. When a respondent could not provide precise information on age at death or years since death, approximate but quantitative answers were accepted. For sisters who died at age 12 or older, three questions were asked to determine whether the death was maternity-related: "Was [NAME OF SISTER] pregnant when she died?" and, if the response was negative, "Did she die during childbirth?" and, if not, "Did she die within two months after the end of a pregnancy or childbirth?"

A brief discussion of data quality is warranted here. This discussion refers to tables in Appendix C. One measure of the quality of the data collected is the completeness of information on siblings. Table C. 8 in Appendix C shows that, in the 2013 NDHS, a total of 44,805 siblings were recorded in the sibling histories. The survival status was not reported for 40 siblings (0.1 percent). Among surviving siblings current age was not reported for 1,197 siblings (3 percent). For more than 87 percent of deceased siblings, both age at death (AD) and years since death (YSD) were reported. In 8 percent of cases, both AD and YSD were missing. Rather than excluding siblings with missing information from the analysis, the information on the birth order of siblings in conjunction with other information is used to impute the missing data. ${ }^{1}$ In addition, the 2013 NDHS data show that deaths among 11 percent of sisters could not be classified as maternal or non-maternal (data not shown separately).

Another crude measure of data quality is the mean number of siblings, or mean sibship size (Table C.9). Sibship size is expected to decline as fertility declines over time. The data show that there has been a general decline in sibship size from the oldest to the youngest age group in line with the long-term decline in fertility observed in Namibia. The sex ratio of the enumerated siblings (the ratio of brothers to sisters multiplied by 100) is 100.5 (Table C.9), which is higher than the sex ratio of 94 that was reported in the 2011 Population and Housing Census (NSA, 2012) but closer to the internationally accepted ratio of 103105.

[^7]
9.2 Estimates of Adult Mortality

Yet another way to assess the quality of data used to estimate maternal mortality is to evaluate the plausibility and stability of overall adult mortality estimates. If the estimated rates of overall adult mortality are implausible, rates based on a subset of deaths-maternal mortality in particular-are likely to have serious problems.

The direct estimation of adult mortality uses the reported ages at death and years since death of the respondents' brothers and sisters. Mortality rates are calculated by dividing the number of deaths in each age group of women and men by the total personyears of exposure to the risk of dying in that age group during a specified period prior to the survey. To have a sufficiently large number of adult deaths to generate a robust estimate, the rates are calculated for the 10 year period preceding the survey (roughly mid-2004 to mid-2013). Nevertheless, age-specific mortality rates

Table 9.1 Adult mortality rates			
Direct estimates of female and male mortality rates for the 10 years preceding the survey, by five-year age groups, Namibia 2013			
Age	Deaths	Exposure years	Mortality rate ${ }^{1}$
FEMALE			
15-19	52	28,264	1.84
20-24	82	30,457	2.70
25-29	143	28,315	5.04
30-34	197	23,790	8.30
35-39	144	17,203	8.39
40-44	84	11,350	7.37
45-49	54	7,182	7.46
15-49	756	146,562	$5.19^{\text {a }}$
MALE			
15-19	50	27,279	1.84
20-24	96	29,577	3.26
25-29	171	28,095	6.09
30-34	212	23,906	8.87
35-39	212	17,334	12.25
40-44	152	10,735	14.12
45-49	98	6,241	15.73
15-49	992	143,166	$7.33{ }^{\text {a }}$

${ }^{1}$ Expressed per 1,000 population
${ }^{1}$ age-adjusted rate obtained in this manner are subject to considerable sampling variation.

Table 9.1 shows age-specific mortality rates for women and men age 15-49 for the 10 years preceding the survey. Overall, the level of adult mortality is much higher among men (7.3 deaths per 1,000 population) than among women (5.2 deaths per 1,000 population). Age-specific mortality rates are higher for men than for women in most age groups, but none of the differences are statistically significant. In general, age-specific mortality rates show the expected increases with increasing age among both men and women. The confidence intervals for these rates can be found in Appendix Table B.18. Confidence intervals for many of the five-year mortality rates overlap.

Table 9.2 shows a summary measure of the risk of dying between exact ages 15 and 50 ($3_{5} \mathrm{q}_{15}$). Based on the 2013 NDHS results, 19 percent of women and 27 percent of men are likely to die between age 15 and age 50. Ten-year ${ }_{35} \mathrm{q}_{15}$ estimates based on data from the 1992, 2000, and 2006-07 NDHS surveys show that men and women had a higher probability of dying between exact ages 15 and 50 in 2006-07 than in 2013, with the rates for the former survey year much

Table 9.2 Adult mortality probabilities
The probability of dying between the ages of 15 and 50 among women and men for the 10 years preceding the survey, Namibia 2013

	Female		Male
Survey	$35 \mathrm{q}_{15}{ }^{1}$		${ }_{35 \mathrm{q}_{15}{ }^{1}}$
2013 NDHS	186		267
2006-07 NDHS	294		374
2000 NDHS	155		238
1992 NDHS	115	216	

${ }^{1}$ The probability of dying between exact ages 15 and 50 expressed per 1,000 person-years of exposure higher than the latter. However, data from the 1992 and 2000 surveys show that the probabilities of dying for both men and women were lower than in 2013. In the two decades between the 1992 and 2013 NDHS surveys, the probability of dying between exact ages 15 and 50 increased among both women (from 12 percent to 19 percent) and men (from 22 percent to 27 percent). Confidence intervals for the ${ }_{35} \mathrm{q}_{15}$ estimates can be found in Appendix Table B.18.

9.3 Estimates of Maternal Mortality

It should be kept in mind that maternal mortality is difficult to measure because large sample sizes are required to calculate accurate estimates. The maternal mortality estimates presented here are subject to large sampling errors because cost and time considerations make it impossible to draw a sample large
enough to keep sampling errors reasonably small. Thus, caution should be exercised when interpreting maternal mortality data collected in any survey, and especially when comparing two or more previously conducted surveys. Definite conclusions should be based on the confidence intervals associated with maternal mortality data. Changes can be reported as significantly different only when confidence intervals do not overlap. When confidence intervals overlap, one cannot conclusively state that there has been any change in rates or ratios over the periods being compared.

Table 9.3 presents direct estimates of maternal mortality for the 10 -year period preceding the survey. The maternal mortality rate among women age $15-49$ is 0.44 maternal deaths per 1,000 womanyears of exposure, a rate 15 percent lower than that reported in the 2006-07 NDHS. However, the rate is 7 percent higher than that reported in 1992 and 16 percent higher than that reported in 2000. By five-year age groups, the maternal mortality rate is highest among women age 35-39 (0.83). The confidence intervals for maternal mortality rates can be found in Appendix Table B.18. In the 2013 NDHS, maternal deaths represent 9 percent of all deaths among women age 15-49, as compared with 6 percent in 2006-07, 10 percent in 2000, and 13 percent in 1992. The percentage of female deaths that are maternal varies by age, rising from 8 percent among women age 15-19 to a peak of 13 percent among women age 20-24 and then declining to 6 percent among women age 45-49. The sharp decline in the 25-29 and 30-34 age groups is anomalous to the pattern of a gradual decline at older ages.

Table 9.3 Maternal mortality				
Direct estimates of maternal mortality rates for the 10 years preceding the survey, by five-year age groups, Namibia 2013				
Age	Percentage of female deaths that are maternal	Maternal deaths	Exposure years	Maternal mortality rate ${ }^{1}$
15-19	8.4	4	28,264	0.15
20-24	12.7	10	30,457	0.34
25-29	6.8	10	28,315	0.34
30-34	8.8	17	23,790	0.73
35-39	9.9	14	17,203	0.83
40-44	6.7	6	11,350	0.50
45-49	6.2	3	7,182	0.46
15-49	8.6	65	146,562	0.44
General fertility rate (GFR) ${ }^{2}$		115		
Lifetime risk of maternal death ${ }^{3}$		$0.014^{\text {a }}$		
			Confidenc	Intervals
2013 NDHS maternal mortality ratio (MMR) ${ }^{4}$		385	259	511
2006-07 NDHS maternal mortality ratio (MMR) ${ }^{4}$		449	325	572
2000 NDHS maternal mortality ratio (MMR) ${ }^{4}$		271	174	367
1992 NDHS maternal mortality ratio (MMR) ${ }^{4}$		249	159	339
${ }^{1}$ Expressed per 1,000 woman-years of exposure				
${ }^{2}$ Expressed per 1,000 women age 15-49				
${ }^{3}$ Calculated as 1-(1-MMR) ${ }^{\text {TFR }}$, where TFR represents the total fertility rate for the 10 years preceding the survey				
${ }^{4}$ Expressed per 100,000 live births; calculated as the age-adjusted maternal mortality rate multiplied by 100 and divided by the age-adjusted general fertility rate				

The maternal mortality rate can be converted to a maternal mortality ratio (expressed as deaths per 100,000 live births) by dividing the rate by the general fertility rate (GFR) of 115 that prevailed during the same time period and multiplying the result by 100,000 . This procedure produces a maternal mortality ratio (MMR) of 385 deaths per 100,000 live births during the 10-year period preceding the survey (Table 9.3). In other words, for every 1,000 live births in Namibia during the 10 years preceding the 2013 NDHS, about four women died during pregnancy, during childbirth, or within two months of childbirth. The lifetime risk of maternal death (0.014) indicates that about 1 percent of women die during pregnancy, during childbirth, or within two months of childbirth.

Table 9.3 also shows a comparison of maternal mortality ratios for all four NDHS surveys with their respective confidence intervals. The estimated maternal mortality ratio calculated for the 10 years preceding the survey is lower in the 2013 NDHS than in the 2006-07 NDHS (449) but higher than in 2000 and 1992 (271 and 249, respectively). However, as shown in Figure 9.1, the confidence intervals
surrounding the maternal mortality ratios calculated for all four surveys overlap. Because it is still possible for a difference to be statistically significant even if the confidence intervals overlap, a statistical test of significance was conducted. The test concluded that there is no significant difference between the 2013 NDHS estimate of the MMR and all the previous survey estimates. Therefore, any change in the MMR estimates from the most recent NDHS and the three previous surveys was not large enough to be statistically significant.

Figure 9.1 Maternal mortality ratios with confidence intervals for the 10 years preceding the 1992, 2000, 2006-07, and 2013 NDHS surveys (per 100,000 live births)

MATERNAL HEALTH CARE

Key Findings

- Ninety-seven percent of women age 15-49 who gave birth in the five years preceding the survey received antenatal care from a skilled provider during the pregnancy for their most recent birth. Forty-three percent of women received antenatal care during their first trimester.
- The percentage of pregnant women with four or more antenatal care visits declined from 70 percent in 2006-07 to 63 percent in 2013.
- Thirty-six percent of women who gave birth in the five years preceding the survey received two or more tetanus toxoid injections during pregnancy, ensuring that their most recent live birth was protected against neonatal tetanus.
- Eighty-seven percent of live births in the five years preceding the survey took place in a health facility, and 88 percent were delivered by a skilled provider. However, only 73 percent of births to women in the lowest wealth quintile were delivered by a skilled provider, in contrast to 98 percent of births to women in the highest quintile.
- Among women who gave birth in the two years preceding the survey, 69 percent received a postnatal checkup within the first two days after birth, and 68 percent received the checkup from a skilled provider.
- Twenty-eight percent of women report that getting money for treatment is a serious problem in accessing health care when they are sick; 31 percent indicate that distance to a health facility is a serious problem.

TThe health care services that a woman receives during pregnancy, childbirth, and the immediate postnatal period are important for the survival and well-being of both mother and infant. The 2013 NDHS obtained information on the extent to which women in Namibia receive care during each of these stages. These results are important to those who design policies and implement programmes to improve maternal and child health care services.

Pregnancy and childbirth are normal and healthy events that most women, couples, and families aspire to at some point in their lives. However, this normal, life-affirming process might carry serious lifethreatening risks of death and disability. Even though maternal mortality ratios and child mortality rates worldwide have declined over the past two decades, more than 289,000 women still die each year (World Health Organization [WHO] et al., 2014), and about 7 million children do not see their fifth birthday (WHO, 2014). Yet most of these deaths could be avoided if preventive measures were taken and adequate care accessed when needed. The tragedies of maternal mortality are well documented, and children's lives are also affected when mothers die. Maternal and child mortality are litmus tests of the status of women, their access to health care, and the adequacy of the health care system to respond to their needs.

Access to emergency obstetric care is unevenly distributed. The human resources for health at the lower levels of the health care delivery system are not adequately equipped with life-saving skills to provide emergency obstetric and neonatal care services. In addition to the above-mentioned constraints, access to health services is another challenge in Namibia because of long distances to the nearest health provider and the vastness of the country. About 21 percent of the country's residents live more than 10 km from a health facility and must travel long distances to access basic and comprehensive emergency obstetric care services (Ministry of Health and Social Services [MoHSS], 2013b).

Namibia is committed to reducing maternal mortality. This is evident in the multisectoral institutional structures the country has put in place, along with training of personnel in emergency obstetric and neonatal care, routine maternal death reviews, an enhanced referral system, construction of new health facilities and maternity waiting homes (and renovations of existing facilities), procurement of medical equipment and essential medicines, strengthening of adolescents' sexual and reproductive health and rights, and improved efforts to prevent mother-to-child transmission of HIV. Other health interventions undertaken to improve maternal health include enhanced antenatal, delivery, and postnatal care services; preventive treatment of malaria during pregnancy; and tetanus toxoid immunisation.

Namibia has developed a road map to expedite the achievement of maternal health targets. The Ministry of Health and Social Services is building the capacity of reproductive health service providers at all levels to ensure the availability and maintenance of essential medicines and equipment, as well as designing clinics to cater to all relevant health needs. The aim is to reduce maternal and neonatal mortality by focusing on community sensitisation and mobilisation, aided by the country's newly created cadre of health extension workers.

10.1 Antenatal Care

Antenatal care from a skilled provider is important to monitor the pregnancy and reduce the risks for both mother and child during pregnancy, at delivery, and during the postnatal period. Antenatal care enables (1) screening and/or early detection of complications and prompt treatment (e.g., of sexually transmitted infections or anaemia), (2) prevention of diseases through immunisation and micronutrient supplementation, (3) birth preparedness and complication readiness, (4) health promotion and disease prevention through health messages, and (5) counselling of pregnant women (e.g., on prevention of mother-to-child transmission of HIV) and referral of mothers with complications.

Collecting information on antenatal care is relevant for identifying subgroups of women who do not use such services and is useful in planning improvements in the services provided. In the 2013 NDHS, women who had given birth in the five years preceding the survey were asked whether they had received antenatal care for their last live birth. If the respondent had received antenatal care for her last birth, she was then asked a series of questions about the care she received, such as the type of provider, number of visits made, stage of pregnancy at the time of the first visit, and services and information provided during visits. For women with two or more live births during the five-year period preceding the survey, data refer to the most recent birth.

Table 10.1 presents information about the type of provider from whom antenatal care services were received for the most recent birth, according to background characteristics. In the case of women who reported more than one source of prenatal services, only data for the provider with the highest qualifications are presented in the table. Ninety-seven percent of women age 15-49 who had a live birth in the five years preceding the survey received antenatal care from a skilled provider (doctor or nurse/midwife) during their last pregnancy. This figure is higher than that reported in the 2006-07 NDHS (95 percent). Seventeen percent of women received care from a doctor and 79 percent from a nurse/midwife. Three percent of women received no antenatal care, as compared with 4 percent in the 2006-07 NDHS.

Due to the very high percentage of women receiving antenatal care from a skilled provider, there are only marginal overall differences by background characteristics. However, there are notable differences in receipt of skilled care from a doctor. Women in Khomas (41 percent) are much more likely than women in the other regions to receive care from a doctor. In addition, women in urban areas are more than three times as likely as those in rural areas to receive antenatal care from a doctor (26 percent versus 8 percent). Furthermore, women age $35-39$, those who have $1-3$ children, women with more than a secondary education, and those in the highest wealth quintile are most likely to receive ANC from a doctor. Overall, antenatal care coverage by a skilled provider is relatively lower in Omaheke (89 percent) and Otjozondjupa (92 percent) than in the other regions (95 percent and higher).

Table 10.1 Antenatal care
Percent distribution of women age $15-49$ who had a live birth in the five years preceding the survey by antenatal care (ANC) provider during pregnancy for the most recent birth and the percentage receiving antenatal care from a skilled provider for the most recent birth, according to background characteristics, Namibia 2013

Background characteristic	Antenatal care provider						No ANC	Total	Percentage receiving antenatal care from a skilled provider ${ }^{1}$	Number of women
	Doctor	Nurse/ midwife	Community health worker	Traditional birth attendant	Other	Missing				
Mother's age at birth										
<20	10.1	85.2	0.0	0.0	0.0	0.6	4.2	100.0	95.2	592
20-34	17.8	79.4	0.0	0.0	0.1	0.3	2.5	100.0	97.1	2,619
35-49	21.7	74.2	0.0	0.0	0.0	0.3	3.8	100.0	95.9	630
Birth order										
1	19.5	77.6	0.0	0.0	0.2	0.4	2.2	100.0	97.2	1,288
2-3	18.7	78.8	0.0	0.0	0.0	0.2	2.2	100.0	97.5	1,603
4-5	13.6	81.1	0.1	0.0	0.0	0.4	4.7	100.0	94.8	605
6+	8.0	85.7	0.0	0.0	0.2	0.1	5.9	100.0	93.8	346
Residence										
Urban	26.1	70.6	0.0	0.0	0.1	0.4	2.8	100.0	96.7	1,970
Rural	7.9	88.7	0.0	0.0	0.0	0.3	3.2	100.0	96.5	1,871
Region										
Zambezi	5.2	91.9	0.2	0.0	0.0	0.0	2.7	100.0	97.1	239
Erongo	20.7	77.9	0.0	0.0	0.0	0.5	0.9	100.0	98.6	285
Hardap	12.5	84.3	0.0	0.0	0.0	0.0	3.2	100.0	96.8	133
//Karas	21.8	75.3	0.0	0.0	0.0	0.4	2.5	100.0	97.1	136
Kavango	3.6	92.7	0.0	0.0	0.0	0.0	3.7	100.0	96.3	448
Khomas	41.0	54.7	0.0	0.0	0.3	0.5	3.5	100.0	95.7	771
Kunene	8.4	86.8	0.0	0.1	0.0	0.3	4.5	100.0	95.2	133
Ohangwena	8.5	89.6	0.0	0.0	0.0	0.3	1.6	100.0	98.1	440
Omaheke	16.3	72.6	0.0	0.0	0.5	0.2	10.4	100.0	88.8	107
Omusati	5.4	93.9	0.0	0.0	0.0	0.0	0.8	100.0	99.2	350
Oshana	17.3	81.4	0.0	0.0	0.0	0.8	0.6	100.0	98.7	261
Oshikoto	17.4	80.0	0.0	0.0	0.0	0.0	2.6	100.0	97.4	290
Otjozondjupa	12.4	79.3	0.0	0.0	0.0	0.9	7.4	100.0	91.7	248
Education										
No education	5.4	82.2	0.0	0.0	0.3	0.5	11.6	100.0	87.7	218
Primary	8.0	87.2	0.0	0.0	0.0	0.3	4.6	100.0	95.2	836
Secondary	16.1	81.7	0.0	0.0	0.0	0.3	1.9	100.0	97.8	2,517
More than secondary	65.9	31.5	0.0	0.0	0.9	0.9	0.8	100.0	97.4	271
Wealth quintile										
Lowest	5.7	89.8	0.0	0.0	0.1	0.1	4.3	100.0	95.5	756
Second	7.5	88.4	0.0	0.0	0.0	0.3	3.7	100.0	95.9	819
Middle	10.4	87.0	0.1	0.0	0.0	0.2	2.3	100.0	97.5	807
Fourth	20.0	77.6	0.0	0.0	0.0	0.0	2.4	100.0	97.6	846
Highest	49.5	47.1	0.0	0.0	0.4	1.1	2.0	100.0	96.6	614
Total	17.2	79.4	0.0	0.0	0.1	0.3	3.0	100.0	96.6	3,842

Note: If more than one source of ANC was mentioned, only the provider with the highest qualifications is considered in this tabulation.
${ }^{1}$ Skilled provider includes doctor, nurse, and midwife.

10.2 Number and Timing of Antenatal Care Visits

Antenatal care is more effective in preventing adverse pregnancy outcomes when it is sought early in the pregnancy and continued through to delivery. The goal-directed antenatal care strategy implemented in Namibia is designed to address the prevention, early detection, and management of conditions that affect pregnancy outcomes for both the mother and the newborn. WHO recommends that a woman without complications have at least four comprehensive antenatal care visits. WHO further recommends that the first prenatal visit occur within the initial 12 weeks of the pregnancy and the second visit between weeks 12 and 18, followed by visits every four weeks until week 28 and every 1-2 weeks thereafter. The government of Namibia recommends a slightly different schedule. The first visit is recommended at less than 16 weeks, the second between weeks 20 and 24, the third between weeks 28 and 32, and the fourth at 36 weeks (MoHSS, 2013c). Each of these visits should consist of a well-defined set of activities related to screening for conditions likely to increase adverse outcomes, provision of therapeutic interventions known to be beneficial, education of pregnant women about planning for a safe birth, and provision of information on emergencies during pregnancy and how to deal with them. Women with complications, special needs, or conditions beyond the scope of basic care will require additional visits.

In the 2013 NDHS, respondents were asked how many antenatal care visits they made during the pregnancy for their last birth in the five years preceding the survey and how many months pregnant they were at the time of the first visit. Table 10.2 shows that 63 percent of women with a live birth in the five years preceding the survey had four or more antenatal care visits, 10 percent had two to three visits, and 1 percent had one visit only. Urban women were more likely to have had at least four visits (64 percent) than rural women (61 percent). The percentage of pregnant women with four or more antenatal care visits has declined from 70 percent in the 2006-07 NDHS survey.

Table 10.2 also shows that 43 percent of women had their first visit before their fourth month of pregnancy, as recommended. The median duration of pregnancy at the first visit was 4.2 months, down from 4.7 months in the 2006-07 NDHS.

10.3 Components of Antenatal care

The content of antenatal care is an essential component of the quality of services. Apart from receiving basic care, every pregnant woman should be monitored for complications. Ensuring that pregnant women receive information and undergo screening for complications should be a routine part of all antenatal care visits. To assess antenatal care services, respondents were asked whether they had been advised of complications or received certain screening tests during at least one of their antenatal care visits.

Table 10.3 presents information on the percentages of women who took iron supplements, took medicine for intestinal parasites, were informed of the signs of pregnancy complications, and received selected routine services during antenatal care visits for their most recent birth in the past five years.

Overall, 88 percent of women took iron tablets during the pregnancy of their last birth. Variations by background characteristics are generally minor.

As a component of antenatal care, administration of medicine to treat intestinal worms is much less common than administration of iron supplements. Overall, only 7 percent of women took medicine to treat intestinal worms during their last pregnancy. Mothers are most likely to take medicines for intestinal parasites for births of order 2-3. By region, intake of medicines for intestinal parasites ranged from 1 percent in Omusati to17 percent in Kavango. Women with a primary education and those in the lowest wealth quintile (11 percent each) were more likely than their peers to have taken medicine for intestinal parasites.

Table 10.3 Components of antenatal care
Among women age 15-49 with a live birth in the five years preceding the survey, the percentage who took iron tablets and drugs for intestinal parasites during the pregnancy of the most recent birth, and among women receiving antenatal care (ANC) for the most recent live birth in the five years preceding the survey, the percentage receiving specific antenatal services, according to background characteristics, Namibia 2013

Background characteristic	Among women with a live birth in the past five years, the percentage who during the pregnancy of their last birth:			Among women who received antenatal care for their most recent birth in the past five years, the percentage with selected services				
	Took iron tablets	Took intestinal parasite drugs	Number of women with a live birth in the past five years	Informed of signs of pregnancy complications	Blood pressure measured	Urine sample taken	Blood sample taken	Number of women with ANC for their most recent birth
Mother's age at birth								
<20	88.2	6.8	592	71.9	94.1	91.7	98.4	564
20-34	87.5	6.8	2,619	73.9	97.8	96.4	98.6	2,551
35-49	86.8	6.9	630	72.6	98.3	97.4	98.8	606
Birth order								
1	88.5	6.6	1,288	73.6	96.0	94.7	98.4	1,254
2-3	87.6	7.5	1,603	76.1	97.9	96.3	98.5	1,565
4-5	85.8	5.1	605	68.3	99.1	97.0	98.7	576
$6+$	86.2	8.1	346	68.1	96.6	96.3	99.2	325
Residence								
Urban	86.6	6.1	1,970	74.9	98.1	97.8	98.8	1,909
Rural	88.4	7.6	1,871	71.7	96.5	93.8	98.4	1,811
Region								
Zambezi	89.0	5.6	239	84.9	94.0	94.3	98.3	232
Erongo	90.2	5.1	285	79.6	99.4	98.7	99.4	281
Hardap	90.9	7.0	133	73.5	99.6	100.0	100.0	129
//Karas	88.8	7.3	136	68.5	99.7	96.7	98.1	132
Kavango	94.4	17.3	448	84.3	90.7	92.8	97.3	432
Khomas	79.5	5.4	771	71.7	97.7	98.6	98.2	740
Kunene	92.4	3.7	133	74.9	99.4	98.2	98.3	127
Ohangwena	90.6	5.7	440	53.9	98.6	92.3	100.0	433
Omaheke	89.6	6.3	107	55.0	98.6	99.0	99.9	96
Omusati	77.2	1.1	350	88.1	98.1	92.8	97.7	347
Oshana	90.9	8.3	261	73.1	98.9	94.8	99.2	259
Oshikoto	94.5	5.8	290	67.2	97.8	96.0	98.1	283
Otjozondjupa	86.4	7.4	248	70.7	99.1	98.2	99.1	229
Education								
No education	80.4	5.0	218	67.4	96.2	94.8	96.1	192
Primary	86.1	10.6	836	69.4	95.9	94.4	98.4	795
Secondary	89.0	5.7	2,517	74.5	97.7	96.4	98.9	2,467
More than secondary	83.9	7.0	271	78.9	98.3	95.8	98.1	266
Wealth quintile								
Lowest	88.4	10.9	756	70.5	94.9	92.5	98.1	723
Second	85.7	6.4	819	71.9	97.2	95.4	98.9	788
Middle	88.4	6.6	807	75.5	98.2	95.9	98.3	788
Fourth	88.7	4.6	846	72.2	97.7	98.1	98.5	826
Highest	86.0	5.8	614	77.4	98.6	97.5	99.2	596
Total	87.5	6.9	3,842	73.4	97.3	95.9	98.6	3,721

Seventy-three percent of women who received antenatal care for their most recent live birth in the five years preceding the survey were informed of the signs of pregnancy complications. Women in Omusati (88 percent) were most likely to receive information and women in Ohangwena least likely (54 percent).

Education and wealth have a positive impact on quality of care. The percentage of women informed of signs of pregnancy complications rises from 67 percent among those with no education to 79 percent among those with more than a secondary education. Similarly, 71 percent of women in the poorest households are informed of signs of pregnancy complications, as compared with 77 percent of women in the wealthiest households.

Overall, 97 percent of women who received antenatal care had their blood pressure measured, 96 percent had a urine sample taken, and 99 percent had a blood sample taken. Differences by background characteristics are small due to the large percentages of women receiving each of these services.

10.4 Tetanus Toxoid

Tetanus toxoid injections are given during pregnancy to prevent neonatal tetanus, a leading cause of early infant death in many developing countries that is often due to poor hygiene during delivery. For full protection of her newborn baby, a pregnant woman should receive at least two injections of the vaccine during pregnancy. If a woman has been vaccinated during a previous pregnancy, however, she may require only one or no doses for the current pregnancy. Five doses are considered to provide lifetime protection. Table 10.4 presents the percentage of women age 15-49 with a birth in the five years preceding the survey whose last birth was protected against neonatal tetanus.

Thirty-six percent of women received two or more tetanus toxoid injections during the pregnancy for their last live birth. This represents a small increase from the figure reported in the 2006-07 NDHS (33 percent). By region, Zambezi has the highest proportion of women who received two or more tetanus toxoid injections during their last pregnancy (51 percent), while Ohangwena and Erongo have the lowest proportion (24 percent each).

The percentage of women who received two or more tetanus toxoid injections during their last pregnancy declines with increasing education, from 41 percent among those with no education to 19 percent among those with more than a secondary education. A similar pattern is seen in the case of wealth quintile, but with smaller differences.

Table 10.4 Tetanus toxoid injections
Among mothers age $15-49$ with a live birth in the five years preceding the survey, the percentage receiving two or more tetanus toxoid injections during the pregnancy for the last live birth and the percentage whose last live birth was protected against neonatal tetanus, according to background characteristics, Namibia 2013

Background characteristic	Percentage receiving two or more injections during last pregnancy	Percentage whose last birth was protected against neonatal tetanus ${ }^{1}$	Number of mothers
Mother's age at birth			
<20	47.5	70.2	592
20-34	35.3	65.9	2,619
35-49	29.0	61.7	630
Birth order			
1	42.2	68.1	1,288
2-3	34.4	65.2	1,603
4-5	29.6	64.7	605
6+	33.1	62.7	346
Residence			
Urban	35.4	65.5	1,970
Rural	36.9	66.3	1,871
Region			
Zambezi	50.7	83.4	239
Erongo	24.4	57.5	285
Hardap	45.9	80.7	133
//Karas	37.7	77.6	136
Kavango	44.7	61.2	448
Khomas	38.1	62.2	771
Kunene	38.3	77.0	133
Ohangwena	24.1	60.3	440
Omaheke	43.9	74.1	107
Omusati	34.2	64.0	350
Oshana	27.8	57.1	261
Oshikoto	33.7	69.8	290
Otjozondjupa	39.1	71.8	248
Education			
No education	41.1	61.2	218
Primary	38.8	63.8	836
Secondary	36.7	68.9	2,517
More than secondary	19.0	48.4	271
Wealth quintile			
Lowest	39.6	66.4	756
Second	38.2	64.4	819
Middle	39.0	70.9	807
Fourth	34.3	70.0	846
Highest	28.1	55.0	614
Total	36.1	65.9	3,842

${ }^{1}$ Includes mothers with two injections during the pregnancy of her last birth, or two or more injections (the last within 3 years of the last live birth), or three or more injections (the last within 5 years of the last birth), or four or more injections (the last within 10 years of the last live birth), or five or more injections at any time prior to the last birth.

Overall, 66 percent of women reported that their last births were protected against neonatal tetanus. Differences by background characteristics follow patterns similar to those observed among women who received two or more tetanus toxoid injections during their last pregnancy. The proportion of births protected against neonatal tetanus has increased since 2006-07, when 57 percent of births were protected.

10.5 Place of Delivery

Increasing the proportion of women who deliver in health facilities is an important factor in reducing health risks to the mother and the newborn. Proper medical attention and hygienic conditions during delivery can reduce the risks of complications and infections. Table 10.5 presents the percent distribution of live births in the five years preceding the survey by place of delivery, according to background characteristics.

Table 10.5 Place of delivery								
Percent distribution of live births in the five years preceding the survey by place of delivery and percentage delivered in a health facility, according to background characteristics, Namibia 2013								
Background characteristic	Health facility		Home	Other	Missing	Total	Percentage delivered in a health facility	Number of births
	Public sector	Private sector						
Mother's age at birth								
<20	85.6	1.3	12.0	0.2	0.9	100.0	86.9	765
20-34	83.5	5.5	10.2	0.5	0.3	100.0	89.0	3,317
35-49	72.5	7.7	19.0	0.3	0.5	100.0	80.2	722
Birth order								
1	87.9	5.4	5.6	0.2	0.8	100.0	93.3	1,647
2-3	82.6	7.0	9.7	0.6	0.1	100.0	89.7	1,962
4-5	79.4	2.7	17.4	0.3	0.2	100.0	82.1	755
6+	63.4	0.3	34.9	0.6	0.8	100.0	63.7	440
Antenatal care visits ${ }^{1}$								
None	49.3	2.8	42.9	0.7	4.3	100.0	52.1	121
1-3	75.4	1.5	22.2	1.0	0.0	100.0	76.8	426
$4+$	84.3	7.1	8.2	0.3	0.1	100.0	91.4	2,402
Don't know/missing	89.5	3.4	6.7	0.4	0.0	100.0	92.9	892
Residence								
Urban	85.5	9.2	4.2	0.5	0.6	100.0	94.7	2,347
Rural	79.0	1.3	19.0	0.4	0.2	100.0	80.4	2,457
Region								
Zambezi	84.8	0.4	14.1	0.0	0.7	100.0	85.2	297
Erongo	85.4	12.2	1.3	0.5	0.5	100.0	97.6	334
Hardap	88.6	5.4	5.0	1.0	0.0	100.0	94.0	173
//Karas	84.8	6.9	7.9	0.0	0.4	100.0	91.8	165
Kavango	71.0	1.9	26.6	0.2	0.4	100.0	72.8	577
Khomas	81.3	13.9	3.2	0.6	0.9	100.0	95.2	887
Kunene	71.0	1.3	25.8	1.2	0.6	100.0	72.4	179
Ohangwena	85.1	0.8	13.7	0.2	0.2	100.0	85.9	598
Omaheke	73.9	1.7	23.8	0.4	0.1	100.0	75.6	149
Omusati	84.6	1.3	13.8	0.3	0.0	100.0	85.8	454
Oshana	90.8	3.7	5.5	0.0	0.0	100.0	94.5	310
Oshikoto	85.5	4.2	9.5	0.8	0.0	100.0	89.8	373
Otjozondjupa	83.2	2.8	12.7	0.7	0.6	100.0	86.0	308
Mother's education								
No education	58.0	0.0	40.0	1.3	0.7	100.0	58.0	298
Primary	73.6	0.2	25.2	0.4	0.6	100.0	73.8	1,125
Secondary	89.4	4.7	5.3	0.4	0.3	100.0	94.0	3,073
More than secondary	65.2	33.3	0.0	0.6	0.8	100.0	98.5	307
Wealth quintile								
Lowest	70.6	0.6	28.3	0.3	0.2	100.0	71.2	1,047
Second	86.5	0.6	11.8	0.7	0.5	100.0	87.0	1,053
Middle	88.9	0.2	9.9	0.3	0.6	100.0	89.1	997
Fourth	92.8	2.8	4.0	0.4	0.1	100.0	95.5	1,000
Highest	68.5	29.2	1.2	0.5	0.7	100.0	97.7	707
Total	82.2	5.2	11.8	0.4	0.4	100.0	87.4	4,804

${ }^{1}$ Includes only the most recent birth in the 5 years preceding the survey

The 2013 NDHS data show that 87 percent of births occurred in health facilities, as compared with 81 percent in the 2006-07 NDHS. Eighty-two percent of births took place in public health facilities and 5 percent in private facilities. Twelve percent of live births in the five years preceding the survey occurred at home, compared with 19 percent in 2006-07.

Women age 20-34 are slightly more likely to deliver in a health facility (89 percent) than women less than age 20 (87 percent) or age 35-49 (80 percent). There is a strong relationship between receipt of antenatal care and place of delivery. Only 52 percent of live births among women who received no antenatal care took place in a health facility, as compared with 91 percent among women with four or more antenatal care visits.

Place of delivery differs greatly by residence; 95 percent of births in urban areas were delivered in a health facility, compared with 80 percent of births in rural areas. The percentage of births that occurred in
a health facility was highest in Erongo and lowest in Kunene (98 percent versus 72 percent). Home deliveries are most common in Kavango (27 percent) and least common in Erongo (1 percent).

Education and household wealth correlate strongly with place of delivery. Births to mothers with more than a secondary education are much more likely to take place in a health facility than births to mothers with no education (99 percent versus 58 percent). Likewise, births to women in the highest wealth quintile are most likely to take place in a health facility, and births to women in the lowest wealth quintile are least likely (98 percent and 71 percent, respectively).

Women who delivered at home were asked why they chose not to deliver in a health facility (Table 10.6). The vast majority of women (72 percent) who delivered at home reported that they did so because a health facility was too far away or they had no transportation to the facility. Six percent of women did not think it was necessary to deliver in a health facility, 5 percent stated that facility deliveries cost too much, 2 percent said that their husband or family did not allow them to go to a facility, and 1 percent said that they did not trust the facility or believed that it offered poor quality service. Rural women were much more likely than urban women to cite distance/lack of transportation and cost as reasons for not delivering in a facility. Urban women, however, were more likely than rural women to state that facility deliveries are not necessary and that their husband or family did not allow them to go to a facility to deliver. Overall, the percentage of women who mentioned distance or lack of transportation as a reason for not delivering in a health facility decreases with increasing education and household wealth.

Table 10.6 Reasons for not delivering in a health facility
Among last live births delivered at home, percentage whose mothers cite specific reasons for not delivering in a facility, according to background characteristics, Namibia 2013

Background characteristic	Cost too much	Facility not open	Too far/ no transportation	Don't trust facility/ poor quality service	Husband/ family did not allow	Not necessary	Not customary	Other	Total number of births
Residence									
Urban	3.9	0.0	60.0	0.6	5.1	11.9	0.0	16.4	74
Rural	5.5	0.4	74.5	0.9	0.9	4.8	0.7	16.9	330
Mother's education									
No education	6.4	0.6	75.0	2.2	2.5	13.5	1.6	7.2	82
Primary	4.8	0.5	73.1	0.7	1.1	5.1	0.4	16.3	198
Secondary	5.0	0.0	67.6	0.4	1.9	2.9	0.0	24.2	124
Wealth quintile									
Lowest	6.8	0.6	73.7	0.4	1.9	4.9	0.9	16.7	198
Second	2.9	0.0	75.4	1.5	0.3	7.9	0.5	14.2	91
Middle	6.2	0.3	66.2	0.6	3.3	5.8	0.0	16.2	78
Fourth	(0.8)	(0.0)	(62.2)	(3.1)	(0.0)	(10.4)	(0.0)	(25.8)	31
Highest	*	*	*	*	*	*	*	*	6
Total	5.2	0.4	71.8	0.9	1.6	6.1	0.5	16.8	404

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

10.6 Assistance during Delivery

Obstetric care from a skilled provider (doctor or nurse/midwife) during delivery is recognised as a critical element in reducing maternal and neonatal mortality. Births taking place at home are usually more likely to be delivered without assistance from a skilled provider, whereas births delivered at a health facility are more likely to be delivered by a trained health professional. Table 10.7 shows the percent distribution of live births in the five years preceding the survey by the person providing assistance at delivery and the percentage of births delivered via caesarean section (C-section), according to background characteristics.

Table 10.7 Assistance during delivery
Percent distribution of live births in the five years preceding the survey by person providing assistance during delivery, percentage of births assisted by a skilled provider and the percentage delivered by caesarean-section, according to background characteristics, Namibia 2013

Background characteristic	Person providing assistance during delivery							Percentage delivered by a skilled provider ${ }^{1}$	Percentage delivered by C-section	Number ofbirths
	Doctor	Nurse/ midwife	Traditional birth attendant	Relative/ other	No one	Don't know/ missing	Total			
Mother's age at birth										
<20	12.9	74.5	3.2	8.2	0.2	1.1	100.0	87.3	9.8	765
20-34	20.2	69.7	4.0	5.0	0.8	0.3	100.0	89.9	15.4	3,317
35-49	22.4	58.7	7.3	9.4	1.7	0.5	100.0	81.1	14.9	722
Birth order										
1	22.8	70.9	1.6	3.6	0.2	0.9	100.0	93.7	18.6	1,647
2-3	20.8	69.7	3.3	5.5	0.8	0.1	100.0	90.4	15.0	1,962
4-5	14.5	69.1	7.9	7.1	1.3	0.2	100.0	83.6	9.9	755
$6+$	8.5	56.8	13.6	17.2	3.1	0.8	100.0	65.4	4.4	440
Antenatal care visits ${ }^{2}$										
None	10.3	42.2	13.4	23.4	6.4	4.3	100.0	52.5	13.9	121
1-3	13.5	64.6	12.2	7.4	2.3	0.0	100.0	78.2	7.7	426
$4+$	23.7	68.4	3.0	4.3	0.5	0.1	100.0	92.1	16.8	2,402
Don't know/missing	17.2	76.6	1.5	4.5	0.2	0.0	100.0	93.8	15.8	892
Place of delivery										
Health facility	22.1	77.6	0.1	0.2	0.0	0.0	100.0	99.7	16.5	4,196
Elsewhere	0.6	8.2	35.4	48.9	6.7	0.2	100.0	8.8	0.0	588
Residence										
Urban	29.2	65.7	1.5	2.7	0.3	0.6	100.0	94.9	20.7	2,347
Rural	9.9	71.8	7.1	9.5	1.4	0.3	100.0	81.7	8.5	2,457
Region										
Zambezi	6.3	79.8	5.3	7.0	0.9	0.7	100.0	86.1	8.3	297
Erongo	28.0	69.9	0.4	1.1	0.0	0.5	100.0	97.9	19.3	334
Hardap	27.4	67.9	1.2	3.0	0.5	0.0	100.0	95.3	24.0	173
//Karas	28.1	65.3	1.2	4.9	0.2	0.4	100.0	93.3	18.8	165
Kavango	8.8	66.2	13.4	9.2	2.2	0.2	100.0	75.0	6.1	577
Khomas	39.4	56.8	0.9	1.9	0.0	0.9	100.0	96.2	26.2	887
Kunene	13.2	60.8	11.4	13.9	0.2	0.6	100.0	74.0	9.3	179
Ohangwena	7.8	78.1	6.8	6.4	0.7	0.2	100.0	85.9	8.7	598
Omaheke	16.8	59.3	4.6	16.8	2.2	0.1	100.0	76.2	9.3	149
Omusati	9.5	77.5	3.3	8.6	0.5	0.6	100.0	87.0	10.4	454
Oshana	24.7	70.1	1.3	3.9	0.0	0.0	100.0	94.8	13.1	310
Oshikoto	15.5	74.2	2.2	6.7	1.4	0.0	100.0	89.7	10.3	373
Otjozondjupa	16.3	69.8	2.7	7.8	2.8	0.6	100.0	86.1	18.3	308
Mother's education										
No education	7.8	51.7	11.0	25.9	3.0	0.7	100.0	59.4	5.9	298
Primary	10.2	65.3	10.2	11.4	2.1	0.8	100.0	75.4	6.2	1,125
Secondary	19.6	75.0	2.0	2.9	0.3	0.2	100.0	94.5	15.6	3,073
More than secondary	62.1	37.1	0.0	0.0	0.0	0.8	100.0	99.2	41.2	307
Wealth quintile										
Lowest	6.2	66.5	11.3	13.5	2.2	0.3	100.0	72.7	5.4	1,047
Second	12.2	76.0	4.5	5.9	0.9	0.4	100.0	88.3	9.6	1,053
Middle	15.6	74.1	3.7	5.3	0.5	0.8	100.0	89.7	13.2	997
Fourth	22.0	73.6	0.6	3.3	0.3	0.1	100.0	95.6	16.5	1,000
Highest	51.0	47.3	0.2	0.8	0.0	0.7	100.0	98.3	34.0	707
Total	19.3	68.8	4.4	6.2	0.8	0.4	100.0	88.2	14.4	4,804

Note: Total includes 13 women with missing information on place of delivery. If the respondent mentioned more than one person attending during delivery, only the most qualified person is considered in this tabulation. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Skilled provider includes doctor, nurse, or midwife.
${ }^{2}$ Includes only the most recent birth in the five years preceding the survey

Eighty-eight percent of live births in the five years preceding the survey were delivered by a skilled provider, with 19 percent of deliveries assisted by a doctor and 69 percent by a nurse/midwife. Four percent of deliveries were assisted by a traditional birth attendant and 6 percent by relatives or others. The percentage of live births delivered by a skilled provider has increased from the figure reported in the 200607 NDHS (81 percent).

The percentage of live births delivered by a skilled provider does not differ greatly by mother's age at birth. In contrast, large variations occur by birth order, number of antenatal care visits, place of delivery, residence, region, education, and wealth quintile. Assistance during delivery from a skilled provider decreases from 94 percent for first-order births to 65 percent for births of order six and higher.

Births to mothers with four or more antenatal care visits (92 percent) are much more likely than births to mothers with fewer visits (78 percent) or no antenatal care (53 percent) to be delivered by a skilled provider. Almost all births taking place in a health facility are delivered by a skilled provider, as compared with 9 percent of births occurring elsewhere. Among births occurring outside a health facility, 35 percent are assisted by a traditional birth attendant and 49 percent by relatives or others.

In urban areas, 95 percent of births are assisted by a skilled provider, as compared with 82 percent in rural areas. The percentage of births delivered by skilled providers ranges from 74 percent in Kunene to 98 percent in Erongo. Kavango has the highest percentage of deliveries by traditional birth attendants (13 percent) and Erongo the lowest (less than 1 percent).

Mother's education is strongly related to type of assistance at delivery. Births to women with a secondary and more than a secondary education (95 percent and 99 percent, respectively) are much more likely to receive assistance from a skilled provider than births to women with no education (59 percent) or those with a primary education (75 percent). Eleven percent of births to women with no education and 10 percent of births to women with a primary education are assisted by a traditional birth attendant, as compared with 2 percent or less of births to women with a secondary or higher education. In addition, 26 percent of births to women with no education are assisted by a relative or friend, compared with 3 percent or less of births to women with a secondary or more than a secondary education.

As with education, wealth quintile is strongly associated with type of assistance at delivery. Births to women in the highest wealth quintile are more likely to be assisted by a skilled provider (98 percent) than births to women in the lowest wealth quintile (73 percent). Furthermore, births to women in the highest wealth quintile are more than eight times as likely as births to women in the lowest quintile to be assisted by a doctor (51 percent and 6 percent, respectively).

Overall, 14 percent of births are delivered via caesarean section, a figure only 1 percent higher than that reported in the 2006-07 NDHS survey. C-sections are most common among first births (19 percent), births in urban areas (21 percent), births in Khomas (26 percent), births to women with more than a secondary education (41 percent), and births to women in the highest wealth quintile (34 percent).

10.7 Postnatal Care

Postnatal care refers to the care and follow-up given to a mother and her newborn immediately following delivery, during the postpartum period (the period beginning immediately after birth and extending up to six weeks). This is the period after birth in which the mother's body, including hormone levels and uterus size, returns to pre-pregnancy levels. In 2013, the Ministry of Health and Social Services introduced a revised postnatal visit plan designed to improve the health and survival of the mother and the baby. Lack of care during this period may result in death or disability as well as missed opportunities to promote healthy behaviours affecting women, newborns, and children. Both the woman and her newborn are at the highest risk of death during the postpartum period.

Many countries in Africa, including Namibia, have adopted the 1998 WHO model of care, which recommends postnatal care within six hours as well as three to six days, six weeks, and six months after birth (WHO, 2014).

10.7.1 Postnatal Checkup for the Mother

A large proportion of maternal and neonatal deaths occur during the first 48 hours after delivery. Thus, prompt postnatal care for both the mother and the child is important to treat any complications arising from the delivery, as well as to provide the mother with important information on how to care for herself and her child. Safe motherhood programmes recommend that all women receive a check of their health within two days after delivery. Women who deliver at home should visit a health facility for postnatal care services within 24 hours, and subsequent visits (including those by women who deliver in a
health facility) should be made at six days, six weeks, and six months after delivery. It is also recommended that women who have a normal, uneventful vaginal delivery without any complications at a health facility be observed for 24 hours before discharge.

Women who have undergone a caesarean section should ideally be observed in the health facility for a period of at least three days (or longer depending on their clinical status) before discharge (MoHSS, 2013c).

Table 10.8 shows that in the two years preceding the survey, 69 percent of women received postnatal care for their last birth within the critical first two days following delivery. This is a small improvement from 2006-07, when 65 percent of women received care in the first two days after delivery. About one in three (34 percent) women received postnatal care within 4 hours of delivery, 14 percent received care within 4-23 hours, and 21 percent were seen 1-2 days following delivery. Differences by mother's age, birth order, place of delivery, residence, and education are pronounced and are similar to the differences discussed for delivery care. Postnatal care within the first two days following delivery is lowest in Kavango (48 percent), followed closely by Kunene (50 percent).

Table 10.8 Timing of first postnatal checkup
Among women age 15-49 giving birth in the two years preceding the survey, the percent distribution of the mother's first postnatal checkup for the last live birth by time after delivery, and the percentage of women with a live birth in the two years preceding the survey who received a postnatal checkup in the first two days after giving birth, according to background characteristics, Namibia 2013

Background characteristic	Time after delivery of mother's first postnatal checkup						No postnatal checkup ${ }^{1}$	Total	Percentage of women with a postnatal checkup in the first two days after birth	Number of women
	Less than 4 hours	$\begin{gathered} 4-23 \\ \text { hours } \end{gathered}$	1-2 days	3-6 days	7-41 days	Don't know/ missing				
Mother's age at birth										
<20	31.3	11.0	20.1	1.4	7.9	6.4	21.9	100.0	62.4	294
20-34	34.1	15.1	21.1	2.0	6.4	6.1	15.3	100.0	70.3	1,349
35-49	36.7	11.8	20.3	1.5	6.7	3.3	19.7	100.0	68.8	304
Birth order										
1	38.6	12.3	20.2	1.8	8.0	5.3	13.8	100.0	71.2	628
2-3	32.4	15.8	21.2	2.1	6.6	6.7	15.2	100.0	69.3	829
4-5	29.7	14.4	22.4	0.6	5.6	4.8	22.5	100.0	66.5	332
6+	34.3	9.7	17.8	2.5	4.6	3.7	27.3	100.0	61.9	159
Place of delivery										
Health facility	36.9	14.2	21.5	1.5	7.2	6.2	12.4	100.0	72.6	1,715
Elsewhere	12.9	11.9	15.8	3.9	3.1	1.7	50.7	100.0	40.7	232
Residence										
Urban	35.0	13.5	20.5	1.9	8.9	5.3	14.9	100.0	69.0	925
Rural	33.2	14.4	21.1	1.7	4.7	6.0	18.8	100.0	68.7	1,022
Region										
Zambezi	42.5	18.5	11.6	1.2	4.2	4.8	17.2	100.0	72.6	112
Erongo	35.6	6.9	19.8	1.4	12.1	10.6	13.6	100.0	62.4	136
Hardap	31.0	25.1	12.7	2.3	4.4	2.2	22.4	100.0	68.7	73
//Karas	42.2	9.6	20.2	2.6	4.9	6.6	14.0	100.0	72.0	61
Kavango	14.0	9.1	24.6	0.8	2.5	9.9	39.2	100.0	47.7	231
Khomas	37.2	12.3	20.3	1.6	11.8	4.3	12.6	100.0	69.7	344
Kunene	16.6	19.4	14.2	4.0	18.1	5.2	22.5	100.0	50.2	69
Ohangwena	36.3	12.0	25.4	2.1	5.0	3.4	15.9	100.0	73.7	254
Omaheke	29.7	9.8	21.4	1.1	12.4	6.8	18.7	100.0	61.0	59
Omusati	51.5	18.7	5.9	0.0	3.7	9.1	11.2	100.0	76.0	189
Oshana	42.7	21.9	24.1	1.5	2.4	1.4	6.1	100.0	88.6	127
Oshikoto	32.5	17.3	34.0	4.5	1.1	2.5	8.2	100.0	83.7	154
Otjozondjupa	26.2	10.7	26.1	2.8	9.4	6.4	18.4	100.0	63.0	137
Education										
No education	17.7	8.2	21.6	1.7	2.5	8.3	40.1	100.0	47.5	110
Primary	26.3	13.2	19.2	1.4	5.4	6.8	27.7	100.0	58.7	438
Secondary	37.5	14.1	21.2	2.1	7.2	5.4	12.5	100.0	72.8	1,295
More than secondary	41.2	21.9	21.3	0.0	10.4	1.5	3.7	100.0	84.4	105
Wealth quintile										
Lowest	29.4	12.7	18.5	2.4	2.9	6.6	27.6	100.0	60.5	415
Second	36.5	13.0	24.6	1.6	5.7	6.0	12.6	100.0	74.1	439
Middle	37.8	13.8	21.4	1.0	6.1	5.1	14.8	100.0	73.0	423
Fourth	31.3	16.5	21.3	2.3	7.7	4.8	16.0	100.0	69.1	389
Highest	35.6	14.1	16.6	1.7	13.5	6.0	12.6	100.0	66.2	281
Total	34.1	14.0	20.8	1.8	6.7	5.7	17.0	100.0	68.8	1,947

[^8]Table 10.9 shows that, in the majority of cases, mothers received postnatal care from a health professional (68 percent). Less than 1 percent of mothers received a postnatal checkup from a community health worker or a traditional birth attendant. Differences by background characteristics are similar to those discussed in reference to timing of the first postnatal checkup.

Table 10.9 Type of provider of first postnatal checkup for the mother						
Among women age 15-49 giving birth in the two years preceding the survey, the percent distribution by type of provider of the mother's first postnatal health check in the two days after the last live birth, according to background characteristics, Namibia 2013						
Background characteristic	Type of health provider of mother's first postnatal checkup			No postnatal checkup in the first two days after birth ${ }^{1}$	Total	Number of women
	Doctor/nurse/ midwife	Community health worker	Traditional birth attendant			
Mother's age at birth						
<20	61.0	0.4	1.0	37.6	100.0	294
20-34	69.7	0.1	0.5	29.7	100.0	1,349
35-49	67.3	0.0	1.5	31.2	100.0	304
Birth order						
1	70.2	0.2	0.8	28.8	100.0	628
2-3	68.8	0.1	0.4	30.7	100.0	829
4-5	65.9	0.0	0.5	33.5	100.0	332
6+	59.2	0.0	2.7	38.1	100.0	159
Place of delivery						
Health facility	72.4	0.0	0.1	27.4	100.0	1,715
Elsewhere	35.0	0.5	5.2	59.3	100.0	232
Residence						
Urban	68.6	0.0	0.4	31.0	100.0	925
Rural	67.5	0.2	1.1	31.3	100.0	1,022
Region						
Zambezi	71.4	0.7	0.5	27.4	100.0	112
Erongo	62.4	0.0	0.0	37.6	100.0	136
Hardap	68.7	0.0	0.0	31.3	100.0	73
//Karas	70.3	0.0	1.6	28.0	100.0	61
Kavango	46.4	0.0	1.3	52.3	100.0	231
Khomas	69.7	0.0	0.0	30.3	100.0	344
Kunene	47.4	0.0	2.8	49.8	100.0	69
Ohangwena	72.3	0.4	0.9	26.3	100.0	254
Omaheke	60.1	0.0	0.9	39.0	100.0	59
Omusati	74.2	0.0	1.8	24.0	100.0	189
Oshana	88.6	0.0	0.0	11.4	100.0	127
Oshikoto	83.1	0.0	0.6	16.3	100.0	154
Otjozondjupa	62.5	0.0	0.5	37.0	100.0	137
Education						
No education	46.5	0.0	1.0	52.5	100.0	110
Primary	57.4	0.0	1.3	41.3	100.0	438
Secondary	72.1	0.1	0.6	27.2	100.0	1,295
More than secondary	84.4	0.0	0.0	15.6	100.0	105
Wealth quintile						
Lowest	59.3	0.3	0.9	39.5	100.0	415
Second	73.4	0.2	0.5	25.9	100.0	439
Middle	71.1	0.0	2.0	27.0	100.0	423
Fourth	69.1	0.0	0.0	30.9	100.0	389
Highest	66.2	0.0	0.0	33.8	100.0	281
Total	68.0	0.1	0.7	31.2	100.0	1,947

Figure 10.1 shows the percent distribution of mothers with a birth in the five years preceding the survey who delivered their last birth in a health facility, by duration of stay and type of delivery. As expected, the large majority of women with a vaginal birth stayed at a health facility for 1-2 days (67 percent). In contrast, the large majority of women with a C-section stayed at a health facility for 3 or more days (78 percent).

Figure 10.1 Mother's duration of stay in the health facility after giving birth
Percentage

10.7.2 Postnatal Care for the Newborn

As mentioned, a significant proportion of neonatal deaths occur during the first 48 hours after delivery. Thus, postnatal care services should be provided as soon as possible after the child is born. The timing of the postnatal checkup for the newborn is similar to that of the mother in that it should occur within six days after birth.

Table 10.10 shows that 20 percent of infants born in the two years preceding the survey received a postnatal checkup. Three percent received a postnatal checkup less than 1 hour after birth, 9 percent within 1 to 3 hours, 3 percent within 4 to 23 hours, 4 percent within 1 to 2 days, and less than 1 percent within 3 to 6 days. Over three-quarters of newborns (77 percent) did not receive a postnatal checkup.

Timing of a newborn's first postnatal checkup varies slightly by place of delivery and urban-rural residence. For instance, 20 percent of newborns whose mothers delivered in a health facility received a postnatal checkup within two days, as compared with 18 percent of newborns whose mothers delivered elsewhere. Twenty-one percent of newborns whose mothers reside in urban areas had a postnatal check-up within two days after birth, compared with 19 percent of newborns whose mothers live in rural areas. However, there are more pronounced variations by region, education, and wealth. One in three newborns in Ohangwena had a postnatal checkup within two days after birth (33 percent), while only 3 percent of newborns in Kavango had a checkup. Newborns whose mothers had more than a secondary education were more likely to have a postnatal checkup than newborns whose mothers had no education (31 percent and 12 percent, respectively). Similarly, newborns whose mothers were in the highest wealth quintile were more likely to have a checkup within two days after birth than newborns whose mothers were in the second wealth quintile (24 percent and 17 percent, respectively).

Table 10.10 Timing of first postnatal checkup for the newborn
Percent distribution of last births in the two years preceding the survey by time after birth of first postnatal checkup, and the percentage of births with a postnatal checkup in the first two days after birth, according to background characteristics, Namibia 2013

Background characteristic	Time after birth of newborn's first postnatal checkup						No postnatal checkup ${ }^{1}$	Total	Percentage of births with a postnatal checkup in the first two days after birth	Number of births
	Less than 1 hour	1-3 hours	4-23 hours	1-2 days	3-6 days	Don't know/ missing				
Mother's age at birth										
<20	1.3	8.4	1.9	3.7	0.6	1.9	82.2	100.0	15.3	294
20-34	2.7	9.8	3.8	4.7	0.8	2.5	75.7	100.0	21.0	1,349
35-49	4.7	7.6	2.1	3.6	0.6	3.4	78.0	100.0	17.9	304
Birth order										
1	1.7	11.6	2.3	3.9	0.7	2.7	77.1	100.0	19.5	628
2-3	4.0	7.5	4.2	4.4	0.6	2.5	76.7	100.0	20.1	829
4-5	1.1	9.7	2.5	4.5	0.9	1.9	79.5	100.0	17.8	332
6+	4.3	8.2	3.7	5.5	1.2	4.0	73.2	100.0	21.7	159
Place of delivery										
Health facility	2.9	10.1	3.2	3.7	0.7	2.7	76.7	100.0	19.9	1,715
Elsewhere	1.6	3.1	3.7	9.6	1.3	1.3	79.5	100.0	18.0	232
Residence										
Urban	2.8	10.2	3.9	4.0	0.6	1.8	76.7	100.0	20.9	925
Rural	2.8	8.4	2.7	4.7	0.9	3.3	77.3	100.0	18.6	1,022
Region										
Zambezi	4.6	7.4	5.1	6.8	0.6	0.4	75.1	100.0	23.9	112
Erongo	2.2	18.9	1.4	1.9	0.0	2.8	72.9	100.0	24.4	136
Hardap	2.1	8.9	4.3	5.0	1.2	1.2	77.3	100.0	20.3	73
//Karas	2.5	15.3	5.1	8.3	3.6	2.6	62.5	100.0	31.2	61
Kavango	0.4	0.5	0.0	2.2	0.9	1.2	94.7	100.0	3.2	231
Khomas	3.3	8.9	3.6	3.9	0.6	0.8	78.9	100.0	19.7	344
Kunene	0.9	3.6	2.1	2.9	1.1	0.0	89.4	100.0	9.5	69
Ohangwena	7.2	17.8	3.2	5.0	0.4	4.5	62.0	100.0	33.2	254
Omaheke	0.9	7.4	6.0	7.5	0.4	1.3	76.6	100.0	21.6	59
Omusati	0.2	7.8	2.8	3.3	0.6	7.4	77.9	100.0	14.1	189
Oshana	0.0	2.7	5.1	3.4	0.0	1.7	87.2	100.0	11.2	127
Oshikoto	3.8	11.2	2.9	5.6	1.5	4.4	70.5	100.0	23.6	154
Otjozondjupa	3.8	8.1	5.7	6.7	0.7	1.9	73.1	100.0	24.3	137
Mother's education										
No education	1.4	4.1	3.8	2.7	0.5	3.1	84.4	100.0	12.0	110
Primary	1.9	7.9	4.4	3.8	0.9	2.9	78.2	100.0	18.0	438
Secondary	2.7	9.6	2.7	5.0	0.8	2.3	77.0	100.0	20.0	1,295
More than secondary	8.3	16.8	5.1	0.4	0.0	4.2	65.2	100.0	30.6	105
Wealth quintile										
Lowest	3.3	6.9	2.8	5.5	1.1	2.4	78.0	100.0	18.5	415
Second	1.4	8.4	2.9	4.3	0.8	3.9	78.5	100.0	16.9	439
Middle	2.6	10.1	3.5	4.4	0.7	2.8	75.8	100.0	20.6	423
Fourth	3.3	8.5	4.3	3.5	0.2	1.7	78.5	100.0	19.6	389
Highest	3.9	13.9	2.8	3.9	0.9	1.7	73.0	100.0	24.4	281
Total	2.8	9.3	3.3	4.4	0.7	2.6	77.0	100.0	19.7	1,947

${ }^{1}$ Includes newborns who received a checkup after the first week

Table 10.11 shows the type of provider of the newborn's first postnatal checkup. Nineteen percent of newborns received a postnatal checkup from a skilled provider, while less than 1 percent received a checkup from a traditional birth attendant. Eighty percent of newborns did not receive a postnatal checkup within the first two days after birth. Differences by background characteristics are similar to those observed for timing of the newborn's first postnatal checkup.

Table 10.11 Type of provider of first postnatal checkup for the newborn
Percent distribution of last births in the two years preceding the survey by type of provider of the newborn's first postnatal health check during the two days after the last live birth, according to background characteristics, Namibia 2013

Background characteristic	Type of health provider of newborn's first postnatal checkup		No postnatal checkup in the first two days after birth	Total	Number ofbirths
	Doctor/nurse/ midwife	Traditional birth attendant			
Mother's age at birth					
<20	15.0	0.3	84.7	100.0	294
20-34	20.6	0.3	79.0	100.0	1,349
35-49	17.5	0.4	82.1	100.0	304
Birth order					
1	19.2	0.3	80.5	100.0	628
2-3	19.8	0.3	79.9	100.0	829
4-5	17.1	0.7	82.2	100.0	332
$6+$	21.7	0.0	78.3	100.0	159
Place of delivery					
Health facility	19.7	0.1	80.1	100.0	1,715
Elsewhere	16.2	1.8	82.0	100.0	232
Residence					
Urban	20.8	0.1	79.1	100.0	925
Rural	17.9	0.5	81.4	100.0	1,022
Region					
Zambezi	23.2	0.0	76.1	100.0	112
Erongo	24.4	0.0	75.6	100.0	136
Hardap	20.3	0.0	79.7	100.0	73
//Karas	30.6	0.6	68.8	100.0	61
Kavango	2.3	0.9	96.8	100.0	231
Khomas	19.7	0.0	80.3	100.0	344
Kunene	8.3	1.2	90.5	100.0	69
Ohangwena	32.3	0.9	66.8	100.0	254
Omaheke	20.8	0.9	78.4	100.0	59
Omusati	14.1	0.0	85.9	100.0	189
Oshana	11.2	0.0	88.8	100.0	127
Oshikoto	23.6	0.0	76.4	100.0	154
Otjozondjupa	23.8	0.5	75.7	100.0	137
Mother's education					
No education	11.6	0.4	88.0	100.0	110
Primary	17.4	0.6	82.0	100.0	438
Secondary	19.7	0.3	80.0	100.0	1,295
More than secondary	30.6	0.0	69.4	100.0	105
Wealth quintile					
Lowest	17.9	0.6	81.5	100.0	415
Second	16.7	0.0	83.1	100.0	439
Middle	19.7	0.9	79.4	100.0	423
Fourth	19.6	0.0	80.4	100.0	389
Highest	24.3	0.1	75.6	100.0	281
Total	19.3	0.3	80.3	100.0	1,947

10.8 Problems in Accessing Health Care

Many factors can prevent women from obtaining medical advice or treatment for themselves when they are sick. Information on such factors is particularly important in understanding and addressing the barriers women may face when seeking care during pregnancy, delivery, and the postnatal period.

In the 2013 NDHS, women were asked whether each of the following factors would be an impediment (or not) in seeking medical care: getting permission to go for treatment, getting money for treatment, distance to a health facility, and not wanting to go alone. Table 10.12 shows that 43 percent of women reported at least one of these concerns as a hindrance to accessing health care.

Table 10.12 Problems in accessing health care
Percentage of women age 15-49 who reported that they have serious problems in accessing health care for themselves when they are sick, by type of problem, according to background characteristics, Namibia 2013

Background characteristic	Problems in accessing health care					
	Getting permission to go for treatment	Getting money for treatment	Distance to health facility	Not wanting to go alone	At least one problem accessing health care	Number of women
Age						
15-19	6.9	26.8	29.4	18.6	45.1	1,906
20-34	6.4	27.0	29.3	13.5	42.1	4,535
35-49	5.7	29.1	33.3	13.9	44.1	2,735
Number of living children						
0	5.0	21.6	24.5	15.8	38.4	3,034
1-2	6.8	26.3	29.5	12.4	41.8	3,606
3-4	6.3	32.6	34.5	14.9	46.3	1,750
$5+$	8.4	45.1	49.8	20.4	62.4	785
Marital status						
Never married	5.4	25.8	28.8	14.7	41.9	5,458
Married or living together	7.5	29.0	32.1	14.3	43.7	3,121
Divorced/separated/widowed	8.1	36.3	38.4	16.3	53.7	597
Employed in last 12 months						
Not employed	6.8	33.5	35.7	16.9	49.7	4,987
Employed for cash	5.7	19.3	23.1	11.2	34.4	3,826
Employed not for cash	4.9	32.6	38.1	20.4	50.0	351
Residence						
Urban	5.2	20.0	18.6	10.3	32.7	5,190
Rural	7.6	37.4	46.0	20.3	57.2	3,986
Region						
Zambezi	7.9	49.2	36.6	21.3	57.5	457
Erongo	8.2	19.7	13.7	9.5	29.5	771
Hardap	5.6	21.3	30.6	6.3	37.4	304
//Karas	4.0	20.5	22.7	9.8	36.4	343
Kavango	14.5	65.5	54.7	25.7	77.0	835
Khomas	4.1	15.9	17.9	9.7	29.0	2,202
Kunene	2.1	32.2	38.3	6.0	46.5	258
Ohangwena	4.2	30.1	48.2	26.5	57.6	894
Omaheke	9.6	37.4	43.6	15.7	56.0	225
Omusati	5.4	25.3	35.2	16.3	42.7	884
Oshana	3.9	20.3	23.1	9.7	33.2	755
Oshikoto	7.7	20.6	31.3	16.4	44.3	707
Otjozondjupa	6.9	30.0	31.8	13.5	48.2	540
Education						
No education	10.9	54.0	57.8	25.1	72.2	419
Primary	9.6	46.5	48.3	22.5	63.9	1,798
Secondary	5.5	22.7	26.2	12.7	38.5	6,029
More than secondary	2.7	10.7	12.3	8.0	21.6	930
Wealth quintile						
Lowest	9.0	55.8	61.6	28.2	74.4	1,429
Second	8.7	38.4	44.5	19.2	58.9	1,625
Middle	6.8	26.0	32.0	13.8	44.6	1,795
Fourth	5.1	19.1	19.6	10.4	33.3	2,116
Highest	3.4	10.8	9.5	7.4	20.3	2,211
Total	6.3	27.6	30.5	14.7	43.3	9,176

Note: Total includes 12 women with missing information on employment. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

The most common factor impeding women from accessing health care for themselves is distance to a health facility (31 percent), followed closely by getting money to pay for treatment (28 percent). Six percent of women reported getting permission to go as a problem in accessing health care, and 15 percent reported not wanting to go alone.

Women with five or more children, formerly married women, unemployed women, women who are employed but not for cash, rural women, and women in Kavango were more likely than their counterparts to cite having at least one of these problems in seeking health care for themselves, as were women with no education and those from the poorest households. The percentage of women who reported each of these factors as a problem in seeking medical care generally decreased with increasing educational attainment and wealth. As expected, women residing in rural areas were more likely than those in urban areas to report distance as a problem (46 percent versus 19 percent).

Key Findings

- Nineteen percent of infants born in the five years preceding the survey were very small or smaller than average at birth. Among infants with a reported birth weight, 13 percent weighed less than 2.5 kg .
- Sixty-eight percent of children age 12-23 months were fully vaccinated at the time of the survey; 63 percent of children in this age group had received all basic vaccinations by age 12 months.
- Six percent of children under age 5 experienced symptoms of acute respiratory infection (ARI) in the two weeks preceding the survey.
- Twenty-four percent of children under age 5 had a fever within the two weeks preceding the survey. Among those with a fever, 59 percent were taken to a health facility or provider for advice or treatment, 8 percent received antimalarial medicines, and 45 percent received antibiotics.
- Seventeen percent of children under age 5 had diarrhoea in the two weeks preceding the survey. Sixty-four percent of these children were taken to a health facility or provider, and 79 percent were treated with oral rehydration therapy (ORT) or increased fluids. Twelve percent of children with diarrhoea did not receive any type of treatment.

TThis chapter presents findings on child health and survival, including neonatal characteristics (birth weight and size), the vaccination status of young children, and treatment practices-particularly contact with health services-among children suffering from three childhood illnesses: acute respiratory infection (ARI), fever, and diarrhoea. Because appropriate sanitary practices can help prevent and reduce the severity of diarrhoeal disease, information is also provided on disposal of children's faecal matter. These results can assist policymakers and programme managers as they formulate appropriate strategies and interventions to improve the health of children in Namibia. In particular, the results will be used to assess coverage of current strategies such as integrated management of childhood illness, which seeks to prevent deaths from pneumonia, malaria, and diarrhoea, and to plan for improvements in these initiatives.

11.1 Child's Weight and Size at Birth

Birth weight is an important indicator when assessing a child's health in terms of early exposure to childhood morbidity and mortality. Children who weigh less than 2.5 kilograms at birth, or children reported to be "very small" or "smaller than average," are considered to have a higher than average risk of early childhood death. In the 2013 NDHS, for births in the five years preceding the survey, birth weight was recorded in the Woman's Questionnaire based on either a written record or the mother's report. The mother's estimate of the infant's size at birth was also obtained because birth weight may be unknown for many infants. Although the mother's estimate of size is subjective, it can be a useful proxy for the child's weight.

Table 11.1 includes information on mothers' estimates of their infant's size at birth. Seven percent of births are reported as very small, 13 percent as smaller than average, and 79 percent as average or larger than average. Children of mothers less than age 20 are more likely to be reported as very small than children of mothers age 20 or older. Mothers who smoke cigarettes or tobacco are more likely to report very small babies at birth than mothers who do not smoke. Kavango has the highest percentage of infants
reported as very small at birth, and Zambezi has the lowest percentage. Children of mothers with more than a secondary education are less likely to be reported as very small than children of mothers with no education (7 percent and 11 percent, respectively). Mothers in the fourth wealth quintile are less likely to report very small babies than mothers in the lowest and highest wealth quintiles.

Table 11.1 Child's size and weight at birth									
Percent distribution of live births in the five years preceding the survey by mother's estimate of baby's size at birth, percentage of live births in the five years preceding the survey that have a reported birth weight, and among live births in the five years preceding the survey with a reported birth weight, percentage less than 2.5 kg , according to background characteristics, Namibia 2013									
	Percent distribution of all live births by size of child at birth					Percentage of all births that have a reported birth weight ${ }^{1}$	Number of births	Births with a reported birth weight ${ }^{1}$	
Background characteristic	Very small	Smaller than average	Average or larger	Don't know/ missing	Total			Percentage less than 2.5 kg	Number of births
Mother's age at birth									
<20	9.0	13.9	73.8	3.3	100.0	80.0	765	15.8	612
20-34	6.1	12.3	80.0	1.6	100.0	86.8	3,317	12.6	2,880
35-49	5.9	13.3	79.1	1.7	100.0	84.2	722	12.1	608
Birth order									
1	7.4	13.4	76.8	2.4	100.0	88.5	1,647	15.2	1,457
2-3	5.7	12.0	80.9	1.4	100.0	88.1	1,962	12.2	1,728
4-5	6.5	12.3	79.8	1.4	100.0	81.7	755	12.0	617
6+	6.4	14.5	76.3	2.8	100.0	67.5	440	9.3	297
Mother's smoking status									
Smokes cigarettes/ tobacco	8.8	18.1	70.4	2.7	100.0	79.2	241	18.3	191
Does not smoke	6.4	12.5	79.4	1.8	100.0	85.7	4,559	12.8	3,907
Residence									
Urban	6.8	11.6	79.8	1.8	100.0	90.8	2,347	12.9	2,130
Rural	6.2	13.8	78.0	1.9	100.0	80.1	2,457	13.1	1,969
Region									
Zambezi	2.6	18.3	77.6	1.6	100.0	86.6	297	10.1	257
Erongo	5.2	10.0	82.2	2.6	100.0	93.7	334	11.8	313
Hardap	4.0	14.3	79.3	2.4	100.0	91.4	173	13.5	158
//Karas	4.2	15.5	80.0	0.4	100.0	91.3	165	14.3	151
Kavango	9.8	24.0	65.1	1.0	100.0	75.8	577	13.0	438
Khomas	8.4	9.8	80.0	1.8	100.0	91.3	887	13.8	810
Kunene	7.0	11.4	78.9	2.7	100.0	65.6	179	15.1	117
Ohangwena	4.3	7.7	87.0	0.9	100.0	76.2	598	11.6	456
Omaheke	9.4	17.4	71.9	1.3	100.0	74.0	149	15.2	110
Omusati	5.4	10.3	80.1	4.3	100.0	89.3	454	12.6	405
Oshana	5.1	7.6	85.5	1.8	100.0	95.0	310	15.8	294
Oshikoto	8.0	13.6	77.1	1.4	100.0	87.4	373	14.1	325
Otjozondjupa	6.6	11.2	79.8	2.4	100.0	86.2	308	10.5	266
Mother's education									
No education	10.7	14.9	67.2	7.1	100.0	51.6	298	13.8	154
Primary	7.6	13.0	76.6	2.8	100.0	72.3	1,125	11.9	814
Secondary	5.7	12.9	80.3	1.1	100.0	92.3	3,073	13.3	2,835
More than secondary	6.5	8.0	84.2	1.3	100.0	96.6	307	12.5	297
Wealth quintile									
Lowest	7.7	14.9	75.4	2.0	100.0	71.6	1,047	13.8	750
Second	5.9	14.0	77.9	2.3	100.0	84.1	1,053	15.6	885
Middle	6.2	12.3	79.5	2.1	100.0	87.8	997	12.2	875
Fourth	5.4	10.2	83.2	1.2	100.0	91.5	1,000	11.8	915
Highest	7.8	11.9	78.6	1.7	100.0	95.3	707	11.5	674
Total	6.5	12.7	78.9	1.9	100.0	85.3	4,804	13.0	4,100

Note: Total includes 4 births with missing information on mother's smoking status.
${ }^{1}$ Based on either a written record or the mother's recall

Table 11.1 also shows that birth weight is reported for 85 percent of the live births that occurred in the five years preceding the survey; 13 percent of these infants had low birth weights (less than 2.5 kg). Children of mothers less than age 20 and first births are more likely to be of low birth weight than their counterparts in the other categories. Smoking has an adverse impact on birth weight. The percentage of children of low birth weight ranges from a low of 10 percent in Zambezi to a high of 16 percent in Oshana.

11.2 Vaccination of Children

According to the World Health Organization, a child is considered fully immunised if he or she has received a BCG vaccination against tuberculosis; three doses of the DPT vaccine to prevent diphtheria, pertussis, and tetanus; at least three doses of the polio vaccine; and one dose of the measles vaccine. These vaccinations should be received during the first year of life. The 2013 NDHS collected information on the coverage of these vaccinations among all children under age 5, including receipt of three doses of the pentavalent vaccination (in place of the DPT vaccine), introduced in Namibia in September 2009. The pentavalent vaccine is a combination of five vaccines: diphtheria, tetanus, pertussis (whooping cough), hepatitis B, and Haemophilus influenzae type b (the bacteria that causes meningitis, pneumonia, and otitis). Since the reference period for childhood vaccination coverage includes both the stand-alone DPT and the pentavalent vaccine, we refer to this vaccination as DPT/pentavalent in the text and tables.

BCG should be given shortly after birth. The DPT/pentavalent and polio vaccines are given at approximately age 6,10 , and 14 weeks, and the measles vaccine should be given at or soon after age 9 months.

11.2.1 Sources of Information

In the 2013 NDHS, information on immunisation coverage was collected in two ways: from immunisation cards shown to the interviewer and from mothers' verbal reports. If the cards were available, the interviewer copied the immunisation dates directly onto the questionnaire. When there was no immunisation card, or if a vaccine had not been recorded on the card as being administered, the respondent was asked to recall the specific vaccines given to her child. The results presented here are based on both health card information and, for children without a card, information provided by the mother.

11.2.2 Vaccination Coverage

Table 11.2 shows vaccination coverage among children age $12-23$ months by source of information. Overall, 68 percent of children age 12-23 months were fully vaccinated at the time of the survey. Ninety-four percent had received the BCG vaccination at any time before the survey. In the case of the DPT/pentavalent vaccine, 93 percent had received the first dose, 89 percent had received the second dose, and 84 percent had received the third dose. Ninety-three percent had received the first dose of the polio vaccine, 88 percent had received the second dose, and 74 percent had received the third dose. Coverage of measles was 90 percent. Four percent of children age 12-23 months had not received any vaccinations, as compared with 2 percent in the 2006-07 NDHS.

Table 11.2 also shows the percentage of children vaccinated by age 12 months. This is the youngest cohort of children who have reached the age by which they should be fully immunised. Overall, 63 percent of children are fully immunised by 12 months.

Table 11.2 Vaccinations by source of information
Percentage of children age 12-23 months who received specific vaccines at any time before the survey, by source of information (vaccination card or mother's report), and percentage vaccinated by 12 months of age, Namibia 2013

Source of information	BCG	DPT/Pentavalent ${ }^{1}$			Polio				Measles	All basic vaccinations ${ }^{3}$	No vaccinations	Number of children
		1	2	3	O^{2}	1	2	3				
Vaccinated at any time before survey												
Vaccination card	69.4	68.7	68.3	67.1	69.1	69.5	69.2	67.8	66.2	64.7	0.0	652
Mother's report	24.8	24.0	20.8	16.5	20.8	23.1	18.4	6.5	23.3	3.7	4.4	286
Either source	94.2	92.7	89.0	83.5	89.9	92.6	87.6	74.3	89.5	68.4	4.4	938
Vaccinated by 12 months of age ${ }^{4}$	94.2	92.3	88.8	82.4	89.9	92.2	87.4	73.2	82.9	62.6	4.6	938

${ }^{1}$ Pentavalent vaccinations include DPT, Hepatitis B (HepB) and Haemophilus influenza type B (HiB)
${ }^{2}$ Polio 0 is the polio vaccination given at birth.
${ }^{3}$ BCG, measles and three doses each of DPT and polio vaccine (excluding polio vaccine given at birth)
${ }^{4}$ For children whose information is based on the mother's report, the proportion of vaccinations given during the first year of life is assumed to be the same as for children with a written record of vaccination.

Table 11.3 presents information on vaccination coverage among children age 12-23 months (from either vaccination cards or mothers' reports) by background characteristics.

Table 11.3 Vaccinations by background characteristics

Percentage of children age 12-23 months who received specific vaccines at any time before the survey (according to a vaccination card or the mother's report), and percentage with a vaccination card, by background characteristics, Namibia 2013

Background characteristic	BCG	DPT/pentavalent ${ }^{1}$			Polio				Measles	All basic vaccinations ${ }^{3}$	No vaccinations	Percentage with a vaccination card seen	Number of children
		1	2	3	0^{2}	1	2	3					
Sex													
Male	95.1	94.4	91.4	85.9	91.2	93.5	88.7	74.5	91.4	69.0	3.1	69.6	440
Female	93.4	91.1	87.0	81.4	88.8	91.8	86.7	74.2	87.8	67.9	5.6	69.5	498
Birth order													
1	93.0	90.6	86.7	80.3	87.2	90.9	85.0	64.5	90.7	60.2	5.7	61.3	306
2-3	94.9	93.7	88.8	84.6	91.7	93.2	88.0	78.3	87.5	70.5	3.1	72.2	389
4-5	94.2	92.6	91.7	83.8	88.8	93.4	91.1	79.6	91.2	73.4	5.7	74.4	163
6+	95.7	95.7	93.9	89.9	93.8	94.9	89.0	81.6	91.2	79.2	3.7	78.5	80
Residence													
Urban	91.8	89.1	84.0	78.3	87.0	89.6	83.8	66.4	85.7	58.1	6.4	59.5	467
Rural	96.5	96.2	94.0	88.6	92.8	95.6	91.4	82.1	93.2	78.6	2.5	79.4	471
Region													
Zambezi	100.0	98.3	95.9	88.8	92.4	98.9	89.3	81.7	91.7	78.3	0.0	74.1	57
Erongo	91.6	91.1	87.1	80.4	90.3	94.0	93.0	71.9	93.3	65.7	6.0	60.9	70
Hardap	98.7	97.5	97.5	97.5	96.7	97.1	97.1	87.8	97.5	87.8	1.3	82.8	35
//Karas	97.2	97.7	94.1	81.4	96.0	95.5	87.3	68.7	91.8	65.0	1.3	66.4	33
Kavango	94.7	94.7	89.4	80.6	90.9	91.8	88.3	78.0	89.0	73.4	5.3	77.8	108
Khomas	83.4	77.3	72.0	64.4	76.8	81.6	73.3	52.6	75.1	39.6	13.9	46.6	165
Kunene	91.6	91.9	89.3	78.7	85.2	94.2	88.1	60.7	88.2	56.0	3.5	52.9	32
Ohangwena	97.0	99.0	95.0	92.6	95.6	95.7	93.5	79.1	95.7	74.7	1.0	74.1	123
Omaheke	94.4	93.5	92.6	87.9	91.1	93.5	88.9	78.2	87.3	73.8	4.7	69.3	27
Omusati	98.8	97.4	95.8	93.0	94.5	98.8	96.0	91.8	91.7	84.7	1.2	90.4	89
Oshana	94.2	89.1	85.5	80.9	85.7	87.9	79.3	66.5	89.8	62.2	4.3	63.3	60
Oshikoto	98.7	98.7	95.4	90.8	97.5	95.8	89.5	83.8	98.7	82.5	0.0	81.3	78
Otjozondjupa	99.1	97.8	94.5	93.5	92.0	96.4	93.2	83.5	90.9	77.6	0.9	76.9	63
Mother's education													
No education	92.3	93.4	88.6	72.8	83.4	93.7	87.1	70.4	83.8	59.0	5.0	69.6	55
Primary	94.9	92.9	92.0	85.9	90.4	92.0	90.0	79.6	89.2	74.6	5.1	76.2	211
Secondary	94.7	94.1	89.6	85.7	91.2	93.4	87.6	73.9	91.3	68.7	3.5	68.2	621
More than secondary	(87.4)	(73.0)	(70.6)	(58.4)	(79.3)	(84.1)	(79.6)	(61.5)	(75.2)	(49.3)	(12.6)	(57.6)	50
Wealth quintile													
Lowest	96.3	97.4	93.8	86.9	93.0	95.4	90.4	79.1	93.3	74.6	2.5	76.5	195
Second	95.2	93.0	89.9	82.9	89.9	93.0	89.6	77.4	90.2	70.3	3.5	76.2	194
Middle	93.8	93.2	90.0	87.2	90.0	92.2	86.7	75.7	88.9	72.5	5.7	72.6	203
Fourth	92.4	91.2	88.7	86.1	88.5	91.7	86.5	72.9	88.8	69.4	6.4	64.0	198
Highest	93.1	87.3	80.7	71.3	87.7	90.1	84.3	63.8	85.2	50.7	3.9	54.7	147
Total	94.2	92.7	89.0	83.5	89.9	92.6	87.6	74.3	89.5	68.4	4.4	69.5	938

Note: Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Pentavalent vaccinations include DPT, Hepatitis B (HepB) and Haemophilus influenza type B (HiB).
${ }^{2}$ Polio 0 is the polio vaccination given at birth.
${ }^{3}$ BCG, measles and three doses each of DPT and polio vaccine (excluding polio vaccine given at birth)

There are only slight variations in vaccination coverage by gender. Full vaccination coverage increases steadily with increasing birth order. Children in urban areas are much less likely to be fully immunised than children in rural areas (58 percent versus 79 percent). Full immunisation coverage is lowest in Khomas (40 percent), the most urban region, and highest in Hardap (88 percent). Coverage is highest (75 percent) among children of mothers with a primary education. Children in the lowest wealth quintile are more likely to be fully vaccinated than those in the highest quintile (75 percent and 51 percent, respectively).

Table 11.3 also shows that an immunisation card was seen for 70 percent of children age 12-23 months. Cards were most likely to have been seen for children of birth order six and higher (79 percent), children living in rural areas (79 percent), children living in Omusati (90 percent), children of mothers with a primary education (76 percent), and children of mothers in the lowest wealth quintile (77 percent).

11.2.3 Trends in Vaccination Coverage

Figure 11.1 compares vaccination coverage from the 2006-07 and 2013 NDHS surveys for the first year of life among children age 12-23 months. Full immunisation coverage has decreased slightly in the last six years from 64 percent in 2006-07 to 63 percent in 2013.

Differences in coverage between the two surveys by specific vaccines are small with the exception of measles (which increased from 78 percent to 83 percent) and polio 3 (which decreased from 77 percent to 73 percent).

Figure 11.1 Trends in vaccination coverage during the first year of life among children age 12-23 months

Table 11.4 shows the percentage of children age 12-59 months who received specific vaccinations during the first year of life, according to age cohort. The data indicate that the proportion of children fully vaccinated by age 12 months has increased noticeably only among the youngest two cohorts, from 48 percent among children age 24-35 months to 63 percent among children age 12-23 months.

Table 11.4 Vaccinations in first year of life
Percentage of children age 12-59 months at the time of the survey who received specific vaccines by 12 months of age, and percentage with a vaccination card, by current age of child, Namibia 2013

Age in months	BCG	DPT/Pentavalent ${ }^{1}$			Polio				Measles	All basic vaccinations ${ }^{3}$	No vaccinations	Percentage with a vaccination card seen	Number of children
		1	2	3	0^{2}	1	2	3					
12-23	94.2	92.3	88.8	82.4	89.9	92.2	87.4	73.2	82.9	62.6	4.6	69.5	938
24-35	92.8	92.1	84.0	72.4	86.6	91.3	84.5	64.7	74.2	47.8	4.1	53.9	926
36-47	93.2	90.9	80.6	70.7	83.7	89.7	81.2	57.9	76.7	44.5	4.7	44.4	883
48-59	92.4	89.8	83.2	72.2	82.9	91.1	83.0	60.0	75.1	44.2	5.2	39.2	830
Total	93.2	91.3	84.3	74.7	85.9	91.1	84.1	64.3	78.1	50.3	4.6	52.3	3,577

[^9]
11.3 Prevalence and Treatment of Acute Respiratory Infection

Acute respiratory infections (ARIs) are a leading cause of childhood morbidity and mortality throughout the developing world. Early diagnosis and treatment with antibiotics can reduce the number of deaths caused by ARIs, particularly deaths resulting from pneumonia. In the 2013 NDHS, the prevalence of ARI symptoms was estimated by asking mothers whether, in the two weeks preceding the survey, their children under age 5 had been ill with a cough accompanied by short, rapid breathing and difficulty breathing as a result of a chest-related problem. These symptoms are consistent with conditions leading to pneumonia. It should be noted that the data collected on ARI symptoms are subjective because they are based on a mother's perception of illness without validation by medical personnel.

Table 11.5 shows that 6 percent of children under age 5 exhibited symptoms of ARI in the two weeks preceding the survey. The prevalence of ARI symptoms varied by the age of the child. Children age 6-11 months were more likely to have symptoms of ARI (8 percent) than children in the other age groups. Male children were more likely than female children to exhibit symptoms of ARI (7 percent versus 5 percent). ARI symptoms were also more likely to be reported among children of mothers who do not smoke, rural children, and children in Zambezi than among children in the other categories. Children of mothers with a primary education and those living in the poorest households were most likely to exhibit ARI symptoms.

Two-thirds (68 percent) of children with symptoms of ARI were taken to a health facility or health provider. More than one in two children (53 percent) with ARI symptoms received antibiotics. Due to the small number of cases, these data are not shown separately by background characteristics.

11.4 Prevalence and Treatment of Fever

Fever is a symptom of malaria, but it may also accompany other illnesses including pneumonia, common colds, and influenza. Because malaria is a major cause of death in infancy and childhood in many developing countries, prior to 2010 presumptive treatment of fever with antimalarial medication was advocated in many countries where malaria is endemic (WHO, 2010a). In Namibia, ideally all suspected malaria cases should be confirmed diagnostically before treatment; however, when parasitological diagnosis is not accessible, treatment may be based on clinical diagnosis (Ministry of Health and Social Services [MoHSS], 2005). Information relating to the prevention and treatment of malaria is discussed in detail in Chapter 12.

In the 2013 NDHS, fever prevalence was estimated by asking mothers whether their children under age 5 had been ill with a fever in the two weeks preceding the survey. For children with a fever,
mothers were also asked about treatment actions they took, including whether or not the child had been given any medicine to treat the fever and, if so, what medicine the child was given.

Table 11.6 shows that about one in four children under age 5 (24 percent) had a fever during the two weeks preceding the survey. The prevalence of fever varies with children's ages. Children age 6-11 months were more likely to have had a fever (38 percent) than children in other age groups. Among regions, the prevalence of fever in the two weeks preceding the survey ranged from a high of 50 percent in Zambezi to a low of 13 percent in Kunene. Children of mothers with some education were more likely to have had a fever in the two weeks preceding the survey than children of mothers with no education.

Advice or treatment was sought from a health facility or provider for 59 percent of children with fever. Children were more likely to have received an antibiotic medicine than an antimalarial medicine during an episode of fever (45 percent versus 8 percent). Children age 12-23 months, male children, those living in rural areas, children of mothers with more than a secondary education, and those in the middle wealth quintile were more likely than their counterparts in the other categories to have been taken to a facility or provider for advice or treatment of fever.

Table 11.6 Prevalence and treatment of fever
Among children under age five, the percentage who had a fever in the two weeks preceding the survey; and among children with fever, the percentage for whom advice or treatment was sought from a health facility or provider, the percentage who took antimalarial medicines, and the percentage who received antibiotics as treatment, by background characteristics, Namibia 2013

Background characteristic	Among children under age five:		Among children under age five with fever:			
	Percentage with fever	Number of children	Percentage for whom advice or treatment was sought from a health facility or provider ${ }^{1}$	Percentage who took antimalarial medicines	Percentage who took antibiotic medicines	Number of children
Age in months						
<6	23.1	500	57.1	6.3	33.3	116
6-11	38.0	512	61.1	8.1	47.6	194
12-23	27.7	938	70.1	10.7	47.8	260
24-35	24.1	926	49.5	7.4	41.2	223
36-47	21.0	883	57.3	12.0	44.5	186
48-59	15.4	830	51.0	2.9	52.5	128
Sex						
Male	25.0	2,237	59.5	8.8	46.8	559
Female	23.3	2,351	57.7	8.1	43.0	547
Residence						
Urban	25.2	2,249	56.6	7.9	45.3	567
Rural	23.0	2,340	60.8	9.0	44.4	538
Region						
Zambezi	50.2	279	62.5	1.5	46.7	140
Erongo	22.6	320	62.3	15.2	40.9	72
Hardap	15.8	166	(51.1)	(1.5)	(69.8)	26
//Karas	20.8	160	55.5	6.6	46.7	33
Kavango	36.3	541	62.8	19.9	19.5	196
Khomas	26.3	858	43.6	7.7	54.3	225
Kunene	13.4	170	50.5	1.8	35.3	23
Ohangwena	18.8	561	66.1	4.5	47.3	105
Omaheke	23.4	143	57.5	0.9	33.6	33
Omusati	14.4	440	78.7	14.7	64.7	64
Oshana	17.5	300	(76.4)	(1.7)	(38.6)	53
Oshikoto	24.1	353	57.2	5.7	61.1	85
Otjozondjupa	16.7	298	47.2	1.6	49.5	50
Mother's education						
No education	15.6	281	44.3	6.9	37.6	44
Primary	26.4	1,061	55.0	14.2	35.2	280
Secondary	24.0	2,948	60.6	6.2	48.2	707
More than secondary	24.9	300	62.1	9.4	53.8	75
Wealth quintile						
Lowest	25.0	988	57.0	12.0	34.1	247
Second	23.2	1,009	56.2	4.9	43.0	234
Middle	24.8	952	65.6	10.4	45.1	236
Fourth	22.2	954	57.1	9.5	52.5	212
Highest	25.8	686	56.8	4.4	53.0	177
Total	24.1	4,588	58.6	8.4	44.9	1,106

Note: Figures in parentheses are based on 25-49 unweighted cases
${ }^{1}$ Excludes pharmacy, shop, market, and traditional practitioner

11.5 Diarrhoeal Disease

Dehydration caused by severe diarrhoea is a major cause of morbidity and mortality among young children. Exposure to diarrhoea-causing agents is often related to the use of contaminated water and to unhygienic practices in food preparation and disposal of excreta.

The 2013 NDHS obtained information on the prevalence of diarrhoea among young children by asking mothers whether their children under age 5 had had diarrhoea during the two weeks preceding the survey. When a child was identified as having had diarrhoea, information was collected on treatment and feeding practices during the diarrhoeal episode. The mother was also asked whether there was blood in the child's stools, which indicates an infection that needs to be treated differently than diarrhoea without blood.

11.5.1 Prevalence of Diarrhoea

Table 11.7 shows that 17 percent of children under age 5 had diarrhoea in the two weeks preceding the survey, and 2 percent had blood in their stool. The prevalence of diarrhoea is much higher among children age 6-35 months than among children in the other age groups. Male children are slightly more likely than female children to have had diarrhoea (19 percent versus 16 percent). Diarrhoea is somewhat more prevalent among children in households without an improved source of drinking water (20 percent) than among children from households that do have an improved source of water (17 percent). Similarly, the prevalence of diarrhoea is higher among children whose households do not have an improved toilet facility (20 percent) or share a facility with other households (16 percent) than among children whose households have an improved, unshared toilet facility (13 percent). Rural children are more likely to have had diarrhoea than urban children (20 percent versus 15 percent). The prevalence of diarrhoea varies at the regional level: it is highest in Zambezi and Kavango (32 percent each)

Table 11.7 Prevalence of diarrhoea
Percentage of children under age five who had diarrhoea in the two weeks preceding the survey, by background characteristics, Namibia 2013

Background characteristic	Diarrhoea in the two weeks preceding the survey		Number of children
	All diarrhoea	Diarrhoea with blood	
Age in months			
<6	12.2	0.2	500
6-11	30.2	4.6	512
12-23	28.1	3.8	938
24-35	20.5	2.6	926
36-47	9.2	1.1	883
48-59	6.1	0.9	830
Sex			
Male	18.9	2.3	2,237
Female	16.1	2.2	2,351
Source of drinking water ${ }^{1}$			
Improved	16.7	2.1	3,833
Not improved	20.4	2.5	719
Other/missing	(37.4)	(11.2)	36
Toilet facility ${ }^{2}$			
Improved, not shared	13.0	1.3	1,241
Shared ${ }^{3}$	16.2	1.2	633
Non-improved	19.8	2.9	2,709
Residence			
Urban	14.7	1.6	2,249
Rural	20.1	2.9	2,340
Region			
Zambezi	32.3	3.0	279
Erongo	10.1	0.4	320
Hardap	7.5	0.3	166
//Karas	9.6	0.7	160
Kavango	31.8	6.0	541
Khomas	16.4	1.3	858
Kunene	12.4	2.8	170
Ohangwena	15.0	2.0	561
Omaheke	14.7	2.3	143
Omusati	19.2	2.8	440
Oshana	10.2	1.5	300
Oshikoto	14.7	1.9	353
Otjozondjupa	14.9	1.6	298
Mother's education			
No education	14.3	1.7	281
Primary	22.7	3.3	1,061
Secondary	16.4	2.1	2,948
More than secondary	11.7	0.4	300
Wealth quintile			
Lowest	23.0	3.8	988
Second	18.9	2.8	1,009
Middle	18.5	1.5	952
Fourth	13.8	1.5	954
Highest	10.9	1.2	686
Total	17.4	2.2	4,588

Note: Total includes 5 children with missing information on toilet facility. Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ See Table 2.1 for definition of categories
${ }^{2}$ See Table 2.2 for definition of categories
${ }^{3}$ Facilities that would be considered improved if they were not shared by two or more households and lowest in Hardap (8 percent). The prevalence of diarrhoea with blood by background characteristics follows a pattern similar to that observed for diarrhoea in general.

11.5.2 Treatment of Diarrhoea

Table 11.8 shows that 64 percent of children with diarrhoea were taken to a health facility or provider for advice or treatment. Children age 6-23 months, male children, children with bloody diarrhoea, and children from Kavango were more likely than their counterparts to be taken to a health facility or
provider for treatment, as were children of mothers with a primary education and children from households in the fourth wealth quintile.

A simple and effective response to dehydration caused by diarrhoea is oral rehydration therapy (ORT). Oral rehydration salt (ORS) packets are one source of rehydration therapy available in Namibia.

Seventy-two percent of children were treated with ORS, 18 percent were given recommended home fluids (RHF), 78 percent were given oral rehydration therapy (that is, either ORS or RHF), 12 percent were given increased fluids, and 79 percent were given ORT or increased fluids.

Table 11.8 Diarrhoea treatment
Among children under age five who had diarrhoea in the two weeks preceding the survey, the percentage for whom advice or treatment was sought from a health facility or provider, the percentage given oral rehydration therapy (ORT), the percentage given increased fluids, the percentage given ORT or increased fluids, and the percentage given other treatments, by background characteristics, Namibia 2013

Background characteristic	Percentage of children with diarrhoea for whom advice or treatment was sought from a health facility or provider ${ }^{1}$	Oral rehydration therapy (ORT)					Other treatments			
		Fluid from ORS packets or prepackaged ORS fluid	Recommended home fluids (RHF)	Either ORS or RHF	Increased fluids	ORT or increased fluids	Antibiotic medicines	Home remedy/ other	No treatment	Number of children with diarrhoea
Age in months										
<6	61.8	49.4	4.0	49.4	6.7	52.6	19.0	19.8	27.8	61
6-11	65.5	68.5	19.1	79.5	8.8	80.3	20.1	28.1	11.1	155
12-23	65.8	75.8	15.2	79.9	11.6	81.8	22.2	19.3	9.8	263
24-35	60.2	75.9	19.9	82.2	14.0	83.0	17.2	18.6	11.4	190
36-47	63.5	73.4	21.9	77.0	11.7	78.2	13.5	19.5	12.5	81
48-59	63.1	67.3	33.6	75.7	16.6	83.2	20.0	29.2	6.0	51
Sex										
Male	66.6	71.5	18.4	78.6	13.4	80.6	19.3	22.8	11.3	422
Female	60.5	71.7	17.7	76.2	9.5	77.8	19.3	20.1	12.4	378
Type of diarrhoea										
Non-bloody	62.6	72.0	18.1	78.4	11.8	80.5	20.4	19.8	11.6	684
Bloody	73.4	73.1	20.3	76.3	9.4	76.5	13.4	32.9	12.3	102
Residence										
Urban	63.8	75.4	20.0	82.0	14.0	83.7	21.7	18.1	9.4	330
Rural	63.7	69.0	16.7	74.3	9.9	76.3	17.7	23.9	13.6	471
Region										
Zambezi	63.4	69.7	25.4	80.3	12.6	80.3	16.7	10.3	13.2	90
Erongo	(63.5)	(69.3)	(33.1)	(84.4)	(15.0)	(84.4)	(18.5)	(29.4)	(7.5)	32
Hardap	*	*	*	*	*	*	*	*	*	12
//Karas	(55.9)	(75.9)	(16.3)	(75.9)	(12.5)	(77.2)	(20.0)	(20.0)	(7.4)	15
Kavango	72.0	78.3	21.5	81.2	1.6	81.2	6.2	21.0	12.1	172
Khomas	56.5	75.5	16.1	83.6	15.2	86.3	24.0	14.5	11.7	141
Kunene	53.1	59.4	9.5	65.6	3.8	65.6	12.2	42.7	18.0	21
Ohangwena	67.7	66.5	8.9	66.5	22.0	70.7	18.2	32.3	15.1	84
Omaheke	53.4	82.3	30.3	86.8	7.8	86.8	23.0	17.2	11.3	21
Omusati	70.2	67.1	21.0	76.8	4.3	76.8	35.8	27.7	11.3	85
Oshana	(64.0)	(78.3)	(12.8)	(78.3)	(13.7)	(78.3)	(31.7)	(30.4)	(10.8)	31
Oshikoto	(56.7)	(64.4)	(11.8)	(72.4)	(23.2)	(79.8)	(15.4)	(21.9)	(7.5)	52
Otjozondjupa	57.6	62.7	9.1	64.9	10.3	69.6	27.5	18.2	12.9	44
Mother's education										
No education	53.1	61.6	12.3	68.4	5.5	68.4	12.7	22.8	13.7	40
Primary	67.6	70.8	17.8	75.6	8.3	76.9	15.1	21.2	13.9	241
Secondary	63.1	73.7	19.6	80.1	12.8	81.6	22.1	21.1	10.3	485
More than secondary	*	*	*	*	*	*	*	*	*	35
Wealth quintile										
Lowest	62.4	64.2	18.6	70.2	9.0	72.6	12.5	20.4	18.6	227
Second	62.0	75.4	16.9	82.4	8.8	82.4	16.8	23.0	8.7	191
Middle	64.8	73.2	21.4	79.5	12.1	80.7	21.6	22.3	7.7	177
Fourth	68.7	77.9	18.8	83.7	12.9	84.9	29.6	19.3	8.9	131
Highest	61.3	69.7	10.5	71.4	23.1	78.8	23.2	23.3	14.5	75
Total	63.7	71.6	18.1	77.5	11.6	79.3	19.3	21.5	11.9	800

[^10]Nineteen percent of children with diarrhoea were given antibiotic medicines, and 22 percent were given home remedies or other unspecified drugs. However, about one in ten (12 percent) children with diarrhoea did not receive any treatment at all.

11.5.3 Feeding Practices during Diarrhoea

When a child has diarrhoea, mothers are encouraged to continue feeding the child the same amount of food as they would if the child did not have diarrhoea, and they are also encouraged to increase the child's fluid intake. These practices help to reduce dehydration and minimise the adverse consequences of diarrhoea for the child's nutritional status. In the 2013 NDHS, mothers were asked whether they gave their child with diarrhoea less, the same amount of, or more fluids and food than usual.

Table 11.9 shows the percent distribution of children under age 5 who had diarrhoea in the two weeks preceding the survey by feeding practices, according to background characteristics. Forty-five percent of children with diarrhoea were given the same amount of liquids as usual, and 12 percent were given more. Eighteen percent of children were given somewhat less and 21 percent were given much less to drink than usual. Forty percent of children were given the same amount of food as usual, 4 percent were given more food, 22 percent were given somewhat less food, and 23 percent were given much less food. Five percent of children were not given any food during the diarrhoea episode. Overall, only 8 percent of children had increased fluid intake and continued feeding. Fifty-two percent of children continued feeding and were given ORT and/or increased fluids.

11.6 Knowledge of ORS Packets

To ascertain respondents’ knowledge of ORS in Namibia, women were asked whether they knew about ORS packets. Knowledge was nearly universal, with 96 percent of women knowing about ORS packets or ORS pre-packaged liquids; there was little variation in knowledge by background characteristics (data not shown separately).
Table 11.9 Feeding practices during diarrhoea
 feeding during the diarrhoea episode, and the percentage of children who continued feeding and were given ORT and/or increased fluids during the episode of diarrhoea, by background characteristics, Namibia 2013

Background characteristic	Amount of liquids given							Amount of food given								Percentage given increased fluids and continued feeding ${ }^{1}$	Percentage who continued feeding and were given ORT and/or increased fluids ${ }^{1}$	Number of children with diarrhoea
	More	Same as usual	Somewhat less	Much less	None	Don't know/ missing	Total	More	Same as usual	Somewhat less	Much less	None	Never gave food	Don't know/ missing	Total			
Age in months																		
<6	6.7	65.5	15.9	6.1	5.8	0.0	100.0	0.0	37.6	17.3	9.1	0.0	35.9	0.0	100.0	0.0	21.2	61
6-11	8.8	39.1	20.0	24.7	6.7	0.7	100.0	3.7	38.8	20.9	23.7	6.8	5.6	0.5	100.0	5.9	51.1	155
12-23	11.6	41.8	18.5	26.3	1.2	0.5	100.0	3.6	40.9	22.6	23.6	6.2	2.9	0.2	100.0	9.3	55.6	263
24-35	14.0	44.2	15.9	22.8	1.7	1.3	100.0	5.0	40.5	18.4	28.3	5.7	0.8	1.3	100.0	8.4	52.1	190
36-47	11.7	49.3	17.1	12.2	6.1	3.6	100.0	2.7	35.3	32.7	21.4	3.0	2.5	2.5	100.0	9.3	55.2	81
48-59	16.6	47.1	25.6	8.4	0.0	2.4	100.0	1.4	51.3	28.8	16.1	0.0	0.0	2.4	100.0	9.1	67.4	51
Sex																		
Male	13.4	41.4	19.5	21.7	3.1	0.9	100.0	4.1	38.3	23.4	23.9	4.8	5.1	0.4	100.0	8.3	53.8	422
Female	9.5	48.5	17.0	20.3	3.2	1.4	100.0	2.8	42.4	21.1	21.8	5.2	5.4	1.4	100.0	7.0	49.9	378
Type of diarrhoea																		
Non-bloody	11.8	46.1	18.3	20.6	2.7	0.5	100.0	3.5	40.7	22.9	22.5	4.6	5.5	0.3	100.0	7.9	53.2	684
Bloody	9.4	39.2	16.7	27.1	6.6	1.0	100.0	4.0	38.1	19.7	26.9	7.0	4.4	0.0	100.0	6.8	47.0	102
Residence																		
Urban	14.0	40.2	15.2	26.7	3.4	0.5	100.0	3.2	40.2	19.6	25.9	5.9	4.7	0.4	100.0	9.1	52.0	330
Rural	9.9	47.9	20.5	17.1	3.0	1.6	100.0	3.6	40.3	24.2	20.8	4.3	5.6	1.2	100.0	6.7	52.0	471
Region																		
Zambezi	12.6	46.0	20.9	18.7	1.8	0.0	100.0	4.4	34.4	30.1	22.0	1.3	7.6	0.0	100.0	10.9	54.6	90
Erongo	(15.0)	(37.1)	(2.3)	(39.9)	(5.7)	(0.0)	100.0	(9.5)	(33.3)	(7.8)	(35.7)	(6.1)	(7.7)	(0.0)	100.0	(10.7)	(42.9)	32
Hardap			*				100.0	*							100.0		*	12
//Karas	(12.5)	(43.4)	(6.5)	(19.7)	(7.3)	(10.7)	100.0	(2.6)	(41.1)	(19.4)	(20.8)	(2.8)	(2.6)	(10.7)	100.0	(9.8)	(50.8)	15
Kavango	1.6	54.3	27.7	14.3	0.9	1.2	100.0	0.7	48.7	27.4	12.4	1.5	8.0	1.2	100.0	0.6	61.2	172
Khomas	15.2	36.9	15.0	28.7	4.1	0.0	100.0	4.0	36.5	19.0	31.0	6.5	2.9	0.0	100.0	9.4	49.5	141
Kunene	3.8	54.7	14.6	26.9	0.0	0.0	100.0	1.6	50.0	14.9	23.3	5.0	5.2	0.0	100.0	1.6	45.9	21
Ohangwena	22.0	40.5	10.1	24.3	1.6	1.4	100.0	5.3	35.8	16.8	37.3	1.6	1.6	1.4	100.0	16.4	38.8	84
Omaheke	7.8	44.5	21.0	21.2	4.5	1.0	100.0	3.2	43.7	19.6	22.3	8.9	2.3	0.0	100.0	7.8	55.1	21
Omusati	4.3	41.5	27.6	14.5	10.7	1.4	100.0	0.0	35.9	27.8	16.2	14.5	4.2	1.4	100.0	0.0	50.9	85
Oshana	(13.7)	(32.0)	(6.6)	(44.2)	(3.5)	(0.0)	100.0	(3.4)	(27.4)	(23.8)	(35.7)	(3.5)	(6.3)	(0.0)	100.0	(10.5)	(44.1)	31
Oshikoto	(23.2)	(40.3)	(21.1)	(8.3)	(1.9)	(5.3)	100.0	(2.8)	(37.6)	(24.6)	(19.5)	(8.3)	(5.7)	(1.6)	100.0	(9.9)	(54.5)	52
Otjozondjupa	10.3	60.4	9.6	19.6	0.0	0.0	100.0	1.8	58.3	14.4	14.2	5.7	5.7	0.0	100.0	9.1	53.9	44
Mother's education																		
No education	5.5	65.2	11.7	15.2	0.0	2.4	100.0	4.6	50.0	13.4	22.8	2.8	6.4	0.0	100.0	0.0	45.8	40
Primary	8.3	46.0	24.3	16.6	3.4	1.5	100.0	2.2	38.3	29.3	20.1	4.9	3.8	1.4	100.0	5.0	51.9	241
Secondary	12.8	43.0	16.7	23.0	3.4	0.9	100.0	4.3	40.9	19.6	23.1	5.4	6.0	0.7	100.0	9.3	53.3	485
More than secondary	*	*	*	*	*	*	100.0	*	*	*	*	*	*	*	100.0	*	*	35
Wealth quintile																		
Lowest	9.0	46.9	23.1	18.6	1.6	0.7	100.0	4.7	37.7	25.5	23.5	2.7	5.2	0.7	100.0	5.8	50.3	227
Second	8.8	48.5	20.3	17.6	3.0	1.9	100.0	2.3	47.7	18.4	19.5	6.4	4.5	1.3	100.0	5.4	54.4	191
Middle	12.1	44.1	14.7	22.6	5.4	1.2	100.0	2.7	35.6	24.6	23.3	6.2	6.4	1.2	100.0	8.0	50.4	177
Fourth	12.9	42.5	17.4	24.0	2.5	0.7	100.0	5.1	43.3	18.5	22.2	7.0	3.9	0.0	100.0	10.3	57.0	131
Highest	23.1	34.2	8.6	28.8	4.2	1.1	100.0	1.7	34.7	23.6	30.2	2.0	6.6	1.1	100.0	13.8	45.7	75
Total	11.6	44.8	18.3	21.1	3.2	1.1	100.0	3.5	40.2	22.3	22.9	5.0	5.2	0.9	100.0	7.7	52.0	800

[^11]
11.7 Disposal of Children’s Stools

The proper disposal of children's faeces is important in preventing the spread of disease. If faeces are left uncontained, disease may spread by direct contact or through animal contact. Children's stools are considered to be safely disposed of if the child uses a toilet or latrine, the child's stool is put or rinsed into a toilet or latrine, or the stool is buried.

Table 11.10 presents information on disposal of children's stools, according to background characteristics. Overall, 51 percent of children had their last stool disposed of safely. Stools for 5 percent of children are put or rinsed into a drain or ditch, 26 percent are thrown into the garbage, and 12 percent are left in the open. Children in rural areas were more likely than those in urban areas to have had their last stool safely disposed of (54 percent and 48 percent, respectively).

Table 11.10 Disposal of children's stools
Percent distribution of youngest children under age five living with their mother by the manner of disposal of the child's last faecal matter, and percentage of children whose stools are disposed of safely, according to background characteristics, Namibia 2013

Background characteristic	Manner of disposal of children's stools									Percentage of children whose stools are disposed of safely ${ }^{1}$	Number of children
	Child used toilet or latrine	Put/rinsed into toilet or latrine	Buried	Put/rinsed into drain or ditch	Thrown into garbage	Left in the open	Other	Missing	Total		
Age in months											
<6	3.0	9.3	25.7	11.3	40.2	2.5	7.5	0.5	100.0	38.0	487
6-11	3.0	8.5	35.8	7.1	33.4	5.5	6.2	0.6	100.0	47.3	481
12-23	5.2	7.4	37.3	4.7	31.2	11.3	2.3	0.4	100.0	49.9	753
24-35	11.8	11.6	32.2	2.4	19.2	16.1	5.0	1.7	100.0	55.6	585
36-47	20.3	12.6	25.2	1.3	14.4	20.8	3.9	1.5	100.0	58.1	407
48-59	29.8	11.9	20.1	0.8	10.5	21.1	5.3	0.5	100.0	61.8	329
Toilet facility ${ }^{2}$											
Improved, not shared	23.3	21.0	9.7	4.0	35.0	3.6	2.3	1.1	100.0	54.0	853
Shared ${ }^{3}$	16.7	16.5	12.6	5.1	38.5	4.5	5.3	0.7	100.0	45.9	373
Non-improved or shared	3.1	3.2	44.5	5.1	19.5	17.8	5.9	0.8	100.0	50.8	1,812
Residence											
Urban	17.9	16.4	13.4	4.9	36.1	7.1	3.3	0.9	100.0	47.7	1,445
Rural	3.7	4.0	46.5	4.8	17.2	16.9	6.2	0.8	100.0	54.2	1,596
Region											
Zambezi	2.2	5.7	38.6	7.3	27.9	14.4	3.3	0.6	100.0	46.5	206
Erongo	25.3	19.8	3.0	0.7	42.9	6.9	0.6	0.8	100.0	48.0	199
Hardap	11.9	8.9	4.9	13.1	41.5	17.5	2.2	0.0	100.0	25.7	119
//Karas	22.5	12.1	6.9	13.6	36.3	5.9	1.7	0.9	100.0	41.6	102
Kavango	1.1	3.0	55.3	3.3	19.8	9.8	7.2	0.5	100.0	59.4	400
Khomas	20.8	17.2	5.6	2.8	41.1	5.4	6.2	0.9	100.0	43.7	544
Kunene	7.8	5.8	34.6	4.7	31.7	13.8	1.0	0.6	100.0	48.2	106
Ohangwena	7.3	1.6	48.6	6.3	14.3	12.3	9.2	0.4	100.0	57.6	349
Omaheke	6.3	17.1	40.8	6.4	13.8	9.2	1.4	5.2	100.0	64.1	89
Omusati	6.3	2.6	48.3	3.2	15.9	20.5	2.0	1.3	100.0	57.2	295
Oshana	10.6	12.0	26.6	3.3	18.3	27.1	1.1	1.0	100.0	49.2	193
Oshikoto	4.4	8.7	43.4	6.0	13.1	15.1	8.9	0.4	100.0	56.4	241
Otjozondjupa	9.6	21.0	22.2	5.0	27.8	9.2	4.0	1.2	100.0	52.8	200
Mother's education											
No education	3.1	5.8	49.0	2.7	14.3	15.6	7.4	2.0	100.0	58.0	193
Primary	4.2	4.7	42.9	4.6	21.8	15.3	5.2	1.3	100.0	51.8	687
Secondary	11.4	10.4	27.6	5.6	28.2	11.8	4.4	0.6	100.0	49.5	1,945
More than secondary	28.1	24.9	4.1	0.8	32.8	3.2	5.0	1.2	100.0	57.0	217
Wealth quintile											
Lowest	2.3	1.6	51.0	3.9	16.4	15.8	8.4	0.6	100.0	54.9	676
Second	1.6	4.1	42.2	5.5	21.2	19.7	4.7	1.0	100.0	47.9	681
Middle	6.4	8.7	34.6	5.7	24.1	15.0	4.9	0.5	100.0	49.8	618
Fourth	16.9	19.3	14.1	5.4	34.4	5.8	3.1	1.1	100.0	50.3	598
Highest	32.2	19.7	1.0	3.3	40.0	0.7	1.9	1.2	100.0	52.9	468
Total	10.5	9.9	30.7	4.8	26.2	12.2	4.8	0.9	100.0	51.1	3,042

[^12]At the regional level, there are wide variations in the proportion of children whose last stool was disposed of properly. For example, 64 percent of children in Omaheke had their stools disposed of safely, as compared with only 26 percent of children from Hardap. There are no substantial differences by mother's education or wealth quintile in safe disposal of children's stools.

NUTRITION OF CHILDREN AND ADULTS

Key Findings

- Among Namibian children under age 5 at the time of the survey, 24 percent were stunted (short for their age), 6 percent were wasted (thin for their height), and 13 percent were underweight (thin for their age). Only 3 percent of children were overweight (heavy for their height).
- Almost all children (96 percent) are breastfed at some point in their life. Forty-nine percent of children under age 6 months are exclusively breastfed. Sixty-two percent of children age 6-9 months are breastfeeding and consuming complementary foods.
- The median duration of breastfeeding is 14.7 months.
- Only 13 percent of children age 6-23 months are fed in accordance with the three core infant and young child feeding (IYCF) practices.
- Eighty-four percent of Namibian children age 6-59 months received vitamin A supplements in the six months prior to the survey, 43 percent received deworming medication in the preceding six months, and 76 percent live in households with iodised salt.
- Overall, 55 percent of women and 65 percent of men have a body mass index (BMI) in the normal range. Three in ten women and one in ten men are overweight or obese.
- Among women age $15-49$ with a child born in the past five years, 58 percent received a vitamin A dose postpartum; during the pregnancy of their last birth, 39 percent of women took iron tablets for the recommended period of time, while only 7 percent took deworming medication.

TThis chapter presents findings on the nutritional status of adults and children in Namibia. A specific focus is infant and young child feeding practices, including early initiation of breastfeeding, exclusive breastfeeding during the first six months of life, continued breastfeeding until at least age 2, timely introduction of complementary foods at age 6 months (with increasing frequency of feeding solid and semisolid foods), and diet diversity. Data on nutritional status, diversity of foods consumed, micronutrient intake, and vitamin A supplementation are presented for women and for children under age 5, along with the results of household testing of salt for adequate levels of iodine. A summary indicator that describes the quality of infant and young child feeding (IYCF) practices for infants age 6-23 months is included. Findings on the prevalence of anaemia among children age 6-59 months and women and men age 15-49 are also presented.

Good nutrition is a basic building block of human capital and, as such, contributes to economic development. Adequate nutrition is critical to child development, with the period from birth to age 2, referred to as the critical window of opportunity, being important for optimal growth, health, and development. Unfortunately, this period is often marked by growth faltering, micronutrient deficiencies, and common childhood illnesses such as malaria, diarrhoea, and acute respiratory infections.

A woman's nutritional status has important implications for her health as well as the health of her children. Malnutrition in women results in reduced productivity, an increased susceptibility to infections, slow recovery from illness, and heightened risks of adverse pregnancy outcomes. For example, a woman who has poor nutritional status, as indicated by a low body mass index (BMI), short stature, anaemia, or other micronutrient deficiencies, has a greater risk of obstructed labour, of having a baby with a low birth
weight, of producing lower quality breast milk, of mortality due to postpartum haemorrhage, and of morbidity for both herself and her baby.

12.1 Nutritional Status of Children

The anthropometric data on height and weight collected in the 2013 NDHS permit the measurement and evaluation of the nutritional status of young children in Namibia. This evaluation allows identification of subgroups of the child population that are at increased risk of growth faltering, diseases, impaired mental development, and death. Marked differences, especially with regard to height-for-age, weight-for-height, and weight-for-age, are often seen among different subgroups of children within the country.

12.1.1 Measurement of Nutritional Status among Young Children

The 2013 NDHS collected data on the nutritional status of children by measuring the height and weight of all children under age 5 . Data were collected with the aim of calculating three indices-namely, weight-for-age, height-for-age, and weight-for-height-all of which take age and sex into consideration. Weight measurements were obtained using lightweight, bathroom-type scales with a digital screen designed and manufactured under the guidance of UNICEF. Height measurements were carried out using a measuring board. Children younger than age 24 months were measured lying down (recumbent length) on the board, while standing height was measured for older children.

For this report, indicators of the nutritional status of children were calculated using growth standards published by WHO in 2006. These growth standards were generated through data collected in the WHO Multicentre Growth Reference Study (WHO, 2006a). That study, whose sample included 8,440 children in six countries, was designed to provide a description of how children should grow under optimal conditions. The WHO child growth standards can therefore be used to assess children all over the world, regardless of ethnicity, social and economic influences, and feeding practices. The three nutritional status indicators described below are expressed in standard deviation units from the median of the Multicentre Growth Reference Study sample.

Each of these indices provides different information about growth and body composition. The height-for-age index is an indicator of linear growth retardation and cumulative growth deficits. Children whose height-for-age Z-score is below minus two standard deviations (-2 SD) from the median of the WHO reference population are considered short for their age (stunted) and are chronically malnourished. Children who are below minus three standard deviations (-3 SD) from the reference median are considered severely stunted. Stunting reflects failure to receive adequate nutrition over a long period of time and is affected by recurrent and chronic illness. Height-for-age, therefore, represents the long-term effects of malnutrition in a population and is not sensitive to recent, short-term changes in dietary intake.

The weight-for-height index measures body mass in relation to height or length and describes current nutritional status. Children whose Z -scores are below minus two standard deviations (-2 SD) from the reference median are considered thin (wasted) and are acutely malnourished. Wasting represents the failure to receive adequate nutrition in the period immediately preceding the survey and may be the result of inadequate food intake or a recent episode of illness causing loss of weight and the onset of malnutrition. Children whose weight-for-height is below minus three standard deviations (-3 SD) from the reference median are considered severely wasted. Overweight and obesity are becoming problems for some children in developing countries. Children who are more than two standard deviations (+2 SD) above the median for weight-for-height are considered overweight or obese.

Weight-for-age is a composite index of height-for-age and weight-for-height. It takes into account both acute and chronic malnutrition. Children whose weight-for-age is below minus two standard deviations (-2 SD) from the reference median are classified as underweight. Children whose weight-for-
age is below minus three standard deviations (-3 SD) from the reference median are considered severely underweight.

12.1.2 Data Collection

Height and weight measurements were obtained for 2,287 children under age 5 who were present in the households selected for the NDHS at the time of the survey. The following analysis focuses on children for whom complete and credible anthropometric data and valid age data were collected.

Although data were collected for all children under age 6, for purposes of comparability, the analysis is limited to children under age 5 . Height and weight measurements were obtained for 80 percent of the 2,856 eligible children (unweighted). Height and weight were missing for 7 percent of children, the data for 12 percent were flagged (out-of-range), and 1 percent had incomplete information on age in months.

12.1.3 Levels of Child Malnutrition

Table 12.1 and Figure 12.1 show the percentage of children under age 5 classified as malnourished according to the three anthropometric indices of nutritional status (height-for-age, weight-for-height, and weight-for-age), by background characteristics.

Nationally, 24 percent of children under age 5 are stunted, and 8 percent are severely stunted. The percentage of children who are stunted initially increases with age, from 1 percent among children age 6-8 months to 35 percent among those age 24-35 months, before declining steadily to reach 21 percent among children age 48-59 months. Severe stunting shows a similar trend, with children age 24-35 months most likely (14 percent) and those below 9 months least likely (2 percent) to be severely stunted.

Twenty-seven percent of male children are stunted, as compared with 21 percent of female children. Children with a preceding birth interval of 48 months or more have a lower prevalence of stunting (19 percent) than children with shorter preceding birth intervals (23-26 percent). As expected, children whose size at birth was reported as very small by their mothers are most likely to be stunted (40 percent). The mother's body mass index has an inverse relationship with stunting levels. For example, 28 percent of children of mothers who are thin (BMI less than 18.5) are stunted, as compared with 15 percent of children whose mothers are overweight or obese (BMI of 25 or above).

Children in rural areas are much more likely than those in urban areas to be stunted (28 percent and 17 percent, respectively). By region, Ohangwena (37 percent) has the highest proportion of stunted children, while Khomas has the lowest (13 percent).

Mother's level of education has an inverse relationship with stunting. For example, children of mothers with more than a secondary education are least likely to be stunted (9 percent), whereas children whose mothers have no education are most likely to be stunted (34 percent). A similar inverse relationship is observed between household wealth and stunting, with children living in households in the poorest wealth quintile having the highest prevalence of stunting (31 percent). Variations in severe stunting among children under age 5 by background characteristics follow the same patterns as those for moderate stunting.

Table 12.1 Nutritional status of children
Percentage of children under age 5 classified as malnourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by background characteristics, Namibia 2013

Background characteristic	Height-for-age ${ }^{1}$			Weight-for-height				Weight-for-age				Number of children
	Percentage below -3 SD	Percentage below $-2 S^{2}$	$\begin{aligned} & \text { Mean } \\ & \text { Z-score } \\ & \text { (SD) } \end{aligned}$	Percentage below -3 SD	$\begin{aligned} & \text { Percent- } \\ & \text { age } \\ & \text { below } \\ & -2 \text { SD }^{2} \end{aligned}$	$\begin{aligned} & \text { Percent- } \\ & \text { age } \\ & \text { above } \\ & +2 \text { SD } \end{aligned}$	Mean Z-score (SD)	Percentage below -3 SD	$\begin{aligned} & \text { Percent- } \\ & \text { age } \\ & \text { below } \\ & -2 \text { SD }^{2} \end{aligned}$	Percentage above +2 SD	$\begin{gathered} \text { Mean } \\ \text { Z-score } \\ \text { (SD) } \end{gathered}$	
Age in months												
<6	(0.0)	(0.0)	(-0.9)	(8.2)	(17.3)	(3.2)	(0.9)	(0.0)	(3.4)	(4.9)	(-0.1)	37
6-8	0.0	1.3	0.4	2.5	11.7	0.0	-0.6	0.0	5.5	1.4	-0.2	120
9-11	2.1	5.4	0.0	8.6	18.7	3.9	-0.8	2.5	12.3	1.9	-0.5	122
12-17	5.2	19.8	-0.9	3.8	9.7	3.0	-0.4	3.1	12.7	2.4	-0.6	248
18-23	11.8	29.9	-1.2	2.7	11.8	3.1	-0.5	2.7	13.0	0.8	-0.8	248
24-35	13.5	34.7	-1.5	1.4	3.4	5.1	0.1	3.3	15.0	0.0	-0.8	566
36-47	8.6	25.1	-1.3	0.7	2.4	3.7	0.0	2.7	13.0	1.0	-0.9	474
48-59	5.3	20.5	-1.2	0.5	3.1	2.1	-0.2	2.3	15.4	0.2	-1.0	472
Sex												
Male	9.0	26.6	-1.2	3.1	8.6	3.1	-0.2	2.9	15.3	0.9	-0.8	1,140
Female	7.3	21.0	-1.0	0.9	3.9	3.7	-0.2	2.3	11.4	0.9	-0.7	1,147
Birth interval in months ${ }^{3}$												
First birth ${ }^{4}$	7.5	21.8	-0.9	1.3	4.1	3.6	-0.1	1.3	9.9	1.1	-0.6	460
<24	8.4	22.8	-1.2	2.1	10.5	3.5	-0.3	3.3	17.6	0.5	-0.9	150
24-47	9.2	26.0	-1.2	3.1	9.6	3.5	-0.4	4.2	16.7	1.1	-1.0	400
48+	6.1	19.1	-0.9	2.3	8.7	3.3	-0.3	2.9	13.5	0.7	-0.7	511
Size at birth ${ }^{3}$												
Very small	21.6	40.4	-1.7	4.3	17.1	1.5	-0.5	10.3	34.7	0.0	-1.4	93
Small	10.2	30.1	-1.3	3.1	13.8	2.3	-0.6	4.9	20.3	0.0	-1.2	207
Average or larger	5.9	19.3	-0.9	1.9	6.0	3.9	-0.2	1.9	10.8	1.1	-0.6	1,201
Mother's interview status												
Interviewed	7.6	22.1	-1.0	2.2	7.7	3.5	-0.3	2.8	13.7	0.9	-0.8	1,521
Not interviewed but in household	4.4	16.8	-0.9	2.1	2.1	1.3	0.0	0.0	6.3	0.0	-0.6	105
Not interviewed and not in the household ${ }^{5}$	10.2	28.8	-1.3	1.6	3.5	3.6	-0.1	2.5	13.8	0.9	-0.9	660
Mother's nutritional status ${ }^{6}$												
Thin (BMI <18.5)	10.9	28.0	-1.2	2.0	9.8	0.3	-0.6	6.3	17.5	0.3	-1.1	158
Normal (BMI 18.5-24.9)	8.0	24.5	-1.1	2.7	8.6	2.9	-0.4	2.7	15.8	0.4	-0.9	795
Overweight/obese (BMI ²5)	4.8	14.6	-0.8	0.9	5.0	4.5	0.1	1.6	9.4	1.4	-0.4	413
Residence												
Urban	5.2	16.7	-0.8	1.6	5.0	4.1	0.0	1.4	9.1	1.5	-0.5	836
Rural	9.9	27.8	-1.2	2.2	6.9	3.0	-0.3	3.3	15.8	0.5	-0.9	1,451
Region												
Zambezi	5.4	18.6	-1.0	2.1	5.7	2.0	-0.1	0.9	10.5	1.3	-0.7	150
Erongo	4.5	15.2	-0.7	4.6	8.1	6.5	0.1	0.9	9.9	2.0	-0.3	119
Hardap	10.8	29.1	-1.1	2.6	8.2	3.7	-0.2	5.7	17.8	0.8	-0.8	85
//Karas	9.8	27.0	-1.1	1.4	5.6	3.2	-0.1	1.5	12.1	1.5	-0.7	69
Kavango	8.9	23.9	-1.1	1.4	8.5	1.7	-0.4	2.3	15.0	0.4	-0.9	259
Khomas	5.2	12.8	-0.8	0.7	3.5	3.6	0.0	1.1	9.1	0.9	-0.5	265
Kunene	5.1	19.4	-0.9	1.0	6.1	4.2	-0.3	2.4	11.9	2.9	-0.7	93
Ohangwena	13.9	36.5	-1.5	1.8	5.4	2.3	-0.3	4.3	16.3	0.0	-1.1	371
Omaheke	7.7	26.9	-1.2	3.3	10.4	5.3	-0.3	5.2	18.1	1.6	-0.9	73
Omusati	8.8	24.2	-1.3	2.4	6.0	2.4	-0.4	1.9	14.6	0.5	-1.0	283
Oshana	5.6	19.8	-0.9	2.1	4.5	7.4	0.0	1.3	8.2	1.1	-0.5	169
Oshikoto	7.6	26.3	-1.1	3.8	8.5	1.7	-0.6	5.2	20.7	0.6	-1.1	204
Otjozondjupa	6.2	20.1	-0.9	0.5	4.3	5.7	0.2	1.5	6.5	1.7	-0.4	147
Mother's education ${ }^{7}$												
No education	9.0	33.8	-1.4	6.9	14.8	1.6	-0.6	6.1	22.7	1.4	-1.2	121
Primary	11.2	29.0	-1.3	2.6	7.9	2.8	-0.4	4.9	18.3	0.3	-1.1	383
Secondary	6.0	18.8	-0.9	1.6	6.9	3.4	-0.2	1.6	10.9	1.0	-0.6	1,030
More than secondary	4.1	8.5	-0.5	0.4	0.4	6.5	0.3	0.6	5.6	0.7	-0.1	91
Wealth quintile												
Lowest	11.6	31.3	-1.4	3.6	9.2	2.2	-0.5	4.3	18.9	0.5	-1.1	587
Second	10.8	28.8	-1.3	1.8	5.6	2.0	-0.2	2.9	15.1	0.1	-0.9	510
Middle	8.0	24.2	-1.1	1.3	7.0	3.9	-0.2	2.5	13.6	0.7	-0.8	466
Fourth	4.3	16.8	-0.8	1.7	3.7	5.5	0.0	1.6	9.0	0.9	-0.5	468
Highest	2.5	8.7	-0.4	0.9	3.9	4.3	0.2	0.3	4.9	3.7	-0.1	256
Total	8.2	23.8	-1.1	2.0	6.2	3.4	-0.2	2.6	13.4	0.9	-0.8	2,287

Note: Table is based on children who stayed in the household on the night before the interview. Each of the indices is expressed in standard deviation units (SD) from the median of the WHO child growth standards adopted in 2006. The indices in this table are NOT comparable to those based on the previously used NCHS/CDC/WHO reference. Table is based on children with valid dates of birth (month and year) and valid measurement of both height and weight. Total includes 20 children with missing information on size at birth and 2 children with missing information on mother's education. Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Recumbent length is measured for children under age 2 and in the few cases when the age of the child is unknown and the child is less than 85 cm; standing height is measured for all other children.
${ }_{2}^{2}$ Includes children who are below -3 standard deviations (SD) from the WHO Child Growth standards population median
${ }^{3}$ Excludes children whose mothers were not interviewed
${ }^{4}$ First-born twins (triplets, etc.) are counted as first births because they do not have a previous birth interval
${ }^{5}$ Includes children whose mothers are deceased
${ }^{6}$ Excludes children whose mothers were not weighed and measured, children whose mothers were not interviewed, and children whose mothers are pregnant or gave birth within the preceding 2 months. Mother's nutritional status in terms of BMI (body mass index) is presented in Table 12.10.1
For women who are not interviewed, information is taken from the Household Questionnaire. Excludes children whose mothers are not listed in the Household Questionnaire.

Figure 12.1 Nutritional status of children by age

Table 12.1 also shows the nutritional status of children under age 5 as measured by wasting (low weight-for-height). Overall, 6 percent of children are wasted and 2 percent are severely wasted. Children age 9-11 months (19 percent), male children (9 percent), those with a preceding birth interval of less than 24 months (11 percent), those with a very small size at birth (17 percent), and those living in Omaheke (10 percent) have the highest levels of wasting. The prevalence of wasting decreases with increasing mother's education, from 15 percent among children whose mothers have no education to less than 1 percent among children whose mothers have more than a secondary education. The data further show that children living in the poorest households have the highest prevalence of wasting (9 percent).

Finally, 13 percent of children under age 5 are underweight (low weight-for-age) and 3 percent are severely underweight (Table 12.1). The proportion of underweight children increases substantially with age, from 6 percent among children age 6-8 months to 12-15 percent among older children, which might be explained by the fact that with the transition to complementary foods older children may not be getting the recommended types of food or the minimum meal frequency. Older children are also more exposed to the environment, thus increasing their exposure to infections and susceptibility to illness. Male children (15 percent) are slightly more likely to be underweight than female children (11 percent). The percentage of underweight children decreases as the preceding birth interval lengthens. Eighteen percent of children whose mothers are thin (BMI less than 18.5) are underweight, as compared with 9 percent of those whose mothers are overweight or obese (BMI of 25 or above). Rural children are more likely to be underweight (16 percent) than urban children (9 percent). Oshikoto has the highest proportion of underweight children (21 percent), while Otjozondjupa has the lowest proportion (7 percent). The proportion of underweight children is inversely associated with mother's level of education and household wealth.

12.1.4 Trends in Child Malnutrition

Figure 12.2 presents trends in the nutritional status of children under age 5 in Namibia over the last six years. The results show that the proportions of children who are stunted, wasted, and underweight decreased between the 2006-07 NDHS and 2013 NDHS surveys.

Figure 12.2 Trends in nutritional status of children under age 5 by period
Percentage

Note: Stunting reflects chronic malnutrition; wasting
reflects acute malnutrition; underweight reflects chronic
or acute malnutrition or a combination of both.

12.2 Initiation of Breastreeding

Early breastfeeding practices determine the successful establishment and duration of breastfeeding. Moreover, during the first three days after delivery, colostrum, an important source of nutrition and protection for the newborn, is produced and should be given to the newborn while awaiting the let-down of regular/mature breast milk. Thus, it is recommended that children be put to the breast immediately or within one hour after birth and that prelacteal feeding (i.e., feeding newborns anything other than breast milk before breast milk is initiated) be discouraged.

Table 12.2 shows the percentage of children born in the two years before the survey by breastfeeding status and the timing of initial breastfeeding, according to background characteristics. The results indicate that 96 percent of children are breastfed at some point. Differences by background characteristics are small. Seventy-one percent of children are breastfed within one hour of birth and 89 percent within one day after delivery. The proportion of children breastfed within one hour of birth is lower among those delivered in a health facility (71 percent) than among those born at home (77 percent). The likelihood of an infant breastfeeding within one hour of birth varies markedly by region from 59 percent in Oshana to 80 percent in Zambezi.

The practice of giving prelacteal feeds limits the frequency of suckling by the infant and exposes the baby to the risk of infection. Table 12.2 shows that 10 percent of children who had ever been breastfed received prelacteal feeds. Prelacteal feeding is most common among children whose delivery was assisted by a traditional birth attendant (20 percent), those born at home (15 percent), and those living in urban areas (11 percent). By region, Omusati has the lowest percentage of children who received a prelacteal feed (2 percent), and Kavango has the highest percentage (19 percent). The proportion of children who receive a prelacteal feed does not have a clear correlation with mother's education. Prelacteal feeding is least common among children whose mothers have no education (5 percent) and most common among children whose mothers have more than a secondary education (19 percent). The proportion of children who receive a prelacteal feed is highest among those in the wealthiest households (16 percent).

Among last-born children who were born in the two years preceding the survey, the percentage who were ever breastfed and the percentages who started breastfeeding within one hour and within one day of birth, and among last-born children born in the two years preceding the survey who were ever breastfed, the percentage who received a prelacteal feed, by background characteristics, Namibia 2013

Background characteristic	Among last-born children born in the past two years:				Among last-born children born in the past two years who were ever breastfed:	
	Percentage ever breastfed	Percentage who started breastfeeding within 1 hour of birth	Percentage who started breastfeeding within 1 day of birth ${ }^{1}$	Number of last-born children	Percentage who received a prelacteal feed ${ }^{2}$	Number of last-born children ever breastfed
Sex						
Male	95.4	72.2	88.4	941	9.8	898
Female	96.0	70.3	89.7	1,006	10.6	966
Assistance at delivery						
Health professional ${ }^{3}$	95.4	70.9	89.0	1,732	9.6	1,653
Traditional birth attendant	98.7	72.5	84.1	81	20.4	80
Other	97.6	74.6	92.6	115	13.3	113
No one	*	*	*	18	*	17
Place of delivery						
Health facility	95.4	70.6	88.9	1,715	9.6	1,637
At home	97.8	76.9	89.7	226	14.5	221
Other	*	*	*	5	*	5
Residence						
Urban	94.4	69.6	87.9	925	10.9	874
Rural	96.9	72.6	90.1	1,022	9.6	990
Region						
Zambezi	91.6	79.5	89.9	112	12.5	103
Erongo	91.2	67.0	83.9	136	15.0	124
Hardap	95.4	76.5	90.0	73	3.9	70
//Karas	93.6	75.9	90.3	61	18.0	58
Kavango	96.9	77.6	82.9	231	19.4	224
Khomas	95.6	68.6	88.1	344	10.4	329
Kunene	95.7	74.6	84.7	69	12.8	66
Ohangwena	97.1	65.4	93.0	254	2.9	246
Omaheke	96.7	69.7	90.8	59	14.8	57
Omusati	96.1	75.9	93.9	189	2.3	181
Oshana	96.6	59.1	87.4	127	12.6	123
Oshikoto	96.5	69.0	89.5	154	11.0	149
Otjozondjupa	97.7	76.5	93.6	137	6.1	133
Mother's education						
No education	93.2	73.7	87.3	110	5.4	102
Primary	96.8	74.5	90.7	438	10.8	424
Secondary	95.7	70.9	88.8	1,295	9.7	1,240
More than secondary	93.7	59.1	87.5	105	19.3	98
Wealth quintile						
Lowest	96.7	73.7	88.6	415	12.7	402
Second	96.7	70.8	90.1	439	6.4	425
Middle	95.9	75.5	91.3	423	8.3	406
Fourth	95.3	68.7	88.9	389	9.9	370
Highest	93.1	65.4	85.0	281	15.9	261
Total	95.7	71.2	89.1	1,947	10.2	1,864

Note: Table is based on last-born children born in the 2 years preceding the survey regardless of whether the children were living or dead at the time of the interview. Total includes 1 child with missing information on assistance at delivery
${ }^{1}$ Includes children who started breastfeeding within 1 hour of birth
${ }^{2}$ Children given something other than breast milk during the first 3 days of life
${ }^{3}$ Doctor or nurse/midwife

12.3 Breastreeding Status by Age

UNICEF and WHO recommend that children be exclusively breastfed during the first six months of life and that they be given age-appropriate solid or semisolid complementary food in addition to continued breastfeeding from age 6 months to at least age 24 months. Exclusive breastfeeding is recommended because breast milk is uncontaminated and contains all of the nutrients necessary for children in the first few months of life. In addition, the mother's antibodies in breast milk provide immunity to diseases or infections. Early supplementation is discouraged for several reasons. First, it exposes infants to pathogens and increases their risk of infection. Second, it decreases infants' intake of breast milk and therefore suckling, which reduces breast milk production. Third, in low-resource settings, supplementary food is often nutritionally inferior.

Information on complementary feeding was obtained by asking mothers about the current breastfeeding status of all children under age 5 and, for the youngest child born in the three-year period before the survey and living with the mother, the foods and liquids given to the child the day and night before the survey.

Table 12.3 shows breastfeeding practices by child's age. Only 49 percent of infants under age 6 months are exclusively breastfed. Contrary to the recommendation that children under age 6 months be exclusively breastfed, 16 percent of infants consume plain water in addition to breast milk, 4 percent consume non-milk liquids, 11 percent consume other milk, and 13 percent consume complementary foods in addition to breast milk. Sixty-three percent of children age 6-8 months receive timely complementary foods, and 70 percent of children age 18-23 months have been weaned.

Feeding children using a bottle with a nipple is discouraged but remains a relatively common practice in Namibia, with more than one-fourth (26 percent) of children below age 6 months using a bottle with a nipple. The prevalence of bottle-feeding is highest among children age 6-11 months (49-50 percent).

Table 12.3 Breastfeeding status by age
Percent distribution of youngest children under age 2 who are living with their mother by breastfeeding status and the percentage currently breastfeeding, and the percentage of all children under age 2 using a bottle with a nipple, according to age in months, Namibia 2013

Breastfeeding status									Number of youngest child under age 2 living with their mother	Percentage using a bottle with a nipple	Number of all children under age 2
Age in months	Not breastfeeding	Exclusively breastfed	Breastfeeding and consuming plain water only	Breastfeeding and consuming non-milk liquids ${ }^{1}$	Breastfeeding and consuming other milk	Breastfeeding and consuming complementary foods	Total	Percentage currently breastfeeding			
0-1	2.3	72.0	12.5	1.7	10.7	0.7	100.0	97.7	128	15.4	132
2-3	5.9	52.7	17.3	5.2	11.2	7.6	100.0	94.1	184	22.9	190
4-5	14.4	26.8	16.7	3.8	10.2	28.1	100.0	85.6	175	37.0	179
6-8	19.6	2.4	8.8	3.9	2.8	62.5	100.0	80.4	267	49.3	279
9-11	25.4	1.8	2.6	0.0	3.0	67.2	100.0	74.6	214	50.0	232
12-17	40.7	0.8	1.7	1.3	0.0	55.5	100.0	59.3	429	34.8	496
18-23	70.2	0.5	1.3	0.3	0.4	27.3	100.0	29.8	324	26.3	442
0-3	4.4	60.6	15.3	3.8	11.0	4.8	100.0	95.6	312	19.9	321
0-5	8.0	48.5	15.8	3.8	10.7	13.2	100.0	92.0	487	26.0	500
6-9	21.6	2.4	7.2	3.1	3.3	62.4	100.0	78.4	341	49.8	357
12-15	35.6	1.2	2.2	1.5	0.0	59.6	100.0	64.4	293	36.4	329
12-23	53.4	0.7	1.6	0.9	0.2	43.4	100.0	46.6	753	30.8	938
20-23	79.0	0.2	1.7	0.4	0.0	18.6	100.0	21.0	216	22.6	304

Note: Breastfeeding status refers to a " 24 -hour" period (yesterday and last night). Children who are classified as breastfeeding and consuming plain water only consumed no liquid or solid supplements. The categories of not breastfeeding, exclusively breastfed, and breastfeeding and consuming plain water, non-milk liquids, other milk, and complementary foods (solids and semisolids) are hierarchical and mutually exclusive, and their percentages sum to 100 percent. Thus, children who receive breast milk and non-milk liquids and who do not receive other milk and who do not receive complementary foods are classified in the nonmilk liquid category even though they may also get plain water. Any children who get complementary food are classified in that category as long as they are breastfeeding as well.
${ }^{1}$ Non-milk liquids include juice, juice drinks, clear broth, or other liquids.

Figure 12.3 depicts the transition of feeding practices among children up to age 2. The rapid drop in exclusive breastfeeding from 72 percent among children under age 2 months to 27 percent among those age 4-5 months is noteworthy.

Figure 12.3 Infant feeding practices by age

Figure 12.4 presents the 2013 NDHS results on infant and young child feeding (IYCF) indicators related to breastfeeding status. Detailed descriptions of these indicators can be found in various WHO publications (WHO, 2008; WHO, 2010a). As noted above, 49 percent of children under age 6 months are exclusively breastfed. Twenty-seven percent of children 4-5 months are exclusively breastfed and 28 percent are breastfeeding and consuming complementary foods. Eight in ten children age 6-8 months (both breastfed and nonbreastfed) are introduced to complementary foods at an appropriate time. Sixty-four percent of all children are still breastfeeding at age 1, and 21 percent are still breastfeeding at age 2. Fiftyone percent of children age $0-23$ months are breastfed appropriately for their age. This includes exclusive breastfeeding for children age $0-5$ months and continued breastfeeding along with complementary foods for children age 6-23 months. Almost seven in ten children under age 6 months (68 percent) are predominantly breastfed. This percentage includes children who are exclusively breastfed and those who receive breast milk and only plain water or non-milk liquids such as juice. Finally, 35 percent of children under age 2 are bottle fed.

Figure 12.4 IYCF indicators on breastfeeding status

12.4 Duration of Breastreeding

Table 12.4 shows the median duration of breastfeeding (i.e., the length of time in months for which half of children are breastfed) by selected background characteristics. Estimates of median and mean durations of breastfeeding are based on current status data, that is, the proportion of children born in the three years preceding the survey who were being breastfed at the time of the survey.

Overall, the median duration of any breastfeeding among children in Namibia is 15 months, which is slightly shorter than the duration reported in the 2006-07 NDHS (17 months). Children are breastfed five months longer on average in rural areas (17 months) than in urban areas (12 months). Comparisons of duration of exclusive breastfeeding by background characteristics should be regarded with caution due to the small number of children in several categories.

The median duration of exclusive breastfeeding is 2 months, with a mean duration of 4 months.

12.5 Types of Complementary Foods

Appropriate nutrition includes feeding children a variety of foods to ensure that nutrient requirements are met. Fruits and vegetables rich in vitamin A should be consumed daily. Although eating a range of fruits and vegetables, especially those rich in vitamin A, is important, studies have shown that plant-based complementary foods by themselves are insufficient to meet the needs for certain micronutrients. Therefore, it has been recommended that meat, poultry, fish, or eggs be eaten daily or as often as possible (WHO, 1998).

Table 12.5 is based on information from mothers about the foods and liquids consumed during the day or night preceding the interview by their youngest child under age $2 .{ }^{1}$ Dietary data on children are subject to recall errors on the mother's part. Furthermore, the mother may not be able to report fully on the child's intake of food and liquids if the child was fed by other individuals during the period. Despite these problems, the information collected in the 2013 NDHS on the types of foods and liquids consumed by young children is useful in assessing the diversity of children's diets. The data show that, as expected, the proportions of children consuming foods or liquids included in the various food groups generally increase with age. Children who are currently breastfed are less likely than children who are not being breastfed to consume other types of liquids and solid/semisolid foods. For example, 70 percent of nonbreastfeeding children age 6-23 months consumed foods made from grains the day or night preceding the interview, compared with 48 percent of breastfeeding children in that age group. Similarly, 49 percent of nonbreastfeeding children age 6-23

[^13]months consumed foods rich in vitamin A, compared with 32 percent of breastfeeding children in the same age group. Seven in ten nonbreastfeeding children and more than half (55 percent) of breastfeeding children age 6-23 months consumed meat, fish, and poultry.

Table 12.5 Foods and liquids consumed by children in the day or night preceding the interview
Percentage of youngest children under age 2 who are living with their mother by type of foods consumed in the day or night preceding the interview, according to breastfeeding status and age, Namibia 2013

	Liquids			Solid or semisolid foods										
Age in months	Infant formula	Other milk ${ }^{1}$	Other liquids ${ }^{2}$	Fortified baby foods	Food made from grains ${ }^{3}$	Fruits and vegetable s rich in vitamin A 4	Other fruits and vegetables	Food made from roots and tubers	Food made from legumes and nuts	Meat, fish, poultry	Eggs	Cheese, yogurt, other milk products	Any solid or semisolid food	Number of children
						BREASTF	EEDING C	HILDREN						
0-1	11.4	8.5	1.8	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	125
2-3	10.8	10.5	9.4	0.7	1.8	1.3	0.7	1.0	0.0	0.7	0.6	2.5	8.1	173
4-5	11.3	10.7	16.1	4.1	6.4	9.6	6.8	5.6	0.8	9.8	2.6	2.1	32.9	150
6-8	11.5	12.9	47.0	18.6	29.3	26.5	14.4	18.0	2.8	32.5	13.2	17.1	77.7	215
9-11	7.7	13.9	56.6	14.8	50.8	25.4	18.9	22.8	11.9	59.4	27.1	19.2	90.0	160
12-17	4.8	7.4	60.5	10.1	58.2	38.0	26.7	21.1	10.2	63.2	17.7	16.9	93.6	254
18-23	7.7	9.0	59.9	10.5	59.8	41.3	30.3	24.5	15.6	75.3	26.0	19.7	91.4	97
6-23	7.8	10.7	55.6	13.7	48.2	32.3	21.9	21.0	9.1	54.9	19.5	17.9	87.8	725
Total	9.1	10.4	38.0	9.2	30.9	21.4	14.5	13.9	5.7	35.3	12.5	11.7	59.8	1,173
						NONBREAS	TFEEDING	CHILDREN						
0-1	*	*	*	*	*	*	*	*	*	*	*	*	*	3
2-3	*	*	*	*	*	*	*	*	*	*	*	*	*	11
4-5	(67.9)	(52.6)	(23.5)	(28.6)	(18.6)	(15.5)	(5.6)	(6.6)	(3.1)	(3.1)	(3.1)	(19.2)	(45.8)	25
6-8	71.7	53.9	65.5	45.9	43.7	27.9	17.5	35.7	8.8	27.0	19.8	35.2	87.4	52
9-11	25.3	38.3	56.0	31.5	69.0	53.7	35.2	38.5	3.5	48.9	13.1	17.0	95.5	54
12-17	15.6	24.8	70.3	15.2	72.0	51.9	41.8	31.1	11.1	75.3	29.6	35.6	98.4	174
18-23	3.9	19.0	71.0	8.0	73.7	50.7	39.3	29.4	17.9	81.0	27.2	28.2	97.6	227
6-23	17.2	26.7	68.6	16.9	69.5	49.1	37.5	31.6	13.1	70.1	25.8	30.2	96.6	508
Total	20.8	27.5	64.8	17.0	65.4	46.3	35.1	29.7	12.3	65.2	24.1	29.0	91.8	547

Note: Breastfeeding status and food consumed refer to a " 24 -hour" period (yesterday and last night). Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Other milk includes fresh, tinned, and powdered cow or other animal milk.
${ }^{2}$ Does not include plain water
${ }^{3}$ Includes fortified baby food
${ }^{4}$ Includes pumpkin, carrots, squash or red sweet potatoes, dark green leafy vegetables, ripe mangoes, papayas, and other locally grown fruits and vegetables that are rich in vitamin A

12.6 Infant and Young Child Feeding Practices

Appropriate IYCF practices include breastfeeding through age 2, introduction of solid and semisolid foods at age 6 months, and gradual increases in the amount of food given and frequency of feeding as the child gets older. The minimum frequencies for feeding children in developing countries are based on the energy output of complementary foods. The energy needs of children are based on agespecific total daily energy requirements plus two standard deviations (to cover almost all children), minus the average energy intake from breast milk. Infants with low breast milk intake need to be fed more frequently than those with high breast milk intake. However, care should be taken that feeding frequencies do not exceed the recommended input from complementary foods because excessive feeding can result in displacement of breast milk (PAHO/WHO, 2003).

According to recommendations, breastfed children age 6-23 months should receive animal-source foods and vitamin A-rich fruits and vegetables daily (PAHO/WHO, 2003). Because first foods almost always include a grain- or tuber-based staple, it is unlikely that young children who eat food from less than three groups will receive both an animal-source food and a vitamin A-rich fruit or vegetable. Therefore, three food groups are considered the minimum number appropriate for breastfed children (Arimond and Ruel, 2004). Breastfed infants age 6-8 months should receive complementary foods two to three times a day with one or two snacks; breastfed children age 9-23 months should receive meals three to four times a day with one or two snacks (PAHO/WHO, 2003; WHO, 2008; WHO, 2010a).

The National Guidelines on Infant and Young Child Feeding recommend that complementary feeding be introduced at six months and that the frequency of feedings gradually increase. According to these guidelines, children age 6-8 months should eat 2 to 3 times a day, and children age 9-14 months should eat 3 to 4 times a day. Children in all age groups should also eat 1-2 snacks a day. The Ministry of Health and Social Services (MoHSS) recommends that breastfeeding continue until age 2 or older (MoHSS, 2011). WHO recommends that nonbreastfed children age 6-23 months receive milk or milk products two or more times a day to ensure that their calcium needs are met. In addition, they need animalsource foods and vitamin A-rich fruits and vegetables. Four food groups are considered the minimum number appropriate for nonbreastfed young children. Nonbreastfed children age 12-23 months should be fed meals four to five times each day, with one or two snacks (WHO, 2005; WHO, 2008; and WHO, 2010a).

Table 12.6 presents summary indicators of IYCF practices by background characteristics. The indicators take into account the percentages of children for whom feeding practices meet minimum standards with respect to food diversity (i.e., the number of food groups consumed) and feeding frequency (i.e., the number of times the child was fed), as well as consumption of breast milk or other milks or milk products. Breastfed children are considered as being fed in accordance with the minimum standards if they consume at least four food groups and receive foods other than breast milk at least twice per day in the case of infants age 6-8 months and at least three times per day in the case of children age 9-23 months. Nonbreastfed children are considered to be fed in accordance with the minimum standards if they consume milk or milk products, consume food from four or more food groups (including milk products), and are fed at least four times per day.

Only 13 percent of children age 6-23 months are fed in accordance with all IYCF practices (Table 12.6 and Figure 12.5). Although 72 percent of children receive either breast milk or other milk products, only 41 percent are fed the minimum number of times, and 31 percent are fed from the required number of food groups. Nonbreastfed children are much more likely to consume a diverse diet (42 percent) than breastfed children (24 percent). By contrast, breastfed children seem to be more likely than nonbreastfed children to consume solid or semisolid foods the recommended number of times.

An analysis by background characteristics indicates differences in feeding practices by place of residence and mother's education. Children residing in urban areas are notably more likely to be fed according to the three IYCF practices (21 percent) than rural children (6 percent). By region, the proportion of children who are fed according to the IYCF recommendations is lowest in Omusati and Kavango (3 percent) and highest in //Karas (31 percent). The percentage of children who are fed according to the recommended practices increases with increasing mother's education and wealth. For example, only 3 percent of children in the lowest wealth quintile are fed according to all three IYCF practices, as compared with 32 percent of children in the richest quintile.

Table 12.6 Infant and young child feeding (IYCF) practices
Percentage of youngest children age 6-23 months living with their mother who are fed according to three IYCF feeding practices based on breastfeeding status, number of food groups, and times they are fed during the day or night preceding the survey, by background characteristics, Namibia 2013

Background characteristic	Among breastfed children 6-23 months, percentage fed:			Number of breastfed children 6-23 months	Among nonbreastfed children 6-23 months, percentage fed:				Number of nonbreastfed children 623 months	Among all children 6-23 months, percentage fed:				Number of all children 6-23 months
	4+ food groups ${ }^{1}$	Minimum meal frequency ${ }^{2}$	Both 4+ food groups and minimum meal frequency		$\begin{gathered} \text { Milk or } \\ \text { milk } \\ \text { products }^{3} \\ \hline \end{gathered}$	4+ food groups ${ }^{1}$	Minimum meal frequency ${ }^{4}$	With 3 IYCF practices ${ }^{5}$		Breast milk, milk, or milk products ${ }^{6}$	4+ food groups ${ }^{1}$	Minimum meal frequency ${ }^{7}$	$\begin{gathered} \text { With } 3 \\ \text { IYCF } \\ \text { practices } \\ \hline \end{gathered}$	
Age in months														
6-8	15.1	47.4	9.9	215	73.6	25.6	75.8	7.1	52	94.8	17.2	53.0	9.4	267
9-11	27.3	25.1	9.4	160	47.1	35.7	59.8	16.6	54	86.6	29.4	34.0	11.2	214
12-17	24.6	35.4	13.5	254	33.3	46.1	51.2	17.8	174	72.9	33.3	41.8	15.3	429
18-23	34.2	33.1	15.6	97	19.2	43.5	35.7	11.0	227	43.3	40.7	35.0	12.4	324
Sex														
Male	23.7	38.5	12.7	339	29.5	38.8	45.5	8.8	251	70.0	30.1	41.5	11.1	589
Female	23.6	34.5	11.1	387	35.7	44.6	49.9	18.1	257	74.3	32.0	40.7	13.9	644
Residence														
Urban	39.9	41.0	21.1	280	46.7	56.8	59.8	20.2	288	73.0	48.5	50.6	20.6	568
Rural	13.4	33.5	6.1	446	14.2	22.0	32.0	4.8	221	71.6	16.3	33.0	5.7	666
Region														
Zambezi	20.4	24.2	7.4	43	(17.5)	(35.8)	(35.4)	(8.2)	27	67.9	26.4	28.6	7.7	70
Erongo	(45.4)	(38.5)	(25.6)	43	(50.2)	(62.7)	(55.7)	(23.6)	41	75.8	53.8	46.9	24.6	84
Hardap	23.5	25.8	9.7	29	(43.7)	(38.7)	(51.1)	(11.3)	20	77.2	29.6	36.0	10.3	49
//Karas	(52.4)	(38.1)	(30.7)	21	(61.9)	(63.4)	(66.3)	(31.1)	17	82.8	57.4	50.8	30.9	38
Kavango	22.3	22.2	3.6	117	(15.5)	(51.1)	(14.0)	(2.5)	42	77.8	29.9	20.0	3.3	159
Khomas	(53.1)	(45.5)	(28.8)	88	54.8	61.4	73.0	23.8	115	74.4	57.8	61.1	26.0	202
Kunene	15.1	47.2	13.6	24	(17.5)	(29.2)	(53.2)	(1.3)	17	65.0	21.1	49.7	8.4	41
Ohangwena	7.9	41.8	6.5	89	(11.8)	(20.4)	(32.3)	(5.3)	57	65.3	12.9	38.0	6.1	146
Omaheke	(17.2)	(50.1)	(14.2)	20	(45.2)	(30.7)	(46.3)	(8.6)	15	76.7	22.9	48.5	11.8	35
Omusati	6.3	40.8	5.0	88	(7.5)	(10.2)	(41.2)	(0.0)	49	67.1	7.7	40.9	3.2	137
Oshana	(12.0)	(23.5)	(0.0)	37	(31.0)	(40.9)	(47.3)	(19.7)	42	63.4	27.3	36.1	10.4	78
Oshikoto	24.0	48.1	14.0	74	(20.2)	(31.0)	(32.6)	(12.4)	34	75.0	26.2	43.2	13.5	108
Otjozondjupa	20.7	32.3	11.9	54	(36.4)	(37.6)	(41.7)	(12.2)	34	75.6	27.2	35.9	12.0	87
Mother's education														
No education	12.6	33.0	6.8	49	(16.5)	(7.4)	(24.5)	(0.0)	24	72.5	10.9	30.2	4.5	72
Primary	15.8	30.3	6.0	201	17.0	27.4	30.1	3.8	97	72.9	19.6	30.2	5.3	299
Secondary	26.4	39.1	13.9	453	34.3	44.5	50.9	14.1	348	71.4	34.3	44.2	14.0	801
More than secondary	*	*	*	23	(67.3)	(73.5)	(78.0)	(41.4)	39	(79.4)	(69.7)	(65.0)	(38.2)	61
Wealth quintile														
Lowest	10.8	28.3	3.7	186	8.7	15.4	20.2	0.5	88	70.6	12.3	25.7	2.7	274
Second	18.3	42.8	9.9	191	14.3	19.3	36.5	0.3	102	70.1	18.7	40.6	6.6	293
Middle	23.9	35.5	12.5	178	24.7	41.6	50.6	8.1	89	74.8	29.8	40.5	11.0	268
Fourth	38.7	39.7	20.9	109	36.0	52.3	44.9	17.5	117	66.9	45.7	42.4	19.1	226
Highest	51.7	37.5	24.3	61	71.2	72.1	80.7	36.3	111	81.4	64.8	65.4	32.0	172
Total	23.7	36.4	11.8	725	32.6	41.7	47.7	13.5	508	72.2	31.1	41.1	12.5	1,234

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Food groups: a. infant formula, milk other than breast milk, cheese or yogurt or other milk products; b. foods made from grains, roots, and tubers, including porridge and fortified baby food from grains; c. vitamin A-rich fruits and vegetables; d. other fruits and vegetables; e. eggs; f. meat, poultry, fish, and shellfish and organ meats; g. legumes and nuts.
 23 months.
${ }^{3}$ Includes 2 or more feedings of commercial infant formula; fresh, tinned, and powdered animal milk; and yogurt
${ }^{4}$ For nonbreastfed children age 6-23 months, minimum meal frequency is receiving solid or semisolid food or milk feeds at least 4 times a day.

receive the minimum meal frequency, and receive solid or semisolid foods from at least 4 food groups not including the milk or milk products food group.
${ }^{6}$ Breastfeeding, or not breastfeeding and receiving 2 or more feedings of commercial infant formula; fresh, tinned, and powdered animal milk; and yogurt
${ }^{7}$ Children are fed the minimum recommended number of times per day according to their age and breastfeeding status as described in notes 2 and 4.

Figure 12.5 IYCF indicators on minimum acceptable diet
Percentage

NDHS 2013

12.7 Prevalence of Anaemia in Children

Anaemia is characterised by a decreased concentration of haemoglobin in the blood. It may be an underlying cause of maternal mortality, spontaneous abortions, premature births, and low birth weight. The most common cause of anaemia is inadequate dietary intake of nutrients necessary for synthesis of haemoglobin, such as iron, folic acid, and vitamin B12. Anaemia also results from sickle cell disease, malaria, and parasitic infections. A number of interventions have been put in place to address anaemia in children. These include expanded distribution of multi-micronutrient powders; deworming of children age 1 to 5 every six months, along with vitamin A distribution; and promotion of the use of insecticide-treated mosquito nets for children under age 5 in malaria-endemic areas.

In the 2013 NDHS, the HemoCue rapid testing methodology was used to determine anaemia levels among children age 6-59 months and among women and men age 15-64. To measure the level of haemoglobin, capillary blood was taken in the field from a finger using sterile, one-time-use lancets that allowed a relatively painless puncture. The concentration of haemoglobin in the blood was measured using the HemoCue system. Each team had a health technician who was specifically trained to conduct this procedure. Each respondent (and, in the case of unmarried minors, their parent or guardian) was asked for her or his consent to participate in the anaemia testing. Levels of anaemia were classified as severe, moderate, or mild according to criteria developed by the World Health Organization (DeMaeyer et.al., 1989).

Table 12.7 presents anaemia levels among children age 6-59 months by background characteristics. The results are based on children who stayed in the household the night before the interview. Haemoglobin was measured in 2,303 children. Unadjusted (i.e., measured) haemoglobin values were obtained using the HemoCue instrument. Given that haemoglobin requirements differ substantially depending on altitude, an adjustment to sea-level equivalents was made using CDC formulas before classifying children according to level of anaemia (CDC, 1998).

Overall, 48 percent of children age 6-59 months are anaemic. The majority of children who suffer from anaemia are classified as having mild or moderate anaemia (25 percent and 22 percent, respectively), while less than 1 percent are severely anaemic. Anaemia is highest among children age 12-17 months (70 percent) and is slightly higher among male than female children (50 percent versus 46 percent). Across regions, children from Kavango (63 percent) are most likely to be anaemic and those in Ohangwena (35 percent) are least likely. The prevalence of anaemia is lowest among children whose mother has more than a secondary education (38 percent) and those in the richest households (41 percent).

Table 12.7 Prevalence of anaemia in children
Percentage of children age 6-59 months classified as having anaemia, by background characteristics, Namibia 2013

Background characteristic	Anaemia status by haemoglobin level				Number of children
	Any anaemia (<11.0 g/dl)	Mild anaemia (10.0-10.9 g/dl)	Moderate anaemia $(7.0-9.9 \mathrm{~g} / \mathrm{dl})$	Severe anaemia ($<7.0 \mathrm{~g} / \mathrm{dl}$)	
Age in months					
6-8	60.3	25.4	34.0	0.9	135
9-11	63.8	23.9	36.9	2.9	126
12-17	69.7	27.0	41.9	0.8	253
18-23	58.3	29.8	27.2	1.3	245
24-35	48.8	25.0	23.3	0.5	561
36-47	37.1	23.5	13.3	0.3	492
48-59	31.8	22.8	8.2	0.8	491
Sex					
Male	49.5	26.5	22.1	1.0	1,139
Female	45.5	23.3	21.5	0.6	1,164
Mother's interview status					
Interviewed	49.3	24.4	24.2	0.8	1,494
Not interviewed but in household	48.0	28.7	17.3	2.0	104
Not interviewed and not in the household ${ }^{1}$	43.5	25.5	17.4	0.6	705
Residence					
Urban	46.6	22.6	23.2	0.8	836
Rural	47.9	26.2	21.0	0.8	1,467
Region					
Zambezi	56.6	29.1	27.4	0.0	150
Erongo	46.1	26.6	17.2	2.4	115
Hardap	39.4	17.0	21.3	1.1	88
//Karas	57.4	28.4	29.0	0.0	72
Kavango	62.9	33.1	27.2	2.6	248
Khomas	42.7	20.0	21.9	0.8	267
Kunene	61.3	28.2	31.7	1.5	90
Ohangwena	35.1	20.0	14.8	0.3	362
Omaheke	37.7	20.4	17.3	0.0	79
Omusati	46.7	27.5	19.2	0.0	299
Oshana	42.1	24.1	18.0	0.0	164
Oshikoto	49.1	26.4	22.2	0.5	210
Otjozondjupa	53.8	23.5	29.0	1.3	160
Mother's education ${ }^{2}$					
No education	48.3	26.8	19.7	1.8	113
Primary	52.0	25.4	24.7	1.9	383
Secondary	49.3	24.9	24.1	0.4	1,015
More than secondary	38.2	16.3	21.0	0.9	85
Wealth quintile					
Lowest	49.3	26.7	21.3	1.3	591
Second	50.6	28.4	21.6	0.7	504
Middle	48.3	25.7	21.9	0.7	486
Fourth	44.5	20.0	23.8	0.7	464
Highest	40.8	21.4	19.4	0.0	258
Total	47.5	24.9	21.8	0.8	2,303

Note: Table is based on children who stayed in the household on the night before the interview and who were tested for anaemia. Prevalence of anaemia, based on haemoglobin levels, is adjusted for altitude using formulas in CDC, 1998. Haemoglobin is in grams per decilitre (g / dl). Total includes 2 children with missing information on mother's education.
${ }^{1}$ Includes children whose mothers are deceased
${ }^{2}$ For women who are not interviewed, information is taken from the Household Questionnaire. Excludes children whose mothers are not listed in the Household Questionnaire.

12.8 Micronutrient Intake and Supplementation among Children

Micronutrient deficiency is a major contributor to childhood morbidity and mortality. Micronutrients are available in foods and can also be provided through direct supplementation. Breastfeeding children benefit from supplements given to their mother.

Iron deficiency is one of the primary causes of anaemia, which has serious health consequences for both women and children. Vitamin A is an essential micronutrient for the immune system and plays an important role in maintaining the epithelial tissue in the body. Severe vitamin A deficiency (VAD) can cause eye damage and is the leading cause of childhood blindness. VAD also increases the severity of infections, such as measles and diarrheal disease in children, and slows recovery from illness. VAD is
common in dry environments where fresh fruits and vegetables are not readily available. Vitamin A supplementation is an important tool in preventing VAD among young children.

Information was collected on food consumption during the day and night preceding the interview among the youngest children under age 2 living with their mothers; these data are useful in assessing the extent to which children are consuming from food groups rich in two key micronutrients-vitamin A and iron-in their daily diet. In addition, the NDHS included questions designed to ascertain whether young children had received vitamin A supplements or deworming medication in the six months preceding the survey. Table 12.8 presents data on intake of key micronutrients among children by background characteristics. The table shows the percentage of youngest children age 6-23 months living with their mother who consumed foods rich in vitamin A and iron in the day or night preceding the survey, the percentage of all children age 6-59 months who were given vitamin A supplements in the six months preceding the survey and who were given iron supplements in the past seven days, the percentage of children age 12-59 months who were given deworming medication in the six months preceding the survey, and, among all children age 6-59 months living in households that were tested for the presence of iodised salt, the percentage who lived in households with iodised salt.

Seventy-one percent of children age 6-23 months consumed foods rich in vitamin A the day or night preceding the survey. There is no difference in the consumption of vitamin A-rich foods between boys and girls, but consumption of such foods is considerably higher among nonbreastfeeding (80 percent) than breastfeeding (66 percent) children. Children living in urban areas are more likely than children in rural areas to consume foods rich in vitamin A (75 percent versus 68 percent). By region, children in Zambezi (85 percent) are most likely to consume vitamin A-rich foods, and those in Kunene are least likely to do so (49 percent). Education and wealth are positively associated with the percentage of children who consume vitamin A-rich foods.

Sixty-four percent of children age 6-23 months consumed iron-rich foods in the day and night preceding the survey. Consumption of iron-rich foods is slightly higher among girls (65 percent) than boys (63 percent), and it is substantially higher among nonbreastfeeding than breastfeeding children (73 percent versus 58 percent). Urban children (68 percent) are more likely than rural children (61 percent) to consume iron-rich foods. Children in Omaheke (74 percent) are most likely to consume iron-rich foods, and children in Kunene (42 percent) are least likely to do so. The percentage of children who consume iron-rich foods increases with increasing mother's education and wealth. For example, 57 percent of children in the lowest wealth quintile consume iron-rich foods, as compared with 77 percent of those in the highest quintile.

The 2013 NDHS also collected data on vitamin A supplementation and iron supplementation among children under age 5 . According to Table 12.8, 84 percent of children age 6-59 months were given vitamin A supplements in the six months before the survey. The proportion of children receiving vitamin A supplementation is highest among those age $12-17$ months (92 percent). Children who are still breastfeeding (86 percent) are more likely to receive vitamin A supplements than those who are not breastfeeding (83 percent). A lower percentage of children living in urban (80 percent) than rural (87 percent) areas received vitamin A supplements in the last six months. By region, the proportion of children receiving vitamin A supplements is highest in Oshana (95 percent) and lowest in Khomas and Erongo (74 percent each).

Certain types of intestinal parasites can cause anaemia. Periodic deworming for organisms such as helminthes and schistosomiasis (bilharzia) can improve children's micronutrient status. Table 12.8 shows that more than four in ten children age 6-59 months (43 percent) received deworming medication in the six months before the survey. Older children, female children, children living in rural areas and in Kavango, children of mothers with no education or a primary education, and children living in the poorest households are more likely than other children to have been given deworming medication.

The proportion of children who received micronutrient supplements or deworming medication has increased since the 2006-07 NDHS. For example, the percentage of children who received vitamin A supplementation in the last six months increased from 52 percent to 84 percent, and the percentage who received deworming medication increased from 9 percent to 43 percent.

Inadequate amounts of iodine in the diet are related to serious health risks for young children. The 2013 NDHS tested for the presence of iodine in household salt. The results show that, among children age 6-59 months in households tested for salt, 76 percent live in households that use iodised salt.

Table 12.8 Micronutrient intake among children
Among youngest children age 6-23 months who are living with their mother, the percentages who consumed vitamin A-rich and iron-rich foods in the day or night preceding the survey; among all children age 6-59 months, the percentages who were given vitamin A supplements in the six months preceding the survey, who were given iron supplements in the past seven days, and who were given deworming medication in the six months preceding the survey; and among all children age 6-59 months who live in households that were tested for iodised salt, the percentage who live in households with iodised salt, by background characteristics, Namibia 2013

Background characteristic	Among youngest children age 6-23 months living with their mother:			Among all children age 6-59 months:			Among children age 6-59 months living in households tested for iodised salt	
	Percentage who consumed foods rich in vitamin A in last 24 hours 1	Percentage who consumed foods rich in iron in last 24 hours 2	Number of children	Percentage given vitamin A supplements in last 6 months	Percentage given deworming medication in last 6 months 3	Number of children	Percentage living in households with iodised salt ${ }^{4}$	Number of children
Age in months								
6-8	46.3	36.4	267	73.8	31.3	279	71.4	270
9-11	67.6	60.2	214	88.1	30.8	232	73.2	216
12-17	77.8	70.7	429	91.9	41.6	496	75.1	473
18-23	85.9	81.2	324	86.4	49.2	442	73.8	419
24-35	na	na	na	83.9	45.2	926	76.2	883
36-47	na	na	na	82.7	44.9	883	76.8	832
48-59	na	na	na	79.7	43.5	830	77.6	783
Sex								
Male	70.7	63.3	589	82.7	40.6	1,997	75.4	1,896
Female	71.9	65.0	644	84.5	45.3	2,092	76.0	1,980
Breastfeeding status								
Breastfeeding	65.5	57.9	725	85.7	42.1	794	69.2	751
Not breastfeeding	79.7	73.3	508	83.2	43.3	3,271	77.4	3,102
Mother's age at birth								
15-19	71.8	60.8	115	74.3	45.0	206	70.1	193
20-29	73.0	66.9	635	83.3	43.2	2,088	76.6	1,982
30-39	69.5	61.7	402	84.3	42.2	1,417	76.0	1,345
40-49	67.2	60.0	81	87.2	43.8	377	72.9	355
Residence								
Urban	75.4	68.4	568	79.8	38.7	2,043	89.8	1,952
Rural	67.9	60.7	666	87.3	47.4	2,046	61.5	1,924
Region								
Zambezi	84.9	71.2	70	88.9	41.6	246	95.8	220
Erongo	77.2	68.3	84	73.6	26.0	292	94.6	274
Hardap	66.5	61.6	49	82.5	35.7	146	75.6	135
//Karas	78.3	69.3	38	91.1	50.8	143	87.4	137
Kavango	79.0	66.9	159	93.0	90.3	479	78.6	443
Khomas	78.0	70.5	202	74.1	29.6	787	93.0	762
Kunene	48.9	42.1	41	78.0	35.1	151	71.5	132
Ohangwena	63.8	58.3	146	87.2	36.6	480	61.4	470
Omaheke	74.4	74.4	35	84.0	41.9	127	59.7	114
Omusati	62.1	55.7	137	79.7	23.3	397	57.2	382
Oshana	63.9	60.6	78	95.0	64.6	265	67.4	264
Oshikoto	76.4	70.8	108	89.1	40.3	316	56.9	308
Otjozondjupa	62.2	59.0	87	81.3	45.1	260	69.7	235
Mother's education								
No education	47.8	38.6	72	77.7	45.1	253	59.8	224
Primary	67.9	57.9	299	84.7	47.1	956	67.9	887
Secondary	73.7	67.6	801	84.6	41.4	2,615	77.8	2,512
More than secondary	(85.5)	(81.0)	61	74.7	41.8	265	96.4	253
Wealth quintile								
Lowest	66.2	57.0	274	86.6	49.6	868	62.4	800
Second	66.2	60.2	293	86.6	45.0	889	66.1	843
Middle	68.6	62.0	268	86.9	43.0	849	68.7	816
Fourth	77.0	71.4	226	81.9	40.0	857	89.1	823
Highest	85.1	76.5	172	72.8	35.4	625	98.3	595
Total	71.3	64.2	1,234	83.6	43.0	4,088	75.7	3,875

Note: Information on vitamin A is based on both mother's recall and the immunisation card (where available). Information on iron supplements and deworming medication is based on mother's recall. Total includes 23 children with missing information on breastfeeding status. Figures in parentheses are based on $25-$ 49 unweighted cases.
na $=$ Not applicable
${ }^{1}$ Includes meat (and organ meat), fish, poultry, eggs, pumpkin, squash, carrots, red sweet potatoes, dark green leafy vegetables, ripe mango, papaya, and other locally grown fruits and vegetables that are rich in vitamin A
${ }^{2}$ Includes meat (and organ meat), fish, poultry, and eggs
${ }^{3}$ Deworming for intestinal parasites is commonly done for helminthes and for schistosomiasis.
${ }^{4}$ Excludes children in households in which salt was not tested

12.9 Presence of Iodised Salt in Households

Salt is used for several purposes in a household. It plays a role in cooking and food preservation. In line with food and drug regulations, household salt should be fortified with iodine sufficient to ensure a concentration of at least 15 parts per million (ppm) when consumed. Iodine is an essential micronutrient, and iodised salt prevents goitre among children and adults. As mentioned above, the 2013 NDHS tested for the presence of iodine in household salt. Salt was tested in 94 percent of households (Table 12.9). It should be noted that household salt was tested for the presence or absence of iodine only; the iodine level in the salt was not measured.

Among households in which salt was tested, 76 percent were consuming iodised salt. The percentages of households with iodised salt vary somewhat by residence, region, and wealth. Notably, 90 percent of households in urban areas have iodised salt, as compared with only 61 percent in rural areas. Zambezi has the highest percentage of households with iodised salt (96 percent), followed by Erongo and Khomas (93 percent each); Omusati has the lowest percentage (55 percent). The percentage of households with iodised salt increases steadily with increasing wealth.

Table 12.9 Presence of iodised salt in household					
Among all households, the percentage with salt tested for iodine content and the percentage with no salt in the household, and among households with salt tested, the percentage with iodised salt, according to background characteristics, Namibia 2013					
	Among all households, the percentage:			Among households with tested salt:	
Background characteristic	With salt tested	With no salt in the household	Number of households	Percentage with iodised salt	Number of households
Residence					
Urban	93.4	6.6	2,554	89.9	2,386
Rural	93.8	6.2	2,363	61.4	2,217
Region					
Zambezi	87.7	12.3	270	96.1	237
Erongo	92.8	7.2	460	93.4	427
Hardap	91.0	9.0	199	76.7	181
//Karas	93.3	6.7	200	89.8	186
Kavango	94.4	5.6	368	76.4	347
Khomas	93.4	6.6	1,007	92.6	940
Kunene	88.5	11.5	177	75.7	157
Ohangwena	98.4	1.6	443	59.1	435
Omaheke	89.3	10.7	168	62.0	150
Omusati	95.3	4.7	473	55.2	451
Oshana	97.5	2.5	415	68.2	404
Oshikoto	95.6	4.4	411	57.9	393
Otjozondjupa	89.8	10.2	328	73.5	295
Wealth quintile					
Lowest	92.9	7.1	872	55.1	810
Second	92.1	7.9	936	65.3	862
Middle	94.2	5.8	952	72.1	897
Fourth	94.6	5.4	1,120	87.0	1,059
Highest	94.0	6.0	1,037	95.3	975
Total	93.6	6.4	4,917	76.2	4,603

12.10 Adult Nutritional Status

12.10.1 Nutritional Status of Women

Anthropometric data on height and weight were collected for women age 15-64 interviewed in the survey. In this report, two indicators of nutritional status based on these data are presented: body mass index (BMI) and the percentage of women of very short stature (less than 145 cm). The body mass index, or the Quetelet index, is used to measure thinness or obesity. BMI is expressed as weight in kilograms divided by height squared in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$. A cutoff point of 18.5 is used to define thinness or acute undernutrition, and a BMI of 25.0 or above usually indicates overweight or obesity. The height of a woman is associated with past socioeconomic status and nutrition during childhood and adolescence. Low pre-pregnancy BMI and short stature are risk factors for poor birth outcomes and obstetric complications. In developing countries, maternal underweight is a leading risk factor for preventable death and diseases.

Table 12.10 .1 shows the nutritional status of women by background characteristics. Respondents for whom there was no information on height and/or weight and for whom a BMI could not be estimated were excluded from this analysis. Overall, less than 1 percent of women fall below the $145-\mathrm{cm}$ cutoff point for height. The mean BMI for women age 15-49 is 23.7. At the national level, 55 percent of women age 15-49 have a BMI in the normal range, 14 percent of women are thin (BMI below 18.5), and 32 percent are overweight or obese. Hence, among women of reproductive age in Namibia, being overweight or obese is more of a public health concern than being underweight.

Table 12.10.1 Nutritional status of women
Among women age 15-49, the percentage with height under 145 cm , mean body mass index (BMI), and the percentage with specific BMI levels, by background characteristics, Namibia 2013

Background characteristic	Height		Body mass index ${ }^{1}$								
			Mean BMI	Normal 18.5-24.9 (total normal)	$\begin{gathered} <18.5 \\ \text { (total thin) } \end{gathered}$	Thin		Overweight/obese			Number of women
	$\begin{gathered} \text { Percentage } \\ \text { below } \\ 145 \mathrm{~cm} \\ \hline \end{gathered}$	Number of women				$\begin{gathered} \text { 17.0-18.4 } \\ \text { (mildly thin) } \end{gathered}$	$\begin{gathered} <17 \\ \text { (moderately } \\ \text { and } \\ \text { severely } \\ \text { thin) } \\ \hline \end{gathered}$	≥ 25.0 (total overweight or obese)	$\begin{gathered} \text { 25.0-29.9 } \\ \text { (over- } \\ \text { weight) } \\ \hline \end{gathered}$	$\begin{gathered} \geq 30.0 \\ \text { (obese) } \end{gathered}$	
Age											
15-19	0.5	878	20.5	65.9	26.7	14.7	12.0	7.4	5.4	2.0	816
20-29	0.7	1,538	22.8	62.6	12.4	8.7	3.7	25.0	17.5	7.6	1,371
30-39	0.3	1,136	25.2	46.8	8.7	5.4	3.4	44.4	24.9	19.5	1,014
40-49	0.6	736	26.6	37.0	9.7	6.4	3.3	53.3	25.4	27.9	721
Residence											
Urban	0.6	2,341	24.7	49.6	10.6	7.1	3.5	39.8	21.9	18.0	2,133
Rural	0.4	1,947	22.4	60.4	17.8	10.5	7.4	21.7	14.1	7.6	1,788
Region											
Zambezi	0.0	220	23.3	63.9	10.9	5.7	5.2	25.2	13.5	11.8	208
Erongo	1.5	354	25.5	48.9	7.2	5.6	1.7	43.8	21.4	22.4	326
Hardap	1.2	160	25.2	41.1	14.5	7.4	7.1	44.4	21.8	22.7	149
//Karas	1.5	167	25.4	45.9	8.2	4.4	3.7	46.0	26.0	19.9	158
Kavango	0.3	381	22.0	65.2	17.6	11.3	6.3	17.2	12.2	5.0	339
Khomas	0.0	921	24.8	49.6	9.7	6.9	2.8	40.8	22.6	18.1	838
Kunene	0.5	123	25.5	41.9	12.0	6.5	5.5	46.1	24.9	21.2	109
Ohangwena	0.3	468	21.4	61.9	23.6	14.5	9.1	14.5	10.1	4.4	414
Omaheke	2.1	115	24.7	47.1	13.7	9.3	4.3	39.3	22.0	17.2	103
Omusati	0.3	414	21.8	62.8	18.6	9.6	8.9	18.6	13.4	5.2	386
Oshana	1.2	380	23.3	57.0	14.5	8.6	5.9	28.5	18.4	10.1	349
Oshikoto	0.0	334	23.0	58.3	14.6	10.7	4.0	27.1	18.0	9.1	309
Otjozondjupa	0.8	250	24.8	44.4	13.3	7.4	5.9	42.3	23.1	19.3	233
Education											
No education	2.2	208	23.9	52.6	13.1	6.9	6.2	34.3	18.9	15.4	184
Primary	1.3	855	22.5	54.6	20.6	11.6	9.0	24.8	16.2	8.6	786
Secondary	0.2	2,843	23.8	55.2	12.8	8.3	4.4	32.1	18.4	13.6	2,598
More than secondary	0.0	383	25.3	50.4	7.8	5.1	2.8	41.7	22.2	19.5	353
Wealth quintile											
Lowest	0.4	690	21.1	64.4	22.9	12.1	10.8	12.7	10.4	2.3	624
Second	1.0	777	22.3	63.3	16.7	11.2	5.5	20.0	13.9	6.1	705
Middle	0.8	819	23.3	55.9	14.2	9.3	4.9	29.8	18.2	11.6	754
Fourth	0.4	1,034	24.8	46.3	10.9	6.6	4.3	42.8	24.6	18.3	943
Highest	0.2	968	25.7	48.2	8.3	5.7	2.6	43.5	21.0	22.6	895
Total	0.5	4,288	23.7	54.5	13.9	8.6	5.3	31.6	18.3	13.2	3,922

Note: Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
${ }^{1}$ Excludes pregnant women and women with a birth in the preceding 2 months

In general, the percentage of women who are thin decreases with age, while the percentage of women who are overweight increases with age. For example, women age 15-19 (27 percent) are much more likely to be thin than women age 30-49 (9-10 percent). Women living in rural areas are more likely to be thin (18 percent) than those living in urban areas (11 percent), while urban women are more likely to be overweight or obese (40 percent versus 22 percent). At the regional level, the proportion of thin women is highest in Ohangwena (24 percent) and lowest in Erongo (7 percent). The proportion of women who are overweight or obese is highest in //Karas and Kunene (46 percent each) and lowest in Ohangwena (15 percent). The percentage of women who are thin tends to decrease with increasing wealth. As one would expect, overweight and obesity increases with wealth.

12.10.2 Nutritional Status of Men

For the first time in an NDHS, anthropometric data on height and weight were collected among men age 15-64. Overall, this information was successfully gathered for 99 percent of the men interviewed during the survey. These data are useful in BMI calculations, which can be used as a measure of chronic energy deficiency among men (BMI calculations and cutoff points are the same for men and women). In addition, BMI can be used to measure overweight and obesity, risk factors for nutrition-related chronic diseases such as diabetes mellitus and cardiovascular disease.

Table 12.10.2 shows the nutritional status of men by background characteristics. Overall, 65 percent of men age 15-49 have a BMI in the normal range, 23 percent are thin, and 12 percent are overweight or obese. These findings show that men are more likely than women to be thin and less likely to be overweight or obese.

Table 12.10.2 Nutritional status of men
Among men age 15-49, mean body mass index (BMI) and the percentage with specific BMI levels, by background characteristics, Namibia 2013

Background characteristic	Body mass index								
		Normal	Thin			Overweight/obese			$\begin{gathered} \text { Number of } \\ \text { men } \\ \hline \end{gathered}$
	Mean BMI	$\begin{gathered} \text { 18.5-24.9 } \\ \text { (total } \\ \text { normal) } \\ \hline \end{gathered}$	<18.5 (total thin)	$\begin{gathered} 17.0-18.4 \\ \text { (mildly thin) } \end{gathered}$	```<17 (moderately and severely thin)```	≥ 25.0 (total overweight or obese)	$\begin{gathered} \text { 25.0-29.9 } \\ \text { (overweight) } \\ \hline \end{gathered}$	$\begin{gathered} \geq 30.0 \\ \text { (obese) } \end{gathered}$	
Age									
15-19	18.8	47.8	50.3	27.0	23.2	2.0	1.4	0.6	844
20-29	21.1	77.6	14.0	11.6	2.4	8.3	6.9	1.5	1,322
30-39	22.0	67.9	14.8	10.2	4.6	17.3	12.7	4.5	857
40-49	22.7	58.1	17.3	11.6	5.6	24.6	14.3	10.3	553
Residence									
Urban	21.8	65.5	17.4	12.7	4.7	17.2	11.7	5.4	1,936
Rural	20.1	65.0	30.2	17.5	12.7	4.8	3.9	0.9	1,639
Region									
Zambezi	21.0	77.0	15.1	12.6	2.6	7.9	6.5	1.4	193
Erongo	22.7	64.3	12.4	9.1	3.2	23.3	14.4	9.0	329
Hardap	21.8	59.1	23.4	15.4	7.9	17.5	10.2	7.3	142
//Karas	21.9	56.0	22.8	14.5	8.3	21.2	16.2	4.9	142
Kavango	20.0	70.9	26.1	18.1	8.0	3.0	3.0	0.0	298
Khomas	21.8	68.5	14.6	11.2	3.5	16.9	12.4	4.5	805
Kunene	21.5	74.2	13.6	11.4	2.3	12.1	7.9	4.3	97
Ohangwena	19.7	62.1	35.2	18.6	16.6	2.7	2.4	0.4	307
Omaheke	21.2	66.9	21.0	16.4	4.6	12.1	9.0	3.1	99
Omusati	19.1	55.3	43.1	20.4	22.7	1.6	1.2	0.4	326
Oshana	20.4	66.4	26.8	17.8	8.9	6.8	5.4	1.4	299
Oshikoto	20.4	65.5	26.8	16.9	9.9	7.7	6.3	1.4	312
Otjozondjupa	21.7	59.4	24.0	15.8	8.2	16.6	9.0	7.5	225
Education									
No education	21.0	79.0	14.4	10.5	3.9	6.5	5.0	1.5	289
Primary	20.0	61.8	33.4	18.2	15.2	4.8	4.1	0.7	864
Secondary	21.1	64.7	22.6	15.5	7.1	12.7	9.0	3.7	2,123
More than secondary	23.2	66.1	7.3	5.9	1.4	26.6	16.6	10.1	300
Wealth quintile									
Lowest	19.7	63.3	34.1	18.9	15.1	2.6	2.3	0.3	556
Second	20.0	70.4	26.5	15.6	10.8	3.1	3.1	0.1	719
Middle	20.6	68.7	25.3	16.8	8.4	6.0	4.9	1.1	804
Fourth	21.1	65.3	22.2	15.8	6.4	12.5	9.3	3.2	821
Highest	23.6	57.1	10.0	7.5	2.5	32.9	20.6	12.3	676
Total 15-49	21.0	65.2	23.3	14.9	8.3	11.5	8.1	3.4	3,575

Note: Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

Similar to women, men age 15-19 (50 percent) are more likely to be thin than older men (age 40-49) (17 percent), while older men are much more likely to be overweight or obese than those in the 15-19 age group (25 percent versus 2 percent). Rural men are more likely to be thin than urban men (30 percent versus 17 percent), while urban men are more likely to be overweight or obese (17 percent versus 5 percent). The percentage of men who are thin ranges from 12 percent in Erongo to 43 percent in Omusati. By contrast, the percentage of men who are overweight or obese is highest among those in Erongo (23 percent) and lowest among those in Omusati (2 percent). The percentage of men who are thin decreases steadily with increasing wealth, from 34 percent among those in the lowest wealth quintile to 10 percent among those in the highest quintile. Overall, there are substantial increases in the percentage of overweight and obese men with increasing education and wealth.

12.10.3 Anaemia in Women

Table 12.11.1 presents anaemia levels for women age 15-49. Overall, 21 percent of women are anaemic. The majority of women who suffer from anaemia are mildly or moderately anaemic (17 percent and 4 percent, respectively), while less than 1 percent are severely anaemic. Women age 40-49 are more likely to be anaemic (28 percent) than those age 15-29 (17-19 percent). Women who have given birth to six or more children are more likely to be anaemic (30 percent) than those with fewer children (19-22 percent). Pregnant women have a higher prevalence of anaemia (26 percent) than nonpregnant or breastfeeding women (20-22 percent). Anaemia among women is slightly higher in rural than urban areas. Across regions, women from Kavango (33 percent) are most likely to be anaemic, and those in Hardap (15 percent) are least likely. Anaemia prevalence is lowest among those with more than a secondary education (17 percent) and the wealthiest women (18 percent).

Table 12.11.1 Prevalence of anaemia in women					
Percentage of women age 15-49 with anaemia, by background characteristics, Namibia 2013					
	Anaemia status by haemoglobin level				Number of women
	Any	Mild	Moderate	Severe	
Background Not pregnant	$<12.0 \mathrm{~g} / \mathrm{dl}$	$10.0-11.9 \mathrm{~g} / \mathrm{dl}$	$7.0-9.9 \mathrm{~g} / \mathrm{dl}$	$<7.0 \mathrm{~g} / \mathrm{dl}$	
characteristic Pregnant	$<11.0 \mathrm{~g} / \mathrm{dl}$	$10.0-10.9 \mathrm{~g} / \mathrm{dl}$	$7.0-9.9 \mathrm{~g} / \mathrm{dl}$	$<7.0 \mathrm{~g} / \mathrm{dl}$	
Age					
15-19	19.1	15.4	3.2	0.5	870
20-29	17.3	14.5	2.7	0.1	1,514
30-39	21.8	16.8	4.5	0.5	1,127
40-49	27.8	22.2	4.4	1.2	731
Number of children ever born					
0	19.4	15.7	3.1	0.5	1,343
1	19.1	16.0	3.0	0.1	868
2-3	20.7	17.0	3.4	0.3	1,261
4-5	22.0	16.2	5.2	0.6	510
6+	29.7	22.1	5.6	1.9	260
Maternity status					
Pregnant	25.6	18.7	6.5	0.4	288
Breastfeeding	21.9	18.5	3.0	0.4	585
Neither	20.0	16.1	3.4	0.5	3,369
Using IUD					
Yes	*	*	*	*	21
No	20.7	16.6	3.6	0.5	4,221
Smoking status					
Smokes cigarettes/ tobacco	15.9	13.8	1.9	0.2	4
Does not smoke	20.9	16.7	3.7	0.5	4,036
Missing	*	*	*	*	2
Residence					
Urban	19.2	15.7	3.0	0.6	2,303
Rural	22.4	17.7	4.3	0.4	1,938
Region					
Zambezi	26.3	19.9	6.2	0.3	219
Erongo	21.1	15.6	5.1	0.4	356
Hardap	14.6	13.3	1.1	0.2	159
//Karas	20.9	17.3	3.4	0.2	167
Kavango	32.9	23.2	7.8	1.8	377
Khomas	15.8	13.7	1.7	0.4	889
Kunene	15.8	13.1	2.7	0.0	120
Ohangwena	16.5	12.8	3.4	0.2	469
Omaheke	20.6	17.7	2.5	0.4	114
Omusati	25.4	21.6	3.8	0.0	409
Oshana	20.8	17.1	2.7	1.0	382
Oshikoto	21.2	17.4	3.3	0.5	330
Otjozondjupa	19.1	15.6	3.6	0.0	249
Education					
No education	26.8	21.3	5.2	0.2	204
Primary	24.0	18.2	5.0	0.9	857
Secondary	19.7	16.1	3.3	0.3	2,821
More than secondary	16.9	14.4	1.8	0.6	361
Wealth quintile					
Lowest	24.0	18.0	5.3	0.7	686
Second	19.7	16.6	2.7	0.4	781
Middle	20.4	15.7	4.3	0.4	813
Fourth	21.9	17.6	3.7	0.6	1,023
Highest	17.9	15.3	2.2	0.4	939
Total	20.7	16.6	3.6	0.5	4,242

Note: Prevalence is adjusted for altitude and for smoking status if known using formulas in CDC, 1998. Total includes 2 women with missing information on smoking status. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

12-10.4 Anaemia in Men

Table 12.11.2 presents anaemia levels for men age 1549. Overall, 12 percent of men are anaemic. Men age 15-19 are more likely to be anaemic (18 percent) than older men. The prevalence of anaemia is higher among men in rural (16 percent) than in urban (8 percent) areas. Across regions, men from Kavango (23 percent) have the highest anaemia prevalence, while men in Kunene have the lowest prevalence (5 percent). The prevalence of anaemia among men decreases with increasing wealth and education.

12.11 Micronutrient Intake among Mothers

Adequate micronutrient intake has important benefits for both women and their children. Breastfeeding children benefit from micronutrient supplementation that mothers receive, especially vitamin A. Iron supplementation of women during pregnancy protects the mother and infant against anaemia, which is considered a major cause of perinatal and maternal mortality. Anaemia also results in an increased risk of premature delivery and low birth weight. Finally, iodine deficiency is related to a number of adverse pregnancy outcomes including abortion, foetal brain damage and congenital malformation, stillbirth, and prenatal death.

The 2013 NDHS collected data on consumption of vitamin A and iron-folic acid supplements among women age 15-49 with a child born in the past five years, use of deworming medication during the last pregnancy, and the percentage of women living in households with iodised salt.

A single dose of vitamin A is typically given to women within 45 days of childbirth, aimed at increasing the mother's

Table 12.11.2 Prevalence of anaemia in men
Percentage of men age 15-49 with anaemia, by background characteristics, Namibia 2013

	Anaemia status by haemoglobin level	
Background characteristic	Any anaemia $<13.0 \mathrm{~g} / \mathrm{dl}$	Number of men
Age		
15-19	18.4	830
$20-29$	6.1	1,275
30-39	10.5	840
40-49	15.7	548
Smoking status		
\quad Smokes cigarettes/		
tobacco	9.8	694
Does not smoke	12.0	2,798
Residence		
Urban	7.5	1,883
Rural	16.3	1,609
Region		
Zambezi	11.1	187
Erongo	8.9	327
Hardap	10.0	138
l/Karas	7.7	139
Kavango	22.9	283
Khomas	6.6	774
Kunene	5.4	93
Ohangwena	13.2	307
Omaheke	7.1	97
Omusati	16.5	323
Oshana	10.5	301
Oshikoto	18.8	301
Otjozondjupa	9.1	222
Education		
No education	13.5	285
Primary	17.8	861
Secondary	9.9	2,073
More than secondary	2.4	273
Wealth quintile		
Lowest	21.7	550
Second	12.8	708
Middle	10.5	789
Fourth	4.1	796
Highest	11.6	349
Total 15-49		3,492

Note: Prevalence is adjusted for altitude and for smoking status, if known, using formulas in CDC, 1998. vitamin A level and the content of the vitamin in her breast milk for the benefit of her child. Because of the risk of teratogenesis (abnormal development of the foetus) resulting from high doses of vitamin A during pregnancy, the dose should not be given to pregnant women.

Table 12.12 shows that 58 percent of women with a child born in the five years before the survey received a vitamin A dose in the first two months after the birth of their last child. Vitamin A supplementation rates are highest among rural women (58 percent), women living in Otjozondjupa (69 percent), women with at least a secondary education (59-60 percent), and women in the middle wealth quintile (61 percent).

With regard to iron supplementation during pregnancy, 39 percent of women reported taking iron tablets or syrup for 90 or more days during the pregnancy of their most recent birth, as recommended. Only 12 percent did not take any iron supplements during pregnancy. Women living in Ohangwena were least likely to have taken iron tablets during their last pregnancy for the recommended period of time (25 percent), while women in Kunene were most likely to have done so (67 percent).

Seven percent of women took deworming medication during the pregnancy of their most recent birth. Women residing in Kavango (17 percent), those with a primary education (11 percent), and those in the lowest quintile (11 percent) were most likely to take deworming medicine.

Seventy-six percent of women with a child born in the last five years live in households with iodised salt. The percentage of women who live in households with iodised salt is higher in urban areas (90 percent) than in rural areas (62 percent). Omusati and Oshikoto (56 percent each) have the lowest proportion of women living in households with iodised salt. The percentage of women living in households with iodised salt increases with increasing education and household wealth.

Table 12.12 Micronutrient intake among mothers
Among women age 15-49 with a child born in the past five years, the percentage who received a vitamin A dose in the first two months after the birth of the last child, the percent distribution by number of days they took iron tablets or syrup during the pregnancy of the last child, and the percentage who took deworming medication during the pregnancy of the last child, and among women age 15-49 with a child born in the past five years and who live in households that were tested for iodised salt, the percentage who live in households with iodised salt, by background characteristics, Namibia 2013

Background characteristic	Percentage who received vitamin A dose postpartum ${ }^{1}$	Among women with a child born in the past five years:								Among women with a child born in the last five years who live in households that were tested for iodised salt:	
		Number of days women took iron tablets during pregnancy of last birth						Percentage of women who took deworming medication during pregnancy of last birth	Number of women		
		None	<60	60-89	90+	$\begin{gathered} \text { Don't } \\ \text { know/ } \\ \text { missing } \\ \hline \end{gathered}$	Total			Percentage living in households with iodised salt ${ }^{2}$	Number of women
Age											
15-19	50.4	11.1	24.0	5.7	34.3	24.9	100.0	7.1	263	70.5	249
20-29	57.1	11.2	19.0	6.4	37.1	26.3	100.0	6.9	1,910	77.1	1,813
30-39	60.0	12.8	14.8	5.4	40.7	26.3	100.0	6.9	1,308	76.8	1,239
40-49	57.1	11.5	14.7	3.8	41.7	28.3	100.0	6.0	360	73.7	341
Residence											
Urban	57.3	12.3	15.2	4.3	45.2	23.0	100.0	6.1	1,970	89.6	1,879
Rural	58.0	11.2	20.1	7.2	31.5	30.0	100.0	7.6	1,871	61.9	1,763
Region											
Zambezi	56.5	10.5	23.2	4.5	35.7	26.1	100.0	5.6	239	96.4	215
Erongo	56.1	9.2	8.4	6.1	63.0	13.4	100.0	5.1	285	93.5	268
Hardap	60.3	7.9	18.6	5.7	51.3	16.5	100.0	7.0	133	77.6	124
//Karas	65.4	10.2	19.8	9.4	43.7	16.8	100.0	7.3	136	86.8	130
Kavango	55.2	5.6	39.4	4.6	35.1	15.3	100.0	17.3	448	79.4	415
Khomas	53.4	18.8	14.9	2.5	40.1	23.7	100.0	5.4	771	92.7	742
Kunene	47.2	7.3	5.8	8.3	66.7	11.9	100.0	3.7	133	71.5	117
Ohangwena	59.4	9.1	13.7	5.0	25.0	47.2	100.0	5.7	440	63.4	429
Omaheke	50.5	10.2	10.0	9.2	39.8	30.9	100.0	6.3	107	60.6	98
Omusati	67.4	21.7	11.6	11.5	26.4	28.8	100.0	1.1	350	55.7	338
Oshana	58.4	8.1	26.9	4.1	25.8	35.1	100.0	8.3	261	67.0	260
Oshikoto	52.4	5.5	13.7	9.7	42.0	29.1	100.0	5.8	290	56.1	281
Otjozondjupa	69.4	13.2	8.8	4.3	39.8	33.9	100.0	7.4	248	69.7	226
Education											
No education	44.8	19.4	14.8	6.2	30.1	29.4	100.0	5.0	218	60.4	194
Primary	54.1	13.3	21.3	7.3	29.6	28.4	100.0	10.6	836	67.2	772
Secondary	59.8	10.4	16.5	5.6	41.7	25.8	100.0	5.7	2,517	78.2	2,417
More than secondary	58.6	13.2	17.6	2.4	43.5	23.3	100.0	7.0	271	96.5	259
Wealth quintile											
Lowest	52.9	11.4	23.7	6.2	27.3	31.5	100.0	10.9	756	63.4	695
Second	60.3	13.3	19.3	7.1	30.9	29.4	100.0	6.4	819	65.2	775
Middle	61.0	11.5	15.8	7.5	40.7	24.5	100.0	6.6	807	69.5	776
Fourth	58.3	10.4	16.2	4.5	44.9	24.0	100.0	4.6	846	88.4	810
Highest	54.5	12.4	11.8	2.8	51.1	21.9	100.0	5.8	614	98.1	586
Total	57.6	11.8	17.5	5.8	38.5	26.4	100.0	6.9	3,842	76.2	3,642

[^14]
Key Findings

- Thirty-five percent of households have at least one mosquito net; 24 percent have at least one insecticide-treated mosquito net (ITN), the majority of which are long-lasting insecticidal nets (23 percent).
- Sixteen percent of households reported that they had received indoor residual spraying during the past 12 months.
- On the night before the survey, only 6 percent of children under age 5 slept under an ITN. Among households with at least one ITN, 18 percent of children under age 5 slept under an ITN.
- Overall, 4 percent of pregnant women slept under an ITN the night before the survey. Among pregnant women living in households that possess an ITN, 14 percent slept under an ITN the night before the survey.
- Five percent of women who had their last birth in the two years preceding the survey received intermittent preventive treatment during their pregnancy; that is, they took two or more doses of sulfadoxine and pyrimethamine (SP)/Fansidar and received at least one during an antenatal care visit.
- Three percent of children age 6-59 months had a low haemoglobin level (less than $8.0 \mathrm{~g} / \mathrm{dl}$), indicating possible malarial infection.

Malaria is one of the leading causes of death in sub-Saharan Africa. Although preventable and curable, the disease remains a public health problem in Namibia. Malaria is endemic in several regions, including Zambezi, Kavango, Ohangwena, Omusati, Oshana, Kunene, Oshikoto and parts of the Otjozondjupa and Omaheke.

This chapter presents data that are useful for assessing the implementation of malaria control strategies, including indoor residual spraying of dwellings with insecticides, the availability and use of mosquito nets, the prophylactic and therapeutic use of antimalarial medicines, and the collection for diagnostic test for children with fever.

13.1 Ownership of Mosquito Nets

The use of ITNs is a primary health intervention designed to reduce malaria transmission in Namibia. An ITN is a factory-treated net that does not require any further treatment or a net that has been soaked with insecticide within the past 12 months. Long-lasting insecticidal nets (LLINs) are factorytreated mosquito nets made with netting material that has insecticide incorporated within or bound around the fibres. The current generation of LLINs lasts three to five years, after which the net should be replaced. The use of long-lasting nets is highly recommended as they greatly reduce the cost and the operational difficulties associated with retreatment of nets (MoHSS, 2005). In Namibia, most of the mosquito nets are provided free of charge by the Ministry of Health and Social services (MoHSS).

All households in the 2013 NDHS were asked whether they owned mosquito nets and, if so, how many. Table 13.1 shows household ownership of nets by type (any type, ITN, or LLIN) and average number of nets per household, by background characteristics. Overall, 35 percent of households in Namibia own at least one net, regardless of type. Twenty-four percent of households own at least one net that meets one of the ITN criteria (i.e., a factory-treated net that does not require retreatment, a pretreated net obtained within the previous 12 months, or a net soaked in insecticide at some time within the 12
months prior to the survey). The majority of these ITNs are long-lasting insecticidal nets; 23 percent of households own at least one LLIN. There has been an increase in the household ownership of any nets over the last six years from 25 percent in the 2006-07 NDHS to 35 percent in the 2013 NDHS.

Ownership of ITNs is higher in rural households than in urban households (34 percent and 15 percent, respectively). Among regions, Erongo and //Karas have the lowest percentage of households that own an ITN (4 percent), while Zambezi has the highest percentage (59 percent each). ITN ownership decreases as household wealth increases from 33 percent of households in the lowest wealth quintile to 13 percent in the highest wealth quintile.

Although mosquito net ownership is a key indicator of the success of malaria control measures, it is also important to determine if a household has a sufficient number of nets for those sleeping within the home. Households in Namibia own, on average, about one ITN.

Universal net coverage within the population can be measured by assuming that each net is shared by two people in the household. Table 13.1 also shows the percentage of households with at least one mosquito net for every two persons who stayed in the household the night before the interview. Eighteen percent of households in Namibia had at least one mosquito net of any type for every two persons who stayed in the household the night before the survey; 12 percent had at least one ITN for every two people.
Table 13.1 Household possession of mosquito nets
Percentage of households with at least one mosquito net (treated or untreated), insecticide-treated net (ITN), and long-lasting insecticidal net (LLIN); average number of nets, ITNs, and LLINs per household; and percentage of households with at least one net, ITN, and LLIN per two persons who stayed in the household last night, by background characteristics, Namibia 2013

Background characteristic	Percentage of households with at least onemosquito net			Average number of nets per household			Number of households	Percentage of households with at least one net for every two persons who stayed in the household last night ${ }^{1}$			Number of households with at least one person who stayed in the household last night
	Any mosquito net	Insecticidetreated mosquito net (ITN) ${ }^{2}$	Long-lasting insecticidal net (LLIN)	Any mosquito net	Insecticidetreated mosquito net (ITN) ${ }^{2}$	Long-lasting insecticidal net (LLIN)		\qquad	```Insecticide- treated mosquito net (ITN)}\mp@subsup{}{}{2```	Long-lasting insecticidal net (LLIN)	
Residence											
Urban	25.0	15.2	13.9	0.4	0.2	0.2	5,121	13.9	8.1	7.4	5,088
Rural	45.1	34.3	32.3	0.9	0.7	0.7	4,728	22.4	16.3	15.2	4,706
Region											
Zambezi	75.5	58.8	53.8	1.5	1.2	1.1	541	46.5	35.7	32.2	541
Erongo	6.1	4.1	4.0	0.1	0.1	0.1	930	3.2	2.5	2.4	922
Hardap	19.0	12.0	10.4	0.3	0.2	0.1	381	7.2	4.8	4.1	379
//Karas	11.0	4.1	3.3	0.1	0.1	0.0	406	5.2	2.2	1.7	401
Kavango	43.4	40.6	39.5	0.9	0.9	0.8	737	18.9	17.6	17.0	734
Khomas	17.4	6.7	4.7	0.3	0.1	0.1	2,015	9.0	2.9	2.1	2,003
Kunene	28.2	24.2	23.7	0.4	0.4	0.3	354	14.4	12.2	11.8	354
Ohangwena	56.1	37.0	32.9	1.3	0.9	0.8	900	29.7	19.1	17.1	895
Omaheke	30.8	20.4	19.5	0.5	0.3	0.3	335	14.6	7.6	7.1	332
Omusati	42.2	31.6	31.0	0.8	0.6	0.6	949	18.3	12.6	12.4	948
Oshana	52.5	41.8	41.6	0.9	0.7	0.7	831	29.5	22.3	22.2	831
Oshikoto	52.0	38.7	36.5	1.1	0.7	0.7	817	29.1	20.1	18.5	809
Otjozondjupa	29.3	15.2	13.6	0.5	0.2	0.2	652	14.8	6.1	5.3	645
Wealth quintile											
Lowest	42.5	32.7	30.8	0.8	0.6	0.6	1,737	19.8	14.9	13.9	1,733
Second	38.8	29.5	27.9	0.7	0.6	0.5	1,910	20.3	14.0	13.5	1,895
Middle	40.6	28.7	26.7	0.7	0.5	0.5	1,954	21.3	14.3	13.0	1,945
Fourth	30.3	20.6	19.0	0.6	0.4	0.4	2,136	16.3	10.9	9.9	2,116
Highest	23.3	12.7	11.6	0.5	0.2	0.2	2,111	13.1	6.8	6.2	2,104
Total	34.7	24.4	22.7	0.7	0.5	0.4	9,849	18.0	12.0	11.1	9,793

De facto household members
An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with

13.2 Indoor Residual Spraying

In Namibia, indoor residual spraying (IRS) is part of the integrated vector management strategy, which is a key component of malaria prevention. IRS has a significant impact on the mosquito population and, therefore, can lead to rapid reductions in malaria transmission and subsequent mortality. IRS involves spraying of the interior walls with insecticide with the goal of killing mosquitoes when they rest on the sprayed wall. IRS reduces the mosquito population and, in turn, human-vector contact. The country has adopted selective households residual spraying with the goal to maintain 80 percent or more coverage. The appropriate period for indoor spraying of houses is between the months of October to January, just after the peak rainy season. The MoHSS is responsible for spraying rural areas outside of municipal boundaries; while in urban areas, this responsibility falls under the respective local authority (MoHSS, 2005).

To obtain information on the prevalence of indoor residual spraying, all households interviewed in the 2013 NDHS were asked whether the interior walls of their dwelling had been sprayed to protect against mosquitoes during the 12-month period before the survey and, if so, who had sprayed the dwelling. Table 13.2 shows that 16 percent of households had been sprayed in the past 12 months. There is a dramatic difference in IRS by residence, with rural households nearly 10 times as likely as urban households to report receiving IRS (29 percent versus 3 percent). By region, 2 percent or less of households in Erongo,

Table 13.2 Indoor residual spraying against mosquitoes

Percentage of households in which someone has come into the dwelling to spray the interior walls against mosquitoes (IRS) in the past 12 months, the percentage of households with at least one ITN and/or IRS in the past 12 months, and the percentage of households with at least one ITN for every two persons and/or IRS in the past 12 months, by background characteristics, Namibia 2013

		$\begin{array}{c}\text { Percentage of } \\ \text { households with }\end{array}$		
at least one ITN ${ }^{2}$				

${ }^{1}$ Indoor residual spraying (IRS) is limited to spraying conducted by a government, private, or non-governmental organisation
${ }^{2}$ An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with insecticide within the past 12 months

Hardap, //Karas, Khomas, and Omaheke reported having been sprayed, compared with 32-46 percent in malaria-endemic regions such as Zambezi, Kavango, Kunene, or Oshikoto. Wealthier households are much less likely to have been sprayed when compared with households in the lower quintiles. For example, only 3 percent of households in the highest wealth quintile have been sprayed, as compared with 31 percent of households in the lowest quintile.

The combination of IRS and use of an ITN offers the greatest protection against malaria. Overall, 33 percent of households are protected because they own at least one ITN and/or they have been sprayed in the past 12 months. However, ITNs must be available in sufficient quantities for use by household members. About one-fourth (24 percent) of all households have at least one ITN for every two persons and/or have been sprayed in the past 12 months. Differences by residence, region, and wealth are similar to those observed for IRS.

Ninety percent of household are sprayed by government workers, local government or municipal authorities, and only 1 percent are sprayed by private sector companies (data not shown).

13.3 Access to an Insecticide-Treated Net

The 2013 NDHS gathered data on the proportion of the population that could sleep under an ITN if each ITN in the household were used by up to two people. This population is referred to as having access to an ITN. Coupled with mosquito net usage, ITN access can provide useful information on the magnitude of the gap between ITN ownership and use (in other words, the population with access to an ITN but not using it). If the difference between these indicators is substantial, the programme may need to focus on behaviour change and how to identify the main drivers of and barriers to ITN use in order to design an appropriate intervention. Such an analysis would help ITN programmes determine whether they need to achieve higher ITN coverage, promote ITN use, or both. Table 13.3 shows the percent distribution of the de facto household population by the number of ITNs owned by the household, according to the number of persons who stayed in the household the night before the survey.

Nationally, 18 percent of the population in Namibia has access to an ITN. Access to ITNs fluctuates only slightly with the household size. It is lowest among households with eight or more persons (16 percent).

Percent distribution of the de facto household population by number of ITNs the household owns, according to number of persons who stayed in the household the night before the survey, Namibia 2013									
Number of ITNs	Number of persons who stayed in the household the night before the survey								
	1	2	3	4	5	6	7	8+	Total
0	82.0	81.1	77.2	75.9	72.4	69.7	69.2	67.7	72.4
1	15.1	11.8	12.0	9.5	10.7	11.3	11.7	7.6	10.2
2	1.9	5.5	7.1	7.9	8.6	9.2	8.5	7.9	7.7
3	0.8	1.4	3.4	5.7	7.5	8.1	8.2	12.2	7.7
4	0.0	0.0	0.2	0.4	0.3	1.1	1.2	1.7	0.9
5	0.1	0.1	0.1	0.2	0.1	0.2	0.6	1.5	0.6
6	0.0	0.0	0.0	0.3	0.2	0.1	0.3	0.7	0.3
7+	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.8	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	1,718	3,102	4,308	5,224	5,582	5,227	4,070	12,164	41,396
Percent with access to an ITN ${ }^{1}$	18.0	18.9	18.8	19.3	19.5	19.7	17.6	16.2	18.1
${ }^{1}$ Percentage of the de facto household population who could sleep under an ITN if each ITN in the household were used by up to two people									

Figure 13.1 shows the percentage of the household population with access to an ITN, by selected background characteristics. A lower percentage of urban households than rural households have access to an ITN (25 percent and 11 percent, respectively). By region, the percentage of the population with access to an ITN is highest in Zambezi (46 percent) and lowest in //Karas (2 percent). The percentage of the household population with access to an ITN decreases as wealth increases, from 23 percent of the population in the lowest quintile to 10 percent in the highest quintile.

Figure 13.1 Percentage of the de facto population with access to an ITN in the household

NDHS 2013

13.4 Use of Mosquito Nets

Community-level protection against malaria helps reduce the spread of the disease and offers an additional level of protection for those most vulnerable: children under age 5 and pregnant women. This section describes use of mosquito nets among all persons in the household, among children under age 5, and among pregnant women.

13.4.1 Use of Mosquito Nets by Persons in the Household

Mosquito net coverage of the entire population is necessary to accomplish large reductions in the malaria burden. Although vulnerable groups (e.g., children under age 5 and pregnant women) should still be prioritised, the communal benefits of wide-scale ITN use by older children and adults should be promoted and evaluated by national malaria control programmes (Killeen et al., 2007).

Table 13.4 shows that, overall, only 5 percent of the household population slept under a net the night before the survey; 4 percent slept under ITNs, nearly all of which are LLINs. Children under age 5 are most likely to use ITNs (6 percent). Substantial differences are observed by region, with Zambezi having the highest percentage of household members who slept under an ITN the night before the survey (19 percent), followed by Kavango (10 percent), compared with 7 percent or less of the population in the other regions. The percentage of the population sleeping under an ITN decreases with wealth.

Twenty-three percent of the household population slept under an ITN the night before the survey or in a dwelling that was sprayed during the 12 months preceding the survey. Differences in the percentage of the household population protected in this way by background characteristics are similar to those observed for the percentage of household members who slept under an ITN the night before the survey.

In households that own at least one ITN, 14 percent of household members slept under an ITN the night before the survey. Those most likely to sleep under an ITN were children under age 5 (18 percent), household members living in urban areas (16 percent), those living in Zambezi (32 percent), and the population living in the poorest households (18 percent).

Table 13.4 Use of mosquito nets by persons in the household
Percentage of the de facto household population who slept the night before the survey under a mosquito net (treated or untreated), under an insecticide-treated net (ITN), under a long-lasting insecticidal net (LLIN), and under an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (IRS) in the past 12 months; and among the de facto household population in households with at least one ITN, the percentage who slept under an ITN the night before the survey, by background characteristics, Namibia 2013

Background characteristic	Household population					Household population in households with at least one ITN ${ }^{1}$	
	Percentage who slept under any net last night	Percentage who slept under an ITN ${ }^{1}$ last night	Percentage who slept under an LLIN last night	Percentage who slept under an ITN ${ }^{1}$ last night or in a dwelling sprayed with IRS^{2} in the past 12 months	Number	Percentage who slept under an ITN ${ }^{1}$ last night	Number
Age							
<5	7.7	5.6	5.1	26.4	5,711	17.8	1,778
5-14	3.9	3.1	2.9	27.0	10,153	10.1	3,135
15-34	4.6	3.5	3.3	19.5	14,226	13.9	3,551
35-39	5.4	3.9	3.6	17.9	6,032	16.6	1,436
50+	6.3	4.9	4.8	26.2	5,245	16.8	1,536
Sex							
Male	4.9	3.6	3.4	22.8	19,621	13.5	5,311
Female	5.4	4.2	3.9	23.0	21,774	14.8	6,134
Residence							
Urban	3.9	2.7	2.4	6.6	19,291	16.4	3,140
Rural	6.3	5.0	4.8	37.2	22,106	13.4	8,304
Region							
Zambezi	24.3	19.0	17.4	48.6	2,165	31.8	1,294
Erongo	0.2	0.1	0.1	0.5	3,016	2.6	156
Hardap	0.9	0.3	0.3	0.6	1,455	2.3	182
//Karas	1.4	0.8	0.6	2.1	1,473	17.9	63
Kavango	10.4	9.9	9.6	55.5	4,252	24.8	1,699
Khomas	1.3	0.7	0.4	1.3	7,693	10.8	486
Kunene	3.4	2.7	2.5	39.2	1,266	10.3	332
Ohangwena	7.1	4.6	4.1	30.7	4,857	11.8	1,907
Omaheke	1.1	0.7	0.7	2.6	1,152	2.4	320
Omusati	3.1	2.3	2.3	18.0	4,823	6.9	1,598
Oshana	8.0	6.8	6.8	39.0	3,324	15.0	1,508
Oshikoto	4.7	2.8	2.5	40.8	3,462	6.7	1,462
Otjozondjupa	1.6	0.7	0.7	13.0	2,459	4.1	437
Wealth quintile							
Lowest	6.9	6.0	5.6	39.2	8,260	17.5	2,820
Second	6.7	5.6	5.3	33.5	8,257	16.9	2,732
Middle	5.5	3.5	3.3	23.1	8,288	10.8	2,714
Fourth	4.3	3.1	2.9	14.6	8,286	12.6	2,061
Highest	2.4	1.4	1.2	4.2	8,304	10.3	1,117
Total	5.2	3.9	3.7	22.9	41,396	14.2	11,445

Note: Total includes 29 cases for which information on age is missing and 2 cases for which information on sex is missing.
${ }^{1}$ An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with insecticide within the past 12 months.
${ }^{2}$ Indoor residual spraying (IRS) is limited to spraying conducted by a government, private, or non-governmental organisation.

Figure 13.2 presents data on ownership, access, and use of ITNs in Namibia. About one-fourth of households (24 percent) own at least one ITN. However, only 12 percent of households have enough ITNs to cover their entire household population (assuming that one ITN is used by two persons). Eighteen percent of household members have access to an ITN, and 4 percent slept under an ITN the night before the survey. A comparison of the first two columns indicates that households in Namibia do not have a sufficient number of ITNs to cover the population sleeping in the household, and a comparison of the second two columns suggest that ITN use is much lower than ITN access.

Figure 13.2 Ownership, access, and use of ITNs

13.4.2 Use of Existing Mosquito Nets

Table 13.5 presents data on use of existing ITNs. Overall, 21 percent of ITNs were used by someone in the household the night before the survey. Twenty-four percent of ITNs were used in urban areas, as compared with 20 percent in rural areas. Zambezi (37 percent) had the highest levels of ITN usage, while Erongo had the lowest (4 percent).

13.4.3 Use of Mosquito Nets by Children under Age 5

Malaria is endemic in some regions of Namibia. Those living in areas of high malaria transmission acquire immunity to the disease over time (Doolan et al., 2009). Acquired immunity is not the same as sterile immunity; that is, acquired immunity does not prevent infection but rather protects against severe disease and death. Age is an important factor in determining levels of acquired immunity to malaria. For about six months following birth, antibodies acquired from the mother during pregnancy protect children born in areas of endemic malaria. This immunity gradually disappears, and children start to develop their own immunity. The pace at which immunity develops depends on the level of exposure to malarial infection; in highly malaria-endemic areas, children are thought to attain a high level of immunity by their fifth birthday. Such children may experience episodes of illness but usually do not suffer from severe, lifethreatening malaria. Immunity in areas of low malaria transmission is acquired more slowly. Malaria affects all age groups of the population.

Table 13.5 Use of existing ITNs
Percentage of insecticide-treated nets (ITNs) that were used by anyone the night before the survey, by background characteristics, Namibia 2013

Background characteristic	Percentage of existing ITNs used last night	Number of ITNs ${ }^{1}$
Residence		
Urban	24.0	1,263
Rural	20.0	3,264
Region		
Zambezi	37.2	631
Erongo	4.3	57
Hardap	5.7	65
l/Karas	(26.7)	(21)
Kavango	37.3	630
Khomas	17.1	174
Kunene	18.5	126
Ohangwena	16.6	819
Omaheke	5.0	97
Omusati	10.2	558
Oshana	23.0	610
Oshikoto	12.0	594
Otjozondjupa	8.7	143
Wealth quintile		
Lowest	26.1	1,093
Second	24.9	1,060
Middle	17.4	1,033
Fourth	18.8	834
Highest	13.9	506
Total	21.1	4,527

Note: Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with insecticide within the past 12 months.

Table 13.6 shows the use of mosquito nets by children under age 5 . Only 8 percent of children slept under a mosquito net the night before the survey; 6 percent slept under an ITN, nearly all of which are LLIN. Additionally, 26 percent of children either slept under an ITN the night before the survey or slept within a dwelling that had been sprayed in the past 12 months. Among households with at least one ITN, 18 percent of children under age 5 slept under an ITN the night before the survey.

The percentage of children under age 5 in all the households who slept under an ITN the night before the survey decreases with age and somewhat with wealth, and it is slightly higher in rural areas than urban. The largest variation is by region, with Zambezi having the highest percentage of children under age 5 who slept under an ITN (24 percent) compared with 1 percent or less in several regions.

Table 13.6 Use of mosquito nets by children
Percentage of children under 5 years of age who, the night before the survey, slept under a mosquito net (treated or untreated), under an insecticidetreated net (ITN), under a long-lasting insecticidal net (LLIN), and under either an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (IRS) in the past 12 months; and among children under 5 years of age in households with at least one ITN, the percentage who slept under an ITN the night before the survey, by background characteristics, Namibia 2013

Background characteristic	Children under age 5 in all households					Children under age 5 in households with at least one ITN ${ }^{1}$	
	Percentage who slept under any net last night	Percentage who slept under an ITN ${ }^{1}$ last night	Percentage who slept under an LLIN last night	Percentage who slept under an ITN ${ }^{1}$ last night or in a dwelling sprayed with IRS^{2} in the past 12 months	Number of children	Percentage who slept under an ITN ${ }^{1}$ last night	Number of children
Age (in months)							
<12	10.5	7.3	6.5	27.3	1,172	26.2	326
12-23	8.6	6.5	6.1	26.3	1,136	20.4	363
24-35	6.8	5.1	4.8	26.6	1,188	16.8	364
36-47	6.2	4.6	4.3	25.9	1,134	13.6	382
48-59	6.1	4.1	4.0	25.9	1,082	12.8	344
Sex							
Male	8.3	5.9	5.5	26.7	2,786	18.4	893
Female	7.1	5.2	4.8	26.2	2,923	17.3	886
Residence							
Urban	6.9	4.5	3.8	8.8	2,237	22.5	444
Rural	8.1	6.2	6.0	37.8	3,474	16.3	1,335
Region							
Zambezi	31.0	23.5	21.2	50.7	355	38.9	214
Erongo	0.7	0.3	0.0	0.8	308	*	20
Hardap	2.4	0.5	0.5	0.8	205	3.4	31
//Karas	3.0	1.5	1.0	2.3	176	*	9
Kavango	13.1	12.3	11.9	55.5	683	32.5	258
Khomas	1.9	1.1	0.6	1.9	792	(15.1)	56
Kunene	2.7	1.7	1.3	36.7	224	5.9	63
Ohangwena	9.4	5.8	5.2	30.3	845	14.7	333
Omaheke	1.5	0.5	0.5	3.5	182	1.4	57
Omusati	4.9	3.3	3.3	18.5	667	10.0	220
Oshana	9.7	8.5	8.5	42.8	399	16.8	203
Oshikoto	7.8	4.8	4.5	44.5	501	10.1	238
Otjozondjupa	3.0	0.9	0.9	17.5	373	4.4	76
Wealth quintile							
Lowest	8.6	7.2	6.8	39.1	1,417	20.3	502
Second	8.3	6.6	6.2	34.2	1,307	19.0	454
Middle	7.4	4.4	4.1	24.8	1,179	13.2	395
Fourth	6.8	4.8	4.4	16.5	1,025	16.8	291
Highest	6.4	3.5	2.9	6.0	783	20.2	136
Total	7.7	5.6	5.1	26.4	5,711	17.8	1,778

Note: Table is based on children who stayed in the household the night before the interview. Total includes 1 case for whom information on age is missing. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with insecticide within the past 12 months.
${ }^{2}$ Indoor residual spraying (IRS) is limited to spraying conducted by a government, private, or non-governmental organisation.

13.4.4 Use of Mosquito Nets by Pregnant Women

In malaria-endemic areas, adults usually have acquired some degree of immunity to severe, lifethreatening malaria. However, pregnancy leads to suppression of the immune system; thus, pregnant
women, especially those in their first pregnancy, have a higher risk of malarial infection. Moreover, malaria among pregnant women may be asymptomatic. Malaria during pregnancy is a major contributor to low birth weight, maternal anaemia, infant mortality, spontaneous abortion, and stillbirth. Pregnant women can reduce the risk of these adverse effects of malaria by sleeping under insecticide-treated mosquito nets.

Table 13.7 shows the use of mosquito nets by pregnant women, according to background characteristics. Overall, only 4 percent of pregnant women age $15-49$ slept under any net the night before the survey (4 percent slept under an ITN and 3 percent slept under an LLIN). About one in five (19 percent) of pregnant women either slept under an ITN the night before the survey or slept in a dwelling that had been sprayed during the 12 months preceding the survey. Among households with at least one ITN, 14 percent of pregnant women slept under an ITN the night before the survey.

ITN use by pregnant women is higher in rural than urban areas (7 percent versus 1 percent) and it is higher for women in the lowest two wealth quintiles (6-7 percent) than in the middle, fourth and highest wealth quintiles. The number of cases is too small to make meaningful comparisons by region.

Table 13.7 Use of mosquito nets by pregnant women
Percentages of pregnant women age 15-49 who, the night before the survey, slept under a mosquito net (treated or untreated), under an insecticidetreated net (ITN), under a long-lasting insecticidal net (LLIN), and under either an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (IRS) in the past 12 months; and among pregnant women age 15-49 in households with at least one ITN, the percentage who slept under an ITN the night before the survey, by background characteristics, Namibia 2013

Background characteristic	Among pregnant women age 15-49 in all households					Among pregnant women age 15-49 in households with at least one ITN ${ }^{1}$	
	Percentage who slept under any net last night	Percentage who slept under an ITN ${ }^{1}$ last night	Percentage who slept under an LLIN last night	Percentage who slept under an ITN ${ }^{1}$ last night or in a dwelling sprayed with IRS ${ }^{2}$ in the past 12 months	Number of women	Percentage who slept under an ITN ${ }^{1}$ last night	Number of women
Residence							
Urban	1.6	1.1	1.1	4.7	363	6.2	62
Rural	8.2	6.9	6.5	37.9	276	18.7	101
Region							
Zambezi	(38.7)	(32.2)	(29.2)	(44.8)	22	*	13
Erongo	0.0	0.0	0.0	0.0	50	*	6
Hardap	*	*	*	*	12	*	1
//Karas	(2.1)	(2.1)	(0.0)	(4.2)	24	*	1
Kavango	7.4	7.4	7.4	48.4	60	*	25
Khomas	0.0	0.0	0.0	0.0	140	*	10
Kunene	(0.0)	(0.0)	(0.0)	(36.6)	24	*	5
Ohangwena	4.0	2.7	2.7	25.5	97	(6.2)	42
Omaheke	(0.0)	(0.0)	(0.0)	(0.0)	22	*	6
Omusati	(7.0)	(7.0)	(7.0)	(19.1)	62	*	15
Oshana	(8.1)	(5.3)	(5.3)	(31.1)	51	*	19
Oshikoto	(5.9)	(2.4)	(2.4)	(41.5)	43	*	14
Otjozondjupa	(0.0)	(0.0)	(0.0)	(7.4)	31	*	6
Education							
No education	4.0	4.0	4.0	21.8	49	*	15
Primary	3.5	3.5	3.1	21.9	125	(11.4)	38
Secondary	5.5	4.1	3.9	19.8	401	15.9	104
More than secondary	(0.0)	(0.0)	(0.0)	(5.6)	64	*	6
Wealth quintile							
Lowest	6.8	5.7	5.7	37.6	107	(17.0)	36
Second	7.6	6.9	6.4	29.7	129	(22.6)	39
Middle	3.7	2.1	1.7	13.8	128	(9.1)	30
Fourth	4.0	3.0	3.0	15.5	157	(10.3)	46
Highest	0.3	0.3	0.3	0.9	118	*	12
Total	4.4	3.6	3.4	19.0	639	14.0	163

[^15]
13.5 Use of Intermittent Preventive Treatment of Malaria During Pregnancy

In line with the Namibia National Malaria Policy, chemoprophylaxis is only recommended for persons who are at risk of contracting malaria; non-immune travelers; and individuals living in malariaendemic areas for a short time, such as labour force, police, and army. The risk of severe or fatal malaria is greatest in areas of unstable transmission and can cause maternal death, abortion, still birth, premature delivery, and low birth weight in infants. Sulphadoxine/pryrimethamine/Fansidar (SP/Fansidar) is recommended for intermittent preventive treatment during the first and second pregnancies. This regimen is beneficial in low- and high-transmission areas. Chemoprophylaxis is not recommended for third and subsequent pregnancies, as it does not confer additional protection against malaria. In areas where the prevalence of HIV is documented to be greater than 10 percent, a third dose of SP is given four weeks after the second dose (MoHSS, 2005).

During antenatal care (ANC) visits, pregnant women are given the required dose of $\mathrm{SP} /$ Fansidar and urged to consume it immediately. Women in the 2013 NDHS who had a live birth in the two years preceding the survey were asked whether they took any antimalarial medications during the pregnancy leading to their most recent birth and, if so, which ones. Women were also asked whether the medicines they took were received during an antenatal care visit. It should be noted that obtaining information about medicines can be difficult because some respondents may not know or remember the name or the type of medicine that they received.

Eight percent of pregnant women with a live birth in the two years preceding the survey reported taking at least one dose of SP/Fansidar during an ANC visit, and 5 percent reported taking two or more doses, at least one of which was received during an ANC visit (Table 13.8). The highest proportion of pregnant women who took two or more doses of SP/Fansidar and received at least one dose during an ANC visit is among women living in Oshana (13 percent), among those with more than secondary education (8 percent), and women in the middle wealth quintile (7 percent).

13.6 Prevalence, Diagnosis, and Prompt Treatment of Children with Fever

The diagnosis of malaria in Namibia is based on detection of parasites in the blood using a malaria rapid diagnostic test (MRDT), widely available at all public health facilities, and microscopy available at all the district hospitals, provided by National Institute of Pathology (NIP). Prompt and effective malaria treatment is essential to prevent the disease from becoming severe. Fever is a major manifestation of malaria in young children, although it also accompanies other illnesses. In malaria areas, it is important that children experiencing fever receive prompt testing for malaria parasites, either by rapid diagnostic test
or by microscopy. The first-line treatment of choice in Namibia is artemether lumefantrine, one of the artemisinin-based combination therapies recommended for the treatment of uncomplicated malaria in all age groups except children under the age of 1 year and pregnant women in their first trimester who are treated with quinine as their first line of defense against malaria (MoHSS, 2005).

Fever is a primary manifestation of malaria. Although fever occurs year round, malaria is most prevalent during the rainy season. Therefore, temporal factors must be taken into consideration when interpreting the occurrence of fever as an indicator of malaria prevalence. The Namibia Malaria Strategic Plan (2010-2016) envisioned that by 2013, 90 percent of all people with fever seek treatment within 24 hours of the onset of symptoms (MoHSS, 2010b). Malaria case management, one of the most fundamental strategic areas of malaria control, is the identification, diagnosis, and prompt treatment of all malaria cases with appropriate and effective antimalarial medicines. As almost all treatment of malarial fevers occurs at home, caregivers are often trained in providing prompt and effective management to prevent the fever from becoming severe, thus preventing severe malaria-related morbidity and mortality.

In the 2013 NDHS, mothers were asked if their children under age 5 had experienced an episode of fever in the two weeks preceding the survey and, if so, whether treatment and advice were sought. Information was also collected on the type and timing of the treatment given. Table 13.9 shows the percentage of children under age 5 who had a fever in the two weeks preceding the survey and, among those with a fever, the percentage for whom advice or treatment was sought from a health facility, provider, or pharmacy; the percentage who had a drop of blood taken from a finger or heel (presumably for a malaria test); the percentage who took artemisinin-based combination therapy (ACT) or any antimalarial medicines; and the percentage who took malaria medicines on the same or next day.

Twenty-four percent of children under age 5 had a fever during the two weeks preceding the survey. The prevalence of fever is highest among children under 12 months (31 percent) and children in Zambezi (50 percent). Children whose mothers have no education are the least likely to have had fever in the preceding two weeks (16 percent) when compared with children of mothers with any education (24-26 percent). There is no clear pattern in the relationship between fever prevalence and wealth.

Advice or treatment was sought for 63 percent of children with a fever, and 22 percent had blood taken from a finger or heel for testing. Four percent of children who had a fever took ACT, and 3 percent took ACT the same or the next day. Seven percent of children with a fever took antimalarial medicines the same or next day. The differentials in treatment patterns in Table 13.9 must be interpreted with caution because of the comparatively small number of children with fever in some subgroups and the small percentage who took antimalarial medicines.

Table 13.9 Prevalence, diagnosis, and prompt treatment of children with fever
Percentage of children under age 5 with fever in the two weeks preceding the survey; and among children under age 5 with fever, the percentage for whom advice or treatment was sought, the percentage who had blood taken from a finger or heel, the percentage who took any artemisinin-based combination therapy (ACT), the percentage who took ACT the same or next day following the onset of fever, the percentage who took antimalarial medicines, and the percentage who took the medicines the same or next day following the onset of fever, by background characteristics, Namibia 2013

Background characteristic	Among children under age 5:		Among children under age 5 with fever:						
	Percentage with fever in the two weeks preceding the survey	Number of children	Percentage for whom advice or treatment was sought ${ }^{1}$	Percentage who had blood taken from a finger or heel for testing	Percentage who took any ACT	Percentage who took any ACT same or next day	Percentage who took antimalarial medicines	Percentage who took antimalarial medicines same or next day	Number of children
Age (in months)									
<12	30.7	1,012	64.6	18.8	3.3	3.0	7.5	7.1	310
12-23	27.7	938	71.7	27.9	5.6	5.2	10.7	9.1	260
24-35	24.1	926	54.3	23.2	2.7	2.1	7.4	5.2	223
36-47	21.0	883	63.4	15.0	5.4	3.7	12.0	9.1	186
48-59	15.4	830	59.2	24.3	0.9	0.9	2.9	2.5	128
Sex									
Male	25.0	2,237	64.3	23.7	3.0	2.6	8.8	7.4	559
Female	23.3	2,351	62.4	19.8	4.5	3.8	8.1	6.6	547
Residence									
Urban	25.2	2,249	64.2	18.4	2.9	2.4	7.9	6.7	567
Rural	23.0	2,340	62.4	25.4	4.7	4.1	9.0	7.3	538
Region									
Zambezi	50.2	279	66.6	18.6	0.0	0.0	1.5	1.5	140
Erongo	22.6	320	71.1	21.2	0.0	0.0	15.2	13.8	72
Hardap	15.8	166	55.0	0.0	0.0	0.0	1.5	0.0	26
//Karas	20.8	160	58.6	6.6	0.0	0.0	6.6	6.6	33
Kavango	36.3	541	62.8	38.7	17.6	15.9	19.9	18.2	196
Khomas	26.3	858	55.4	7.5	0.8	0.0	7.7	6.2	225
Kunene	13.4	170	57.7	16.7	0.0	0.0	1.8	0.0	23
Ohangwena	18.8	561	66.1	30.5	0.0	0.0	4.5	2.1	105
Omaheke	23.4	143	61.9	7.2	0.0	0.0	0.9	0.0	33
Omusati	14.4	440	78.7	31.8	5.9	3.9	14.7	10.4	64
Oshana	17.5	300	77.9	34.6	0.0	0.0	1.7	0.0	53
Oshikoto	24.1	353	60.9	22.0	2.1	2.1	5.7	4.5	85
Otjozondjupa	16.7	298	55.7	18.7	0.0	0.0	1.6	1.6	50
Mother's education									
No education	15.6	281	46.9	12.6	5.1	5.1	6.9	5.1	44
Primary	26.4	1,061	60.6	24.0	9.3	7.8	14.2	12.4	280
Secondary	24.0	2,948	65.3	22.1	1.7	1.6	6.2	4.9	707
More than secondary	24.9	300	65.0	16.5	1.6	0.0	9.4	7.8	75
Wealth quintile									
Lowest	25.0	988	57.7	27.0	8.3	7.4	12.0	10.2	247
Second	23.2	1,009	63.0	22.3	1.9	1.9	4.9	4.2	234
Middle	24.8	952	69.6	26.7	4.4	3.6	10.4	7.5	236
Fourth	22.2	954	63.0	18.0	3.1	2.1	9.5	8.5	212
Highest	25.8	686	63.7	12.0	0.0	0.0	4.4	3.8	177
Total	24.1	4,588	63.3	21.8	3.8	3.2	8.4	7.0	1,106

${ }^{1}$ Excludes market and traditional practitioner

Table 13.10 shows the sources of advice or treatment for children with fever in the two weeks preceding the survey. The public sector was the principal source for advice or treatment (81 percent), followed by the private sector (19 percent). Government health posts (51 percent) and government hospitals (26 percent) were the primary public sources of advice or treatment. Pharmacies (7 percent), private doctors (6 percent), and private hospitals or clinics (4 percent) were the primary private sources. Other sources accounted for treating 2 percent of children.

Table 13.10 Source of advice or treatment for children with fever		
Percentage of children under age 5 with fever in the two weeks preceding the survey for whom advice or treatment was sought from specific sources and, among children under age five with fever in the two weeks preceding the survey for whom advice or treatment was sought, the percentage for whom advice or treatment was sought from specific sources, by background characteristics, Namibia 2013		
Percentage for whom advice or treatment was sought from each source:		
Source	Among children with fever	Among children with fever for whom advice or treatment was sought
Any public sector source	51.7	80.6
Government hospital	16.3	25.5
Government health centre	3.7	5.7
Government health post	32.5	50.7
Mobile clinic	0.3	0.5
Fieldworker	0.5	0.8
Any private sector source	12.0	18.7
Private hospital/clinic	2.8	4.4
Pharmacy	4.5	7.0
Private doctor	3.9	6.1
Mobile clinic	0.7	1.1
Any other source	1.3	2.1
Shop	0.3	0.4
Traditional practitioner	0.3	0.4
Other	0.8	1.3
Number of children	1,106	709

More than four in ten children under age 5 with a fever (45 percent) took ACT; 25 percent took quinine; and 48 percent took other antimalarials (data not shown due to the small numbers of children who had a fever and who took antimalarials).

13.7 Prevalence of Low Haemoglobin in Children

One of the objectives of the 2013 NHDS was to assess the prevalence of anaemia among children age 6-59 months. Table 12.7 in the chapter on nutrition presents the percentage of children who are anaemic (children are classified as anaemic if their haemoglobin level is below $11.0 \mathrm{~g} / \mathrm{dl}$ and as severely anaemic if their haemoglobin level is below $7.0 \mathrm{~g} / \mathrm{dl}$). However, poor dietary intake of iron is only one of numerous causes of anaemia; malaria infection can also result in a person becoming anaemic. A haemoglobin concentration of less than $8.0 \mathrm{~g} / \mathrm{dl}$ is considered low and may be an indication that an individual has malaria (Korenromp et al., 2004).

Overall, only 3 percent of children age 6-59 months have a haemoglobin level less than $8.0 \mathrm{~g} / \mathrm{dl}$ (Table 13.11). Children age 9-17 months (7-8 percent) and those residing in Erongo (7 percent), //Kavango (6 percent), and Kunene (5 percent) are most likely to have low haemoglobin levels.

Table 13.11 Haemoglobin $<8.0 \mathrm{~g} / \mathrm{dl}$ in children
Percentage of children age 6-59 months with haemoglobin lower than $8.0 \mathrm{~g} / \mathrm{dl}$, by background characteristics, Namibia 2013

Background characteristic	Haemoglobin $<8.0 \mathrm{~g} / \mathrm{dl}$	Number of children
Age (in months)		
6-8	1.6	135
9-11	8.3	126
12-17	6.6	252
18-23	2.1	244
24-35	3.2	559
36-47	0.7	491
48-59	0.9	490
Sex		
Male	2.9	1,136
Female	2.3	1,161
Mother's interview status		
Interviewed	2.9	1,491
Not interviewed but in household	2.8	104
Not interviewed and not in the household ${ }^{1}$	2.1	702
Residence		
Urban	2.7	840
Rural	2.6	1,458
Region		
Zambezi	4.1	149
Erongo	6.8	116
Hardap	2.5	87
//Karas	3.4	71
Kavango	6.4	247
Khomas	1.7	269
Kunene	5.2	89
Ohangwena	0.7	360
Omaheke	0.5	79
Omusati	1.9	295
Oshana	0.0	165
Oshikoto	2.2	212
Otjozondjupa	2.0	159
Mother's education ${ }^{2}$		
No education	2.9	112
Primary	4.1	382
Secondary	2.3	1,014
More than secondary	4.0	86
Wealth quintile		
Lowest	2.6	588
Second	2.5	502
Middle	2.9	484
Fourth	3.2	464
Highest	1.4	259
Total	2.6	2,297

Note: Table is based on children who stayed in the household the night before the interview. Prevalence of anaemia is based on haemoglobin levels and is adjusted for altitude using CDC formulas (CDC, 1998) Haemoglobin is measured in grams per decilitre (g / dl). Total includes 2 cases for which information on mother's education is missing
${ }^{1}$ Includes children whose mothers are deceased
${ }^{2}$ For women who are not interviewed, information is taken from the Household Questionnaire. Excludes children whose mothers are not listed in the Household Questionnaire.

HIVIAIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR

Key Findings

- Knowledge of HIVIAIDS in Namibia is universal; almost all women and men age 15-64 have heard of AIDS.
- Overall, women are more likely than men to have comprehensive knowledge about HIVIAIDS (63 percent of women versus 49 percent of men age 15-49 and 43 percent of women versus 34 percent of men age 50-64).
- Women are more aware than men that HIV can be transmitted through breastfeeding and that this risk can be reduced by taking special drugs.
- Women age 15-49 are less likely to have multiple sexual partners than their male counterparts (2 percent versus 10 percent).
- Overall, 26 percent of men age 15-49 and 32 percent of those age 50-64 have been circumcised.
- Forty-two percent of women and 57 percent of men age 18-24 reported having sexual intercourse before age 18.
- Among never-married young women and men age 15-24, 52 percent each reported that they had sexual intercourse in the past 12 months. In this group of respondents, women were less likely than men to reported having used a condom during their last sexual encounter (68 percent versus 83 percent).

Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV), which weakens the immune system and makes the body susceptible to and unable to recover from other opportunistic diseases. The predominant mode of HIV transmission is through heterosexual intercourse, followed by perinatal transmission, in which the mother passes the virus to her child during pregnancy, delivery, or breastfeeding. Other modes of transmission include infected blood and unsafe injections.

The Namibian response to HIV/AIDS has been aggressive and persistent. Namibia is in the fourth year of its five-year strategy to address HIV/AIDS within the country. This strategy addresses a number of factors important with respect to the future course of Namibia's HIV epidemic (Ministry of Health and Social Services [MoHSS], 2010c), including efforts to increase levels of HIV/AIDS-related knowledge among the general population, decrease social stigmatisation of people living with HIV/AIDS, and modify risk behaviours. Other goals are to improve access to high-quality services for treating sexually transmitted infections (STIs), increase the provision and uptake of HIV counselling and testing, and enhance access to care and antiretroviral therapy (ART), including prevention and treatment of opportunistic infections.

Results from the 2010-11 "Estimates and Projections of the Impact of HIV/AIDS in Namibia" report highlight a mature epidemic within the population that is indicative of the need for a continued and strengthened prevention-focused, decentralised multisectoral response that can effectively contain the spread of HIV and reduce the impact of AIDS (MoHSS, 2012a). To address the problems presented by the HIV/AIDS epidemic, substantial changes have taken place in Namibia over the past few years. These changes include increased funding; increased involvement among organisations in the public, private, and civil society sectors; expanded geographic coverage for services and programmes; and increased coverage of the needs and demands of beneficiaries. Furthermore, the system through which HIV-related
programmes in Namibia are monitored and evaluated has been strengthened and now provides critical information on programme quality and assists in identifying existing programmatic gaps.

The principal objective of this chapter is to examine levels of HIV/AIDS-related knowledge and perceptions and the prevalence of risk behaviours related to HIV infection at the national level and in geographic and socioeconomic subgroups of the population. In this way, prevention programmes can target those individuals most in need of information and most at risk for HIV infection. In this chapter, indicators for HIV/AIDS knowledge, attitudes, and related behaviours are presented for the adult population (age 1549 and age 50-64). The chapter also highlights HIV/AIDS knowledge and patterns of sexual behaviour among young people, because young adults are more likely than their older counterparts to be in the process of establishing patterns of sexual behaviours and hence are the primary target of many prevention strategies.

14.1 HIVIAIDS Knowledge, Transmission, and Prevention Methods

The 2013 NDHS included a series of questions that addressed women's and men's awareness of HIV/AIDS. These questions sought information on respondents' overall knowledge, their knowledge of ways to avoid the disease, and their knowledge regarding use of condoms to prevent sexually transmitted infections.

14.1.1 Knowledge of AIDS

According to the findings presented in Table 14.1, knowledge of AIDS is almost universal among NDHS respondents age 15-64 (98 percent or more of both women and men have heard of AIDS).

Percentage of women and men age 15-49 who have heard of AIDS, by background characteristics, Namibia 2013				
Background characteristic	Women		Men	
	Has heard of AIDS	Number of respondents	Has heard of AIDS	Number of respondents
Age				
15-24	99.4	3,691	99.0	1,730
15-19	99.3	1,906	98.4	922
20-24	99.5	1,786	99.7	808
25-29	99.8	1,489	98.7	658
30-39	99.3	2,370	99.4	968
40-49	99.5	1,625	99.3	665
Marital status				
Never married	99.6	5,458	99.0	2,745
Ever had sex	99.8	4,155	99.2	2,122
Never had sex	99.0	1,304	98.3	623
Married/living together	99.3	3,121	99.7	1,160
Divorced/separated/ widowed	99.6	597	96.4	116
Residence				
Urban	99.7	5,190	99.2	2,282
Rural	99.2	3,986	99.0	1,739
Region				
Zambezi	99.1	457	100.0	218
Erongo	99.8	771	99.0	372
Hardap	98.6	304	99.2	152
//Karas	99.7	343	96.9	151
Kavango	99.4	835	99.1	316
Khomas	99.7	2,202	99.2	1,023
Kunene	98.4	258	97.9	104
Ohangwena	99.7	894	99.6	328
Omaheke	98.8	225	99.0	103
Omusati	99.7	884	99.3	342
Oshana	99.7	755	100.0	335
Oshikoto	99.6	707	99.6	335
Otjozondjupa	98.5	540	96.9	241
Education				
No education	95.9	419	97.8	310
Primary	99.2	1,798	98.7	944
Secondary	99.9	6,029	99.4	2,400
More than secondary	99.3	930	99.2	368
Wealth quintile				
Lowest	99.2	1,429	98.8	594
Second	99.0	1,625	98.7	769
Middle	99.6	1,795	99.1	886
Fourth	99.8	2,116	99.4	917
Highest	99.6	2,211	99.4	855
Total 15-49	99.5	9,176	99.1	4,021
50-64	98.7	797	97.6	460

14.1.2 Knowledge of HIV Prevention

In Namibia, HIV is transmitted among adults primarily through heterosexual contact between an infected partner and a non-infected partner (MoHSS, 2012b). Consequently, HIV prevention programmes focus their messages and efforts on promoting the following specific behaviours: use of condoms, voluntary male circumcision, limiting the number of sexual partners or staying faithful to one uninfected sexual partner, preventing mother-to-child transmission, and, for young people, delaying their first sexual intercourse (sexual debut).

Table 14.2 shows the percentage of women and men age $15-49$ who, in response to prompted questions, say that people can reduce their risk of getting HIV by using condoms every time they have sexual intercourse and having one sexual partner who is not infected and has no other partners. Eightyeight percent of women and 90 percent of men age 15-49 know that consistent use of condoms is a means of preventing the spread of HIV; these percentages are similar to those reported in the 2006-07 NDHS (84 percent of women and 87 percent of men). The proportion of respondents who know that consistent condom use is a means of preventing the spread of HIV is slightly lower among those age 50-64 (81
percent of women and 83 percent of men). Ninety-two percent of women and men age 15-49 know that limiting sexual intercourse to one faithful and uninfected partner can reduce the chances of contracting HIV; the percentages are slightly lower among women and men age 50-64 (87 percent and 90 percent, respectively).

Table 14.2 Knowledge of HIV prevention methods
Percentage of women and men age 15-49 who, in response to prompted questions, say that people can reduce the risk of getting the AIDS virus by using condoms every time they have sexual intercourse and by having one sex partner who is not infected and has no other partners, by background characteristics, Namibia 2013

Background characteristic	Women				Men			
	Percentage who say HIV can be prevented by:				Percentage who say HIV can be prevented by:			Number of men
	Using condoms ${ }^{1}$	Limiting sexual intercourse to one uninfected partner ${ }^{2}$	Using condoms and limiting sexual intercourse to one uninfected partner ${ }^{1,2}$	Number of women	Using condoms ${ }^{1}$	Limiting sexual intercourse to one uninfected partner ${ }^{2}$	Using condoms and limiting sexual intercourse to one uninfected partner ${ }^{1,2}$	
Age								
15-24	85.8	90.3	81.3	3,691	89.0	90.0	83.0	1,730
15-19	82.1	87.5	76.7	1,906	87.5	87.9	80.6	922
20-24	89.6	93.3	86.3	1,786	90.7	92.3	85.6	808
25-29	88.6	93.4	85.2	1,489	91.9	93.6	88.5	658
30-39	89.6	92.7	86.0	2,370	91.7	94.5	88.3	968
40-49	89.2	93.7	86.6	1,625	89.3	93.3	86.1	665
Marital status								
Never married	87.2	91.5	83.1	5,458	90.3	91.0	84.9	2,745
Ever had sex	89.4	93.1	85.7	4,155	91.7	92.8	87.0	2,122
Never had sex	80.1	86.3	74.8	1,304	85.7	85.0	77.7	623
Married/living together	88.4	92.4	85.0	3,121	90.4	95.3	88.1	1,160
Divorced/separated/ widowed	90.6	94.7	88.4	597	84.5	88.7	79.3	116
Residence								
Urban	90.8	93.4	86.7	5,190	91.3	93.6	87.8	2,282
Rural	84.0	90.3	80.7	3,986	88.7	90.3	82.9	1,739
Region								
Zambezi	87.9	89.6	81.8	457	85.6	95.4	83.1	218
Erongo	93.1	94.9	89.8	771	90.2	94.3	86.6	372
Hardap	86.5	91.5	83.0	304	89.4	86.3	78.9	152
//Karas	92.0	94.9	88.8	343	76.2	82.6	71.3	151
Kavango	87.5	89.9	83.7	835	88.0	88.5	81.8	316
Khomas	90.8	92.4	85.7	2,202	94.0	94.3	91.1	1,023
Kunene	88.6	93.5	86.2	258	90.8	92.5	88.3	104
Ohangwena	89.0	94.1	86.2	894	95.3	94.4	91.1	328
Omaheke	84.5	90.1	80.7	225	91.5	94.2	88.1	103
Omusati	76.6	86.5	74.3	884	89.5	92.6	84.6	342
Oshana	87.0	92.8	83.8	755	89.1	92.2	83.8	335
Oshikoto	84.6	93.8	81.4	707	85.7	87.6	76.0	335
Otjozondjupa	89.6	92.7	86.7	540	90.8	93.3	89.8	241
Education								
No education	76.1	78.3	68.8	419	85.3	89.2	80.4	310
Primary	82.8	87.4	77.7	1,798	86.2	88.5	80.7	944
Secondary	89.2	93.8	85.9	6,029	91.9	93.3	87.4	2,400
More than secondary	94.1	95.6	91.6	930	92.8	97.1	91.4	368
Wealth quintile								
Lowest	81.3	87.8	77.9	1,429	87.5	89.9	82.1	594
Second	84.2	90.1	79.5	1,625	90.5	90.3	85.1	769
Middle	87.2	91.6	83.4	1,795	89.4	92.9	85.5	886
Fourth	91.5	94.0	88.1	2,116	89.5	92.3	84.8	917
Highest	91.7	94.6	88.2	2,211	93.2	94.6	89.7	855
Total 15-49	87.8	92.0	84.1	9,176	90.2	92.2	85.7	4,021
50-64	81.3	86.7	76.0	797	83.1	90.2	79.0	460

${ }^{1}$ Using condoms every time they have sexual intercourse
${ }^{2}$ Partner who has no other partners

Knowledge of HIV prevention methods is lowest among women and men age 15-19 and among respondents who have never had sexual intercourse. In addition, knowledge is lower among respondents in rural than in urban areas. Women in Omusati and men in //Karas are least likely to know about HIV prevention methods.

The proportion of women and men with knowledge of HIV prevention methods increases with increasing education. For example, knowledge of both prevention methods rises from 69 percent among women with no education to 92 percent among those with more than a secondary education. Similarly, knowledge of HIV prevention methods increases with increasing wealth. These findings indicate that HIV prevention education could be strengthened further in certain groups of individuals, particularly those who are young, those who have little or no education, and those living in the poorest households.

14.1.3 Comprehensive Knowledge about HIVIAIDS

In addition to knowing effective ways to avoid contracting HIV, it is useful to be able to identify incorrect beliefs about HIV transmission. Common misconceptions about HIV/AIDS include the following: a healthy-looking person cannot have HIV, HIV/AIDS can be transmitted by mosquito bites, HIV/AIDS can be transmitted by supernatural means, and a person can become infected by sharing food with a person who has HIV/AIDS. Respondents were asked about these misconceptions, and the findings are presented in Tables 14.3 .1 and 14.3.2 for women and men, respectively.

Eighty-nine percent of women and 90 percent of men age 15-49 agreed that a healthy-looking person can have HIV. In terms of different misconceptions about HIV transmission, 82 percent of women and 77 percent of men said that HIV cannot be transmitted by mosquito bites; 90 percent of women and 75 men knew that HIV cannot be transmitted by supernatural means; and 91 percent of women and 88 percent of men said that a person cannot become infected by sharing food with a person who has AIDS.

The questions asked in the 2013 NDHS allow an assessment of comprehensive knowledge of HIV/AIDS among respondents. Comprehensive knowledge is defined as knowing that consistent use of condoms during sexual intercourse and having just one uninfected faithful partner can reduce the chance of getting the AIDS virus, knowing that a healthy-looking person can have HIV, and rejecting the two most common local misconceptions about HIV transmission (that the AIDS virus can be transmitted by mosquito bites and that a person can become infected by sharing food with a person who has the AIDS virus). Overall, women are more likely than men to have comprehensive knowledge about HIV/AIDS (63 percent of women versus 49 percent of men age 15-49 and 43 percent of women versus 34 percent of men age 50-64). Comprehensive knowledge about HV/AIDS has decreased somewhat since the 2006-07 NDHS, which reported that 67 percent of women and 63 percent of men age 15-49 had comprehensive knowledge.

The youngest women (age 15-19), those who have never had sex, those who are currently married, and those living in rural areas are less likely than other women to have comprehensive knowledge of HIV/AIDS. Among men, those age 40-49 and those who are widowed, separated, or divorced are least likely to have comprehensive knowledge of HIV/AIDS. By region, comprehensive knowledge is highest among women in Erongo (75 percent) and men in Oshana (63 percent) and lowest among women in Kavango and Omaheke (46 percent and 49 percent, respectively) and men in Hardap (11 percent). Comprehensive knowledge of HIV/AIDS increases steadily with increasing education. Among women, comprehensive knowledge also shows a notable increase with increasing wealth, from 49 percent among those in the lowest quintile to 73 percent among those in the highest quintile.

Table 14.3.1 Comprehensive knowledge about AIDS: Women
Percentage of women age $15-49$ who say that a healthy-looking person can have the AIDS virus and who, in response to prompted questions correctly reject local misconceptions about transmission or prevention of the AIDS virus, and the percentage with comprehensive knowledge about AIDS, by background characteristics, Namibia 2013

Background characteristic	Percentage of respondents who say that:				Percentage who say that a healthy-looking person can have the AIDS virus and who reject the two most common local misconceptions ${ }^{1}$	Percentage with comprehensive knowledge about AlDS 2	Number of women			
	A healthy-looking person can have the AIDS virus	The AIDS virus cannot be transmitted by mosquito bites	The AIDS virus cannot be transmitted by supernatural means	A person cannot become infected by sharing food with a person who has the AIDS virus						
Age										
15-24	86.6	84.0	89.5	91.8	71.6	61.6	3,691			
15-19	83.0	82.4	87.4	90.8	68.0	55.9	1,906			
20-24	90.5	85.8	91.7	92.8	75.5	67.8	1,786			
25-29	90.6	82.1	89.7	92.3	73.3	65.0	1,489			
30-39	91.2	80.2	89.9	90.4	71.4	63.5	2,370			
40-49	90.6	80.7	89.8	88.9	71.5	63.7	1,625			
Marital status										
Never married	89.8	84.8	90.7	92.5	74.9	64.8	5,458			
Ever had sex	91.6	84.4	91.3	92.7	75.7	66.6	4,155			
Never had sex	84.0	85.9	88.7	91.7	72.3	58.9	1,304			
Married/living together	88.2	78.4	88.6	88.4	67.3	60.3	3,121			
Divorced/separated/ widowed	88.2	77.7	86.6	90.5	67.2	61.6	597			
Residence										
Urban	91.7	84.1	89.9	93.1	75.4	67.4	5,190			
Rural	85.9	79.6	89.4	88.2	67.1	57.3	3,986			
Region										
Zambezi	84.0	83.0	90.5	91.5	68.7	60.1	457			
Erongo	93.0	89.4	94.3	95.4	81.4	74.9	771			
Hardap	87.4	78.9	74.8	82.9	63.8	57.0	304			
//Karas	92.2	82.3	87.7	93.8	74.2	68.5	343			
Kavango	77.6	67.3	86.5	89.2	51.5	45.7	835			
Khomas	92.5	83.9	87.8	92.4	75.4	66.7	2,202			
Kunene	89.6	72.2	82.1	85.1	66.9	62.3	258			
Ohangwena	91.0	79.7	92.4	87.6	71.2	63.3	894			
Omaheke	82.7	70.1	84.0	81.4	55.3	48.5	225			
Omusati	88.2	88.4	90.9	91.2	76.7	60.8	884			
Oshana	90.5	87.6	96.2	95.8	78.1	67.1	755			
Oshikoto	90.8	84.0	94.6	92.5	73.8	61.6	707			
Otjozondjupa	88.1	82.0	88.7	87.3	71.1	66.0	540			
Education										
Primary	80.5	67.5	84.8	85.1	53.7	45.1	1,798			
Secondary	91.6	87.2	91.7	94.0	77.4	67.8	6,029			
More than secondary	96.0	91.2	95.5	94.4	85.1	79.7	930			
Wealth quintile										
Lowest	83.7	72.9	86.8	84.2	59.3	49.2	1,429			
Second	84.1	74.2	88.4	88.3	62.1	52.5	1,625			
Middle	89.7	83.2	89.7	91.9	72.5	62.6	1,795			
Fourth	91.7	86.9	91.2	94.2	78.2	70.9	2,116			
Highest	93.4	88.7	91.1	93.6	80.4	72.5	2,211			
Total 15-49	89.1	82.2	89.7	91.0	71.8	63.0	9,176			
50-64	84.0	66.2	83.0	79.0	52.5	43.1	797			

${ }^{1}$ Two most common local misconceptions: the AIDS virus can be transmitted by mosquito bites and a person can become infected by sharing food with a person who has the AIDS virus.
${ }^{2}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one uninfected faithful partner can reduce the chance of getting the AIDS virus, knowing that a healthy-looking person can have the AIDS virus, and rejecting the 2 most common local misconceptions about AIDS transmission or prevention.

Table 14.3.2 Comprehensive knowledge about AIDS: Men
Percentage of men age 15-49 who say that a healthy-looking person can have the AIDS virus and who, in response to prompted questions, correctly reject local misconceptions about transmission or prevention of the AIDS virus, and the percentage with comprehensive knowledge about AIDS, by background characteristics, Namibia 2013

Background characteristic	Percentage of respondents who say that:				Percentage who say that a healthy-looking person can have the AIDS virus and who reject the two most common local misconceptions ${ }^{1}$	Percentage with comprehensive knowledge about AIDS ${ }^{2}$	Number of men
	A healthy-looking person can have the AIDS virus	The AIDS virus cannot be transmitted by mosquito bites	The AIDS virus cannot be transmitted by supernatural means	A person cannot become infected by sharing food with a person who has the AIDS virus			
Age							
15-24	88.8	79.8	78.4	89.4	58.5	51.1	1,730
15-19	87.4	81.2	77.7	90.0	59.8	51.4	922
20-24	90.3	78.1	79.1	88.7	57.0	50.6	808
25-29	91.9	77.0	75.9	86.5	58.2	53.3	658
30-39	90.3	76.1	73.6	87.4	51.8	47.8	968
40-49	90.6	72.6	66.8	83.9	46.5	41.4	665
Marital status							
Never married	89.7	78.3	77.5	88.1	57.0	50.8	2,745
Ever had sex	90.4	78.4	77.9	88.4	57.3	51.6	2,122
Never had sex	87.5	77.6	76.0	87.1	56.0	48.0	623
Married/living together	90.9	75.9	69.6	86.9	50.2	45.4	1,160
Divorced/separated/ widowed	85.5	67.8	66.3	80.1	49.1	42.9	116
Residence							
Urban	90.8	82.4	70.5	90.1	54.0	49.3	2,282
Rural	88.8	70.5	80.7	84.2	56.0	48.7	1,739
Region							
Zambezi	90.7	81.1	83.5	91.0	66.1	55.6	218
Erongo	89.0	88.8	46.8	86.5	36.1	31.0	372
Hardap	86.8	71.0	25.2	76.7	16.8	11.4	152
//Karas	83.9	60.7	68.0	81.4	41.1	34.2	151
Kavango	79.3	84.0	92.2	93.0	66.2	57.9	316
Khomas	90.8	83.4	78.3	93.5	61.0	57.7	1,023
Kunene	90.5	75.9	50.4	81.5	35.3	32.6	104
Ohangwena	96.3	61.1	88.7	82.6	55.2	51.7	328
Omaheke	88.9	82.7	59.9	87.7	50.8	49.8	103
Omusati	94.0	75.0	89.8	85.1	67.1	59.0	342
Oshana	95.4	76.9	93.3	88.9	71.2	62.9	335
Oshikoto	87.4	63.3	82.3	80.9	50.5	40.3	335
Otjozondjupa	88.5	79.2	50.3	84.4	41.2	37.5	241
Education							
No education	83.1	50.7	68.3	68.6	30.9	28.3	310
Primary	88.1	60.8	74.6	79.3	45.7	39.1	944
Secondary	90.8	85.0	74.5	92.2	58.6	52.8	2,400
More than secondary	95.1	91.3	83.9	94.2	73.6	67.2	368
Wealth quintile							
Lowest	85.6	66.5	81.6	82.0	51.9	46.2	594
Second	89.0	70.6	80.6	83.4	56.1	50.6	769
Middle	90.8	75.2	77.9	87.7	57.5	51.1	886
Fourth	90.5	82.9	68.7	90.4	53.8	46.8	917
Highest	92.4	86.9	68.6	92.0	54.1	49.9	855
Total 15-49	89.9	77.3	74.9	87.5	54.8	49.0	4,021
50-64	88.3	64.0	61.4	71.9	39.9	33.9	460

${ }^{1}$ Two most common local misconceptions: the AIDS virus can be transmitted by mosquito bites and the AIDS virus can be transmitted by supernatural means.
${ }^{2}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one uninfected faithfu partner can reduce the chance of getting the AIDS virus, knowing that a healthy-looking person can have the AIDS virus, and rejecting the two most common local misconceptions about AIDS transmission or prevention.

14.2 Knowledge about Mother-to-Child Transmission

In Namibia, a programme aimed at prevention of mother-to-child transmission of HIV (PMTCT) has been in place since 2002. The programme, supported by the Global Fund and other partners, has been scaled up rapidly and is currently available in more than 90 percent of health facilities in the country (MoHSS, 2012c). In accordance with the increase in the availability of PMTCT services, increasing the level of general knowledge about HIV transmission and reducing the risk of transmission using antiretroviral drugs are critical in reducing mother-to-child transmission (MTCT) of HIV. To assess PMTCT knowledge, respondents were asked whether HIV can be transmitted from a mother to a child through breastfeeding and whether a mother with HIV can reduce the risk of transmission to her baby by taking certain drugs during pregnancy.

Table 14.4 shows that, among respondents age $15-49$, women are more aware than men that HIV can be transmitted through breastfeeding (86 percent versus 69 percent) and that the risk of MTCT can be reduced by taking special drugs (87 percent versus 67 percent). Overall, 81 percent of women and 56 percent of men age 15-49 are aware both that HIV can be transmitted through breastfeeding and that this risk can be reduced by taking special drugs; the corresponding percentages among female and male respondents age 50-64 are 70 percent and 52 percent, respectively. There has been an increase in knowledge about MTCT among women and a decrease among men in Namibia over the last six years. According to the 2006-07 NDHS, 76 percent of women and 60 percent of men age 15-49 were aware that HIV can be transmitted through breastfeeding and that this risk can be reduced by taking special drugs.

Knowledge of MTCT is highest among women and men age 25-29 and those who are married or living with a partner. There is little difference in level of MTCT knowledge by women's current pregnancy status. MTCT knowledge is higher among both women and men who live in urban areas than among those who live in rural areas. Knowledge varies widely by region; it is lowest among women in Omaheke (71 percent) and men in Hardap (34 percent) and highest among women in Kavango (86 percent) and men in Khomas (67 percent). Among both women and men, awareness that HIV can be transmitted through breastfeeding and that this risk can be reduced by taking special drugs during pregnancy increases with increasing education and, in general, increasing wealth.

Table 14.4 Knowledge of prevention of mother-to-child transmission of HIV
Percentage of women and men age 15-49 who know that HIV can be transmitted from mother to child by breastfeeding and that the risk of mother-to-child transmission (MTCT) of HIV can be reduced by the mother taking special drugs during pregnancy, by background characteristics, Namibia 2013

Background characteristic	Women				Men			
	Percentage who know that:				Percentage who know that:			Number of men
	HIV can be transmitted by breastfeeding	Risk of MTCT can be reduced by mother taking special drugs during pregnancy	HIV can be transmitted by breastfeeding and risk of MTCT can be reduced by mother taking special drugs during pregnancy	Number of women	HIV can be transmitted by breastfeeding	Risk of MTCT can be reduced by mother taking special drugs during pregnancy	HIV can be transmitted by breastfeeding and risk of MTCT can be reduced by mother taking special drugs during pregnancy	
Age								
15-24	85.5	83.3	77.7	3,691	70.5	61.9	52.1	1,730
15-19	82.7	77.0	71.7	1,906	71.7	56.1	48.5	922
20-24	88.6	89.9	84.2	1,786	69.2	68.5	56.2	808
25-29	88.4	93.0	85.4	1,489	71.0	71.4	60.1	658
30-39	87.7	90.2	83.6	2,370	67.8	69.5	58.3	968
40-49	83.3	87.1	78.1	1,625	66.7	70.7	59.1	665
Marital status								
Never married	86.0	86.5	79.8	5,458	69.7	64.6	54.4	2,745
Ever had sex	88.3	90.1	83.4	4,155	70.5	68.1	57.0	2,122
Never had sex	78.5	74.9	68.3	1,304	66.9	52.9	45.6	623
Married/living together	86.5	88.5	81.7	3,121	68.9	71.2	59.9	1,160
Divorced/separated/ widowed	85.9	88.9	81.5	597	64.6	71.8	56.0	116
Currently pregnant								
Pregnant	89.2	89.8	84.1	600	na	na	na	na
Not pregnant or not sure	85.9	87.1	80.3	8,576	na	na	na	na
Residence								
Urban	87.6	88.4	82.1	5,190	70.7	71.2	60.2	2,282
Rural	84.3	85.8	78.6	3,986	67.5	60.9	50.6	1,739
Region								
Zambezi	88.9	87.9	82.5	457	84.8	61.8	55.0	218
Erongo	85.4	86.4	80.5	771	51.0	51.5	37.5	372
Hardap	80.1	76.2	71.8	304	49.7	35.9	34.3	152
//Karas	85.1	86.0	76.7	343	64.0	64.7	50.6	151
Kavango	92.1	89.6	86.1	835	53.1	53.3	43.5	316
Khomas	89.7	89.3	83.6	2,202	77.1	78.9	67.3	1,023
Kunene	83.2	79.3	74.5	258	51.6	42.7	40.4	104
Ohangwena	82.4	85.7	76.3	894	78.8	77.5	64.9	328
Omaheke	79.5	77.2	71.0	225	55.6	53.2	46.6	103
Omusati	84.6	90.4	82.9	884	75.5	68.7	56.2	342
Oshana	83.1	87.1	79.2	755	69.2	73.0	57.8	335
Oshikoto	84.5	89.8	78.8	707	72.0	69.5	59.1	335
Otjozondjupa	84.6	86.3	79.9	540	76.1	67.9	63.2	241
Education								
No education	69.9	67.2	59.4	419	55.4	51.1	44.3	310
Primary	81.6	81.4	74.3	1,798	66.9	62.3	52.1	944
Secondary	88.2	89.7	83.2	6,029	71.0	67.7	57.0	2,400
More than secondary	88.9	92.0	85.0	930	76.5	85.2	69.5	368
Wealth quintile								
Lowest	84.1	85.1	77.8	1,429	65.9	59.4	49.6	594
Second	83.1	84.2	77.1	1,625	66.2	62.2	51.1	769
Middle	86.2	88.4	81.8	1,795	68.8	66.8	55.7	886
Fourth	88.4	88.6	82.7	2,116	73.2	70.9	61.8	917
Highest	87.5	88.9	81.8	2,211	70.8	71.4	59.3	855
Total 15-49	86.1	87.3	80.6	9,176	69.3	66.7	56.1	4,021
50-64	75.1	78.7	69.5	797	62.4	65.4	52.0	460

na $=$ Not applicable

14.3 Attitudes toward People Living with HIVIAIDS

Widespread stigma and discrimination against those living with HIV/AIDS can adversely affect both people's willingness to be tested for HIV and their adherence to antiretroviral therapy (ART). Indeed, HIV/AIDS-related stigma and discrimination undermine HIV prevention efforts by making people afraid to seek out information about how to reduce their risk of exposure to HIV and adopt safer behaviours, given the possibility that such inquiries will raise suspicion about their HIV status. With support from sponsor organisations, Namibia has campaigned against stigma and discrimination against people living with HIV (de La Torre et al., 2009). Reductions in stigma and discrimination are an important indicator of the success of programmes targeting HIV/AIDS prevention and control.

In the 2013 NDHS, respondents who had heard of AIDS were asked a number of questions to assess the level of stigma associated with HIV/AIDS. Respondents were asked about their willingness or unwillingness to buy vegetables from an infected shopkeeper or vendor, to let others know the HIV status of family members, and to take care of a member of their family with AIDS in their own household. They were also asked whether an HIV-positive female teacher who is not sick should be allowed to continue teaching. Tables 14.5.1 and 14.5.2 present the results for women and men, respectively.

Ninety-six percent of women and 90 percent of men age 15-49 said that they would be willing to care for a relative with AIDS in their home, and 95 percent of women and 91 percent of men agreed that a female teacher infected with HIV should be allowed to continue teaching. A lower percentage (85 percent of both women and men) indicated that they would buy vegetables from a shopkeeper with HIV. About one-third of women (35 percent) and four in ten men (39 percent) said that they would not want to keep secret that a family member was infected with HIV. Women age 50-64 have greater accepting attitudes toward those living with HIV/AIDS than their male counterparts in the same age group.

Overall, only 28 percent of women and 26 percent of men age 15-49 expressed accepting attitudes with regard to all four indicators (i.e., they would care for a family member with AIDS in their own home, they would buy fresh vegetables from a shopkeeper with HIV, they would allow an HIV-positive female teacher to continue teaching, and they would not want to keep the HIV-positive status of a family member a secret). Over the last six years, there has been a decrease in accepting attitudes toward people living with HIV/AIDS. In the 2006-07 NDHS, 40 percent of women and 36 percent of men age 15-49 expressed accepting attitudes on all four indicators. This lower level of acceptance is of concern because stigma prevents or delays people from getting tested for HIV, and, among those living with HIV, stigma prevents them from seeking care and treatment services.

There are associations between accepting attitudes and some of the background characteristics of survey respondents. There are marked differences by region in the proportions of women and men expressing accepting attitudes on all four indicators. Among women, the proportion ranges from 6 percent in Zambezi to 44 percent in Omusati; among men, it ranges from 12 percent in Otjozondjupa to 41 percent in Oshana. The proportion of women who express accepting attitudes on all four indicators increases with increasing education and wealth. Among men, the proportion generally increases with increasing education and decreases somewhat with increasing wealth.

Table 14.5.1 Accepting attitudes toward those living with HIV/AIDS: Women
Among women age 15-49 who have heard of AIDS, percentage expressing specific accepting attitudes toward people with HIV/AIDS, by background characteristics, Namibia 2013

Background characteristic	Percentage of women who:				Percentage expressing accepting attitudes on all four indicators	Number of women who have heard of AIDS
	Are willing to care for a family member with AIDS in the respondent's home	Would buy fresh vegetables from shopkeeper who has the AIDS virus	Say that a female teacher who has the AIDS virus but is not sick should be allowed to continue teaching	Would not want to keep secret that a family member got infected with the AIDS virus		
Age						
15-24	96.0	84.4	93.8	33.3	26.5	3,670
15-19	95.4	82.7	92.9	31.4	23.9	1,893
20-24	96.7	86.1	94.8	35.3	29.2	1,777
25-29	95.7	86.8	95.6	33.0	25.6	1,486
30-39	96.8	86.6	95.0	36.4	30.5	2,355
40-49	97.1	84.6	94.2	39.2	30.8	1,618
Marital status						
Never married	96.6	86.3	95.3	35.6	29.2	5,435
Ever had sex	96.8	87.5	95.8	35.6	29.6	4,145
Never had sex	96.1	82.1	93.5	35.6	27.9	1,291
Married/living together	95.6	84.1	93.3	35.1	27.2	3,098
Divorced/separated/ widowed	97.9	84.2	92.9	30.8	23.4	595
Residence						
Urban	96.2	86.7	95.2	35.2	28.3	5,174
Rural	96.5	83.6	93.5	34.9	27.9	3,954
Region						
Zambezi	98.2	89.7	95.4	7.9	5.9	453
Erongo	96.5	86.3	95.4	39.8	30.4	770
Hardap	93.6	78.6	88.4	45.5	32.6	300
//Karas	96.5	84.0	95.6	32.9	25.4	342
Kavango	95.8	84.3	92.3	27.4	19.2	831
Khomas	95.1	84.8	96.2	32.9	26.7	2,195
Kunene	91.4	76.5	79.8	37.8	30.0	254
Ohangwena	99.1	86.3	96.5	37.9	31.2	892
Omaheke	92.4	78.0	88.9	27.9	19.4	222
Omusati	95.6	88.6	97.2	49.4	43.5	881
Oshana	98.9	92.6	97.5	39.5	35.8	753
Oshikoto	98.1	83.2	94.8	37.9	29.7	704
Otjozondjupa	96.6	82.2	87.6	31.2	22.1	532
Education						
No education	90.4	66.8	76.6	24.9	12.2	401
Primary	95.6	79.0	88.5	30.5	21.1	1,783
Secondary	97.1	87.3	96.7	36.7	30.5	6,020
More than secondary	95.5	92.9	99.4	38.0	33.7	923
Wealth quintile						
Lowest	95.6	81.7	92.1	30.8	23.0	1,418
Second	96.9	83.0	92.8	34.0	26.1	1,610
Middle	97.4	86.4	94.7	34.8	29.2	1,787
Fourth	96.9	85.9	95.0	36.1	29.2	2,111
Highest	95.1	88.0	96.5	37.9	31.0	2,202
Total 15-49	96.4	85.4	94.5	35.1	28.1	9,128
50-64	96.3	78.1	89.2	40.1	29.1	787

Table 14.5.2 Accepting attitudes toward those living with HIV/AIDS: Men
Among men age 15-49 who have heard of HIVIAIDS, percentage expressing specific accepting attitudes toward people with HIV/AIDS, by background characteristics, Namibia 2013

Background characteristic	Percentage of men who:				Percentage expressing accepting attitudes on all four indicators	Number of men who have heard of AIDS
	Are willing to care for a family member with AIDS in the respondent's home	Would buy fresh vegetables from shopkeeper who has the AIDS virus	Say that a female teacher who has the AIDS virus but is not sick should be allowed to continue teaching	Would not want to keep secret that a family member got infected with the AIDS virus		
Age						
15-24	92.5	85.1	88.9	34.6	23.3	1,713
15-19	92.1	83.8	86.9	34.1	22.4	908
20-24	93.0	86.5	91.1	35.2	24.3	805
25-29	90.3	87.9	93.4	40.4	29.3	650
30-39	88.5	84.5	92.7	44.4	28.2	962
40-49	87.7	82.0	89.0	42.9	26.0	660
Marital status						
Never married	91.9	85.2	90.4	38.2	26.3	2,717
Ever had sex	92.4	86.9	92.1	39.0	28.0	2,105
Never had sex	90.1	79.5	84.3	35.2	20.3	612
Married/living together	87.1	85.3	91.9	41.5	25.3	1,157
Divorced/separated/ widowed	86.7	72.8	80.8	43.1	23.0	112
Residence						
Urban	88.7	87.2	93.9	37.4	24.3	2,263
Rural	92.6	81.8	86.1	41.7	28.0	1,722
Region						
Zambezi	98.5	78.9	85.9	15.1	12.9	218
Erongo	75.1	85.7	95.2	47.3	20.8	368
Hardap	94.5	82.8	85.4	16.5	14.0	151
//Karas	83.8	71.2	81.2	48.2	31.4	147
Kavango	68.9	91.3	92.2	71.5	35.4	313
Khomas	91.2	89.0	93.7	32.7	21.8	1,015
Kunene	92.7	74.6	83.6	41.4	28.9	102
Ohangwena	99.6	83.9	90.0	43.1	32.4	327
Omaheke	88.8	71.9	88.9	29.5	13.0	102
Omusati	98.9	83.1	91.2	36.7	28.6	339
Oshana	98.4	88.7	94.4	48.8	41.4	335
Oshikoto	96.5	82.1	84.3	46.3	34.5	334
Otjozondjupa	88.0	84.9	87.9	21.9	12.1	234
Education						
No education	83.4	77.0	83.2	42.6	22.8	303
Primary	91.5	76.1	82.8	37.1	20.6	931
Secondary	90.6	88.2	93.5	39.8	27.8	2,386
More than secondary	91.9	91.8	97.3	38.8	29.3	365
Wealth quintile						
Lowest	89.1	80.9	85.7	46.7	27.7	587
Second	91.1	82.1	87.3	41.0	27.8	759
Middle	92.4	84.6	90.9	36.3	25.9	878
Fourth	90.1	87.5	92.2	39.5	25.9	911
Highest	88.9	87.6	94.7	35.5	23.1	850
Total 15-49	90.4	84.9	90.6	39.3	25.9	3,985
50-64	88.0	73.6	85.0	43.3	23.3	449

14.4 Attitudes toward Negotiating Safer Sexual Relations with Husbands

Knowledge about HIV transmission and ways to prevent it is of little use if people feel powerless to negotiate safer sex practices with their partners. The high levels of sexual transmission of HIV make negotiating for safer sex indispensable, especially in marital unions in which women's status is compromised by societal expectations, thereby increasing their vulnerability to HIV transmission. In the 2013 NDHS, women and men were asked if they thought that a wife is justified in refusing to have sexual intercourse with her husband if she knows he has sex with other women or in asking that he use condoms if she knows that he has a sexually transmitted infection.

Table 14.6 shows that 88 percent of women and 85 percent of men age $15-49$ believe that a wife is justified in refusing to have sexual intercourse with her husband if she knows he has sex with other women. In addition, 93 percent of women and 91 percent of men believe that a woman has a right to ask her husband to use a condom if she knows that he has an STI.

Among those age 50-64, 85 percent of women and 82 percent of men believe that a wife is justified in refusing to have sexual intercourse with her husband if she knows he has sex with other women, and 89 percent of women and 87 percent of men believe that a woman has a right to ask her husband to use a condom if she knows that he has an STI.

Table 14.6 Attitudes toward negotiating safer sexual relations with husband

Percentage of women and men age 15-64 who believe that a woman is justified in refusing to have sexual intercourse with her husband if she knows that he has sexual intercourse with other women, and percentage who believe that a woman is justified in asking that they use a condom if she knows that her husband has a sexually transmitted infection (STI), by background characteristics, Namibia 2013

Background characteristic	Women			Men		
	Woman is justified in:			Woman is justified in:		Number of men
	Refusing to have sexual intercourse with her husband if she knows he has sex with other women	Asking that they use a condom if she knows that her husband has an STI	Number of women	Refusing to have sexual intercourse with her husband if she knows he has sex with other women	Asking that they use a condom if she knows that her husband has an STI	
Age						
15-24	83.7	89.8	3,691	82.0	90.8	1,730
15-19	79.1	85.2	1,906	78.9	88.3	922
20-24	88.6	94.8	1,786	85.6	93.6	808
25-29	90.9	96.2	1,489	87.4	93.2	658
30-39	91.0	95.5	2,370	85.1	91.2	968
40-49	89.8	95.5	1,625	87.1	91.2	665
Marital status						
Never married	86.7	92.1	5,458	83.3	91.3	2,745
Ever had sex	90.0	95.6	4,155	86.1	93.4	2,122
Never had sex	76.3	80.9	1,304	73.7	84.2	623
Married/living together	89.5	95.2	3,121	87.9	91.7	1,160
Divorced/separated/ widowed	89.8	94.8	597	79.4	88.9	116
Residence						
Urban	90.3	95.6	5,190	87.3	91.2	2,282
Rural	84.7	90.4	3,986	80.7	91.6	1,739
Region						
Zambezi	73.4	87.6	457	71.0	94.6	218
Erongo	93.4	97.8	771	65.5	73.9	372
Hardap	91.8	92.5	304	95.6	96.6	152
//Karas	93.5	97.5	343	85.7	89.8	151
Kavango	85.1	91.7	835	82.1	83.6	316
Khomas	89.3	95.7	2,202	90.9	93.7	1,023
Kunene	93.9	96.4	258	95.5	96.2	104
Ohangwena	82.1	89.4	894	85.5	95.9	328
Omaheke	85.8	91.3	225	90.4	90.9	103
Omusati	83.8	85.7	884	80.7	93.7	342
Oshana	93.6	96.0	755	91.5	97.8	335
Oshikoto	88.5	96.7	707	82.2	93.9	335
Otjozondjupa	89.7	92.8	540	83.9	89.2	241
Education						
No education	77.4	83.9	419	81.7	86.2	310
Primary	82.0	87.7	1,798	77.4	89.4	944
Secondary	89.6	94.9	6,029	86.2	92.4	2,400
More than secondary	92.7	98.4	930	93.6	94.2	368
Wealth quintile						
Lowest	79.8	86.5	1,429	79.1	91.9	594
Second	85.8	91.4	1,625	82.5	90.6	769
Middle	88.3	93.6	1,795	86.4	93.8	886
Fourth	90.5	95.9	2,116	85.3	91.4	917
Highest	91.6	96.5	2,211	87.1	89.0	855
Total 15-49	87.9	93.3	9,176	84.5	91.4	4,021
50-64	84.5	89.1	797	82.0	86.8	460

The percentage of women age 15-49 who believe that a wife is justified in refusing to have sexual intercourse with her husband if she knows he has sex with other women and who believe that a woman has a right to ask her husband to use a condom if she knows that he has an STI is lowest among those in the youngest age group (15-19) (79 percent and 85 percent, respectively), those who have never been married and never had sex (76 percent and 81 percent, respectively), those in rural areas (85 percent and 90 percent, respectively), those in Zambezi and Omusati (73 percent and 86 percent, respectively), those with
no education (77 percent and 84 percent, respectively), and those in the lowest wealth quintile (80 percent and 87 percent, respectively). The same patterns are generally observed among men age 15-49.

Programme planners and implementers focusing on HIV/AIDS and sexually transmitted infections should take advantage of the relatively high level of acceptance among all respondents of women as negotiators of safer sex with their husbands. This high degree of acceptance affords an opportunity to expand and further strengthen messages and interventions that promote preventive practices (e.g., use of male and female condoms) and empower women to take ownership of their sexual health.

14.5 Attitudes toward Condom Education for Young People

Condom use is one of the main strategies for combating the spread of HIV. However, educating young people about condoms is sometimes controversial, with some believing that it promotes early sexual experimentation. To gauge attitudes toward condom education, respondents were asked whether they thought that children age $12-14$ should be taught about using a condom to avoid getting AIDS. Because the focus is on adults' opinions, results are tabulated for respondents age 18-49.

Table 14.7 shows that 85 percent of women and 83 percent of men age 18-49 support teaching children age 12-14 about condoms. Women and men age 50-64 are less likely to support education of children on condom use (76 percent of women and 71 percent of men).

Among women, support for educating children about condom use is lowest among those age 40-49 and among men it is lowest among those age 18-19. Also, it is lower among respondents in rural than in urban areas. Women in Oshana (91 percent) and men in Erongo (92 percent) are most likely to support education of children on condom use, while support is lowest among women in Zambezi (79 percent) and men in Kunene (71 percent). Adult support for educating children about condom use generally increases with increasing education and wealth. For example, 72 percent of women and 74 percent of men with no education support teaching children about condom use, as compared with 86 percent of women with secondary and higher education and 91 percent of men with more than a secondary education.

14.6 Higher-Risk Sex

14.6.1 Multiple Sexual Partners

Given that most HIV infections in Namibia are contracted through heterosexual contact, information on sexual behaviour is important in designing and monitoring intervention programmes to control the spread of the epidemic. The 2013 NDHS included questions on respondents' sexual partners during their lifetimes and over the 12 months preceding the survey. Men were also asked whether they paid for sex during the 12 months preceding the interview. In addition, information was collected on women's and men's use of condoms during their most recent sexual intercourse. These questions are sensitive, and it is recognised that some respondents may have been reluctant to provide information on recent sexual behaviour. Potentially risky sexual activities relate to men and women having multiple sexual partners and failing to use condoms, particularly if they have more than one sexual partner.

Tables 14.8.1 and 14.8.2 present information collected from women and men who have ever had intercourse on the number of sexual partners they had during the 12 months before the survey and over their lifetime and, among those reporting more than one sexual partner in the past 12 months, whether they used a condom during their most recent intercourse. The data show that women age 15-49 are much less likely than their male counterparts to have multiple sexual partners in the past 12 months (2 percent versus 10 percent).

Among women, those in the 20-24 age groups; those who are divorced, separated, or widowed; those living in urban areas and in Kunene; those women with no education; and those in the highest two wealth quintiles are more likely than other women to report having multiple sexual partners in the past 12 months. Among men, those age 25-29 (16 percent), those who have never been married men (12 percent), those living in rural areas (11 percent), and those living in Oshana (16 percent) are most likely to report that they had multiple sexual partners in the past 12 months. The percentage of men with multiple sexual partners in the past 12 months increases steadily with increasing education, from 8 percent among those with no education to 16 percent among those with more than a secondary education. There is no clear pattern in the relationship of this indicator with wealth.

Seventy-two percent of men age 15-49 who had two or more sexual partners in the past 12 months reported using a condom during their last sexual intercourse. ${ }^{1}$ Men age 20-24 and those who have never been married (81 percent each), men living in urban areas (74 percent) and, and men in the highest wealth quintile (78 percent) are more likely than other groups to report using a condom during their last sexual intercourse.

Women age 15-49 reported an average of 2.6 lifetime sexual partners, as compared with 7.4 lifetime partners among their male counterparts. Among men, there are pronounced differences in mean number of lifetime partners by background characteristics. For example, the mean number of lifetime sexual partners is highest among men age 40-49 (10.6); those who are divorced, separated, or widowed (10.1); those living in Kunene (11.9); those with more than a secondary education (8.6); and those in the highest wealth quintile (8.5). It is notable that men age $50-64$ reported a much higher mean number of lifetime sexual partners (11.8) than those age 15-49 (7.4).

[^16]Table 14.8.1 Multiple sexual partners: Women
Among all women age 15-49, the percentage who had sexual intercourse with more than one sexual partner in the past 12 months; among those having more than one partner in the past 12 months, the percentage reporting that a condom was used at last intercourse; and the mean number of sexual partners during their lifetime for women who ever had sexual intercourse, by background characteristics, Namibia 2013

Background characteristic	All women		Among women who ever had sexual intercourse ${ }^{1}$:	
	Percentage who had 2+ partners in the past 12 months	Number of women	Mean number of sexual partners in lifetime	Number of women
Age				
15-24	2.8	3,691	2.0	2,452
15-19	2.1	1,906	1.7	852
20-24	3.6	1,786	2.2	1,600
25-29	2.7	1,489	2.6	1,443
30-39	1.6	2,370	2.9	2,274
40-49	1.2	1,625	2.9	1,561
Marital status				
Never married	2.5	5,458	2.5	4,104
Married/living together	1.2	3,121	2.5	3,040
Divorced/separated/ widowed	5.3	597	3.4	586
Residence				
Urban	2.9	5,190	2.7	4,423
Rural	1.3	3,986	2.3	3,307
Region				
Zambezi	1.1	457	2.4	414
Erongo	3.5	771	3.2	673
Hardap	1.7	304	2.9	259
//Karas	1.4	343	2.9	300
Kavango	0.5	835	2.0	765
Khomas	3.7	2,202	2.7	1,844
Kunene	7.2	258	3.5	246
Ohangwena	0.8	894	2.2	710
Omaheke	5.2	225	4.0	203
Omusati	0.5	884	2.0	670
Oshana	0.9	755	2.3	627
Oshikoto	2.1	707	2.2	574
Otjozondjupa	2.1	540	3.0	446
Education				
No education	3.7	419	2.9	395
Primary	1.3	1,798	2.5	1,506
Secondary	2.3	6,029	2.6	5,027
More than secondary	2.4	930	2.6	801
Wealth quintile				
Lowest	1.0	1,429	2.3	1,218
Second	1.4	1,625	2.5	1,382
Middle	1.6	1,795	2.4	1,549
Fourth	3.3	2,116	2.7	1,818
Highest	3.0	2,211	2.8	1,763
Total 15-49	2.2	9,176	2.6	7,731
50-64	0.2	797	2.5	769

${ }^{1}$ Means are calculated excluding respondents who gave non-numeric responses.

Table 14.8.2 Multiple sexual partners: Men
Among all men age 15-49, the percentage who had sexual intercourse with more than one sexual partner in the past 12 months; among those having more than one partner in the past 12 months, the percentage reporting that a condom was used at last intercourse; and the mean number of sexual partners during their lifetime for men who ever had sexual intercourse, by background characteristics, Namibia 2013

Background characteristic	All men		Among men who had 2+ partners in the past 12 months:		Among men who ever had sexual intercourse ${ }^{1}$:	
	Percentage who had 2+ partners in the past 12 months	Number of men	Percentage who reported using a condom during last sexual intercourse	Number of men	Mean number of sexual partners in lifetime	Number of men
Age						
15-24	9.2	1,730	79.4	160	4.3	1,124
15-19	4.9	922	(75.1)	46	3.0	396
20-24	14.1	808	81.1	114	5.0	728
25-29	15.5	658	77.5	102	7.9	602
30-39	11.0	968	58.6	106	8.9	882
40-49	7.7	665	(67.2)	51	10.6	569
Marital status						
Never married	12.0	2,745	81.0	331	6.5	2,013
Married/living together	6.7	1,160	35.9	78	8.8	1,066
Divorced/separated/ widowed	9.8	116	*	11	10.1	98
Type of union						
In polygynous union	(44.9)	25	*	11	(12.4)	24
In non-polygynous union	5.8	1,135	38.5	66	8.7	1,042
Not currently in union	12.0	2,861	80.4	342	6.7	2,112
Residence						
Urban	9.8	2,282	73.6	223	7.6	1,864
Rural	11.3	1,739	70.6	197	7.1	1,314
Region						
Zambezi	12.0	218	(42.9)	26	5.9	197
Erongo	6.5	372	(59.9)	24	8.6	297
Hardap	7.7	152	*	12	8.0	126
//Karas	6.8	151	*	10	7.5	110
Kavango	9.6	316	(45.0)	30	7.2	269
Khomas	10.5	1,023	(77.8)	108	7.2	838
Kunene	12.9	104	(74.7)	13	11.9	93
Ohangwena	11.9	328	(82.7)	39	6.9	246
Omaheke	5.6	103	*	6	8.9	89
Omusati	11.9	342	(81.4)	41	6.8	191
Oshana	15.6	335	(79.9)	52	8.2	263
Oshikoto	14.1	335	(77.6)	47	5.5	262
Otjozondjupa	4.6	241	*	11	7.3	196
Education						
No education	7.9	310	(63.7)	24	7.4	275
Primary	8.6	944	72.8	81	7.3	694
Secondary	10.7	2,400	71.0	256	7.2	1,895
More than secondary	16.0	368	(80.1)	59	8.6	313
Wealth quintile						
Lowest	9.5	594	67.0	56	6.2	474
Second	10.8	769	62.1	83	7.4	587
Middle	9.1	886	76.0	81	6.9	716
Fourth	11.1	917	75.1	102	7.6	727
Highest	11.4	855	77.5	98	8.5	673
Total 15-49	10.4	4,021	72.2	420	7.4	3,177
50-64	6.5	460	(38.6)	30	11.8	380

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Means are calculated excluding respondents who gave non-numeric responses.

14.6.2 Point Prevalence and Cumulative Prevalence of Concurrent Sexual Partners

The point prevalence and cumulative prevalence of concurrent sexual partners are new concepts that were incorporated for the first time in the 2013 NDHS. The point prevalence of concurrent sexual partners is defined as the percentage of respondents who had two (or more) sexual partners concurrently at the point in time six months before the survey. The cumulative prevalence of concurrent sexual partners is defined as the percentage of respondents who had two (or more) sexual partners concurrently at any time during the 12 months preceding the survey.

Table 14.9 shows the point prevalence and cumulative prevalence of concurrent sexual partners among all respondents before the survey. It also shows the percentage of respondents who had concurrent sexual partners among those who had multiple sexual partners during the 12 months before the survey.

Among women age 15-49, both the point prevalence and the cumulative prevalence are 1 percent or less. Among men in the same age group, the point prevalence is 2 percent and the cumulative prevalence is 7 percent. Women age $50-64$ have a point prevalence and cumulative prevalence of less than 1 percent each, while men have a point prevalence of 4 percent and a cumulative prevalence of 6 percent.

Among female respondents, point prevalence and cumulative prevalence vary only marginally by background characteristics. Among men, there are some notable variations in the cumulative prevalence; it is highest among men age 25-29 (11 percent), those who have never been married (7 percent), and men living in rural areas (7 percent).

Table 14.9 also shows that, among all respondents age $15-49$ who had multiple partners during the 12 months preceding the survey, 54 percent of women and 65 percent of men had concurrent sexual partners.

Table 14.9 Point prevalence and cumulative prevalence of concurrent sexual partners
Percentage of all women and men age 15-49 who had concurrent sexual partners six months before the survey (point prevalence ${ }^{1}$), percentage of all women and all men age 15-49 who had any concurrent sexual partners during the 12 months before the survey (cumulative prevalence ${ }^{2}$), and among women and men age 15-49 who had multiple sexual partners during the 12 months before the survey, percentage who had concurrent sexual partners, by background characteristics, Namibia 2013

Background characteristic	Among all respondents:			Among all respondents who had multiple partners during the 12 months before the survey:	
	Point prevalence of concurrent sexual partners ${ }^{1}$	Cumulative prevalence of concurrent sexual partners ${ }^{2}$	Number of respondents	Percentage who had concurrent sexual partners ${ }^{2}$	Number of respondents
WOMEN					
Age					
15-24	0.4	1.1	3,691	37.8	105
15-19	0.1	0.4	1,906	(20.4)	40
20-24	0.7	1.8	1,786	48.4	65
25-29	0.5	1.8	1,489	(68.1)	40
30-39	0.4	1.0	2,370	(63.4)	38
40-49	0.5	1.1	1,625	*	20
Marital status					
Never married	0.3	1.2	5,458	49.6	136
Married/living together	0.5	0.8	3,121	67.6	36
Divorced/separated/ widowed	0.7	3.0	597	(57.6)	31
Residence					
Urban	0.4	1.5	5,190	51.9	151
Rural	0.4	0.8	3,986	60.3	52
Total 15-49	0.4	1.2	9,176	54.1	203
50-64	0.1	0.2	797	*	1
MEN					
Age					
15-24	1.5	4.8	1,730	52.1	160
15-19	0.8	1.8	922	(37.2)	46
20-24	2.2	8.2	808	58.0	114
25-29	2.3	10.9	658	70.4	102
30-39	4.0	8.7	968	79.4	106
40-49	1.4	4.8	665	(61.5)	51
Marital status					
Never married	2.2	7.4	2,745	61.6	331
Married/living together	2.4	5.6	1,160	83.1	78
Divorced/separated/ widowed	1.3	2.6	116	*	11
Type of union					
In polygynous union	(34.9)	(35.4)	25	*	11
In non-polygynous union	1.6	4.9	1,135	83.8	66
Not currently in union	2.1	7.2	2,861	60.4	342
Residence					
Urban	2.2	6.3	2,282	64.2	223
Rural	2.2	7.4	1,739	65.1	197
Total 15-49	2.2	6.7	4,021	64.6	420
50-64	3.7	6.2	460	(95.0)	30

Note: Two sexual partners are considered to be concurrent if the date of the most recent sexual intercourse with the earlier partner is after the date of the first sexual intercourse with the later partner. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ The percentage of respondents who had two (or more) sexual partners that were concurrent at the point in time six months before the survey
${ }^{2}$ The percentage of respondents who had two (or more) sexual partners that were concurrent anytime during the 12 months preceding the survey

14.7 Paid Sex

The act of paying for sex introduces an uneven negotiating ground for safer sexual intercourse. Condom use is an important indicator in efforts to ascertain the level of risk associated with sexual intercourse involving payments. Table 14.10 shows the percentage of men age 15-49 who paid for sexual intercourse ever and in the past 12 months by background characteristics.

intercourse			
Percentage of men age 15-49 who ever paid for sexual intercourse and percentage reporting payment for sexual intercourse in the past 12 months, by background characteristics, Namibia 2013			
Background characteristic	Percentage who ever paid for sexual intercourse	Percentage who paid for sexual intercourse in the past 12 months	Number of men
Age			
15-24	1.5	0.7	1,730
15-19	0.3	0.1	922
20-24	2.9	1.4	808
25-29	2.3	0.8	658
30-39	3.2	1.5	968
40-49	3.0	0.6	665
Marital status			
Never married	2.0	1.0	2,745
Married/living together	2.5	0.8	1,160
Divorced/separated/ widowed	7.0	1.0	116
Residence			
Urban	2.6	0.9	2,282
Rural	1.9	0.9	1,739
Region			
Zambezi	3.8	2.7	218
Erongo	0.7	0.0	372
Hardap	1.2	0.4	152
//Karas	4.2	2.8	151
Kavango	4.8	1.5	316
Khomas	3.5	1.1	1,023
Kunene	1.3	0.4	104
Ohangwena	1.3	0.7	328
Omaheke	1.7	0.0	103
Omusati	0.0	0.0	342
Oshana	2.2	0.6	335
Oshikoto	1.9	1.3	335
Otjozondjupa	0.6	0.3	241
Education			
No education	2.4	1.7	310
Primary	0.9	0.4	944
Secondary	2.3	1.1	2,400
More than secondary	5.8	0.7	368
Wealth quintile			
Lowest	2.0	0.7	594
Second	1.7	0.6	769
Middle	1.7	0.8	886
Fourth	3.0	1.3	917
Highest	3.0	1.0	855
Total 15-49	2.3	0.9	4,021
50-64	3.5	1.6	460

Only 2 percent of men age 15-49 and 4 percent of those age 50-64 reported ever paying for sex; 1 percent and 2 percent, respectively, reported paying for sex during the 12 months preceding the survey. Men who are divorced, separated, or widowed (7 percent); those living in Kavango (5 percent); and those with more than a secondary education (6 percent) are more likely than their counterparts to have ever paid for sexual intercourse. Other variations by background characteristics are minimal.

Among men who paid for sex in the past 12 months, 67 percent reported using a condom at their last paid sexual intercourse (data are not shown separately).

14.8 Male Circumcision

Circumcision is a common practice in many parts of sub-Saharan Africa for traditional, health, and other reasons. Male circumcision has been associated with a lower risk of HIV transmission from women to men (Williams et al., 2006; WHO and UNAIDS, 2007). To examine the practice of circumcision at the national level, men interviewed in the 2013 NDHS were asked whether they had been circumcised and when they were circumcised. The results are presented in Table 14.11.

The data show that 26 percent of men age 15-49 and 32 percent of those age 50-64 are circumcised. There are some marked differences across background characteristics. Men age 40-49 (30 percent), those living in urban areas (30 percent), those living in Kunene (51 percent) and Omaheke (48 percent), and those who reported having no religious affiliation (44 percent) are more likely than men in other groups to have been circumcised.

These results are in line with previous MoHSS assessments indicating that there are gaps in attitudes and behaviours regarding circumcision practices across the country (MoHSS, 2014). The roll-out of the Voluntary Medical Male Circumcision initiative by the MoHSS will address and resolve some of the current barriers in Namibia with respect to circumcision practices.

Table 14.11 Male circumcision
Percentage of men age 15-49 who report having been circumcised, by background characteristics, Namibia 2013

Background characteristic	Percentage circumcised	Number of men

Age		
15-24	21.8	1,730
$15-19$	21.0	922
$20-24$	22.8	808
$25-29$	27.8	658
$30-39$	27.4	968
40-49	30.3	665
Residence		
\quad Urban	30.0	2,282
\quad Rural	19.7	1,739
Region		
Zambezi	13.9	218
Erongo	31.1	372
Hardap	13.2	152
l/Karas	21.4	151
Kavango	32.6	316
Khomas	31.2	1,023
Kunene	51.4	104
Ohangwena	12.2	328
Omaheke	48.2	103
Omusati	15.6	342
Oshana	18.4	335
Oshikoto	15.5	335
Otjozondjupa	39.7	241
Religion		
Roman Catholic	23.1	1,137
Protestant/Anglican	33.9	576
ELCIN	21.8	1,944
Seventh-Day Adventist	20.6	176
No religion	43.5	85
Other	39.0	553
Total 15-49	25.5	4,021
50-64	31.5	460

ELCIN = Evangelical Lutheran Church in Namibia

Table 14.12 shows the percent distribution of men by the person who performed the circumcision and the place where it took place. Forty-seven percent of male circumcisions were performed by a traditional practitioner or family friend and 46 percent by a health worker or professional. With respect to the place at which circumcisions occurred, 43 percent were performed at a health care facility, 23 percent were performed at the respondent's home, 10 percent each took place at the home of a health worker or professional and at a ritual site, and 8 percent took place at another person's home or elsewhere.

Table 14.12 Provider and place of circumcision	
Among men age 15-64 who report having been circumcised,	
percent distribution by person who performed the circumcision	
and by place circumcised, Namibia 2013	
Person/place of circumcision	
Person who performed circumcision	Percentage
Traditional practitioner/family friend	
Health worker/professional	47.1
Other	45.6
Don't know	0.4
Missing	6.2
Total	0.7
Place of circumcision	100.0
Health care facility	
Home of a health worker/health professional	43.3
Respondent's home	9.7
Ritual site	23.2
Other home/elsewhere	9.8
Don't know	8.2
Missing	5.5
Total	0.4
Number of circumcised men	100.0

Table 14.13 shows attitudes toward male circumcision among men age 15-49 by background characteristics. A large majority of men age 15-49 (80 percent) and men age 50-64 (70 percent) said that they would have their baby boy circumcised. This percentage is somewhat lower among men age 40-49 (73-74 percent) than among younger respondents. By region, men in Hardap (61 percent) and //Karas (62 percent) are least likely to report that they would have their baby boy circumcised, and men in Omaheke (88 percent) are most likely to report that they would do so. The percentage of men who would have their baby boy circumcised is lowest among those with no education or a primary education (77 percent each) and those in the lowest wealth quintile (71 percent).

Table 14.13 Attitudes toward male circumcision						
Among men age 15-49, percent distribution by whether they would have their baby boy circumcised, by background characteristics, Namibia 2013						
Background characteristic	No	Yes	Don't know	Missing	Total	Number
Age						
15-19	18.2	78.8	2.9	0.1	100.0	922
20-24	14.9	82.1	2.8	0.1	100.0	808
25-29	13.3	83.2	3.3	0.3	100.0	658
30-34	17.7	80.2	2.0	0.0	100.0	520
35-39	19.0	78.6	2.0	0.4	100.0	448
40-44	22.6	73.5	3.9	0.0	100.0	376
45-49	22.7	73.3	3.8	0.2	100.0	289
Residence						
Urban	18.1	79.2	2.4	0.2	100.0	2,494
Rural	18.6	77.5	3.7	0.2	100.0	1,987
Region						
Zambezi	20.8	71.3	7.7	0.2	100.0	234
Erongo	21.2	76.7	2.1	0.0	100.0	420
Hardap	30.4	61.1	8.5	0.0	100.0	179
//Karas	26.9	61.7	10.6	0.8	100.0	178
Kavango	25.3	71.7	2.6	0.4	100.0	347
Khomas	20.4	78.1	1.5	0.0	100.0	1,095
Kunene	9.2	85.3	5.2	0.4	100.0	120
Ohangwena	17.2	80.9	1.5	0.3	100.0	359
Omaheke	9.8	87.8	2.2	0.2	100.0	131
Omusati	10.4	85.9	3.7	0.0	100.0	392
Oshana	11.7	86.6	1.2	0.5	100.0	362
Oshikoto	15.0	82.7	2.0	0.3	100.0	374
Otjozondjupa	15.6	81.7	2.7	0.0	100.0	292
Education						
No education	18.6	77.3	4.0	0.0	100.0	310
Primary	20.0	76.8	3.1	0.2	100.0	944
Secondary	16.3	80.8	2.7	0.1	100.0	2,400
More than secondary	17.6	79.2	2.8	0.5	100.0	368
Wealth quintile						
Lowest	24.8	71.4	3.4	0.4	100.0	656
Second	16.3	80.2	3.4	0.1	100.0	845
Middle	15.2	81.9	2.9	0.0	100.0	984
Fourth	15.5	81.5	2.9	0.1	100.0	1,020
Highest	22.0	75.1	2.7	0.3	100.0	975
Total 15-49	17.5	79.5	2.9	0.2	100.0	4,021
50-64	25.8	69.9	4.0	0.3	100.0	460

Table 14.14 shows the percent distribution of men by their opinion on whether or not there are any benefits to male circumcision, according to background characteristics. Eight in ten men age 15-49 (80 percent) and 72 percent of men age 50-64 believe that there are benefits to male circumcision. Men age 4049 (77 percent), those living in //Karas (62 percent), those with no education or only a primary education ($76-77$ percent), and those in the lowest wealth quintile (75 percent) are less likely than men in other groups to believe that there are benefits to male circumcision.

Among men age 15-49, percent distribution by whether they think that there are benefits to male circumcision, by background characteristics, Namibia 2013						
Background characteristic	No	Yes	Don't know	Missing	Total	Number
Age						
15-19	9.0	79.1	11.6	0.3	100.0	922
20-24	7.3	84.3	8.3	0.0	100.0	808
25-29	5.9	83.0	10.6	0.5	100.0	658
30-34	6.5	79.7	13.8	0.0	100.0	520
35-39	6.8	78.2	14.5	0.4	100.0	448
40-44	9.7	77.3	13.0	0.0	100.0	376
45-49	8.3	76.7	15.0	0.0	100.0	289
Residence						
Urban	8.4	80.1	11.3	0.2	100.0	2,494
Rural	7.6	78.8	13.4	0.2	100.0	1,987
Region						
Zambezi	14.2	77.8	8.1	0.0	100.0	234
Erongo	10.0	78.4	11.6	0.0	100.0	420
Hardap	10.9	68.6	20.5	0.0	100.0	179
//Karas	17.9	62.2	19.9	0.0	100.0	178
Kavango	10.9	67.8	20.7	0.7	100.0	347
Khomas	9.3	78.0	12.5	0.2	100.0	1,095
Kunene	6.0	81.8	12.3	0.0	100.0	120
Ohangwena	3.7	88.7	7.3	0.3	100.0	359
Omaheke	4.9	86.0	8.9	0.2	100.0	131
Omusati	2.9	87.1	10.0	0.0	100.0	392
Oshana	5.1	87.3	7.1	0.5	100.0	362
Oshikoto	5.9	81.5	12.6	0.0	100.0	374
Otjozondjupa	6.0	82.0	11.9	0.0	100.0	292
Education						
No education	5.5	76.7	17.8	0.0	100.0	310
Primary	9.4	75.5	15.0	0.1	100.0	944
Secondary	7.1	82.2	10.5	0.2	100.0	2,400
More than secondary	8.1	84.9	6.5	0.5	100.0	368
Wealth quintile						
Lowest	9.2	74.7	15.9	0.2	100.0	656
Second	6.2	81.4	12.2	0.1	100.0	845
Middle	6.1	81.5	12.3	0.1	100.0	984
Fourth	7.2	82.2	10.4	0.2	100.0	1,020
Highest	11.8	76.4	11.6	0.2	100.0	975
Total 15-49	7.6	80.4	11.8	0.2	100.0	4,021
50-64	12.1	71.8	16.1	0.0	100.0	460

Table 14.15 shows the percentage of men age 15-64 citing specific benefits of male circumcision. Protection against HIV (56 percent) and protection against sexually transmitted infections (54 percent) are most likely to be cited as benefits of male circumcision. More than four in ten (42 percent) believe that male circumcision is good for health and hygiene, and one in ten (10 percent) say that it is recommended by tradition or religion.

Table 14.15 Specific benefits of male circumcision	
Among men age 15-64 who believe that there are	
benefits to male circumcision, percentage who report	
specific benefits, Namibia 2013	
Benefits of male circumcision	Percentage
Recommended by tradition/religion	10.0
Good for health/hygiene	42.1
Protects against getting HIV	55.7
Protects against getting STIs	53.5
Increases sexual satisfaction	1.1
Easier to put on condom	0.7
Other	1.2
Don't know	0.8
Number of respondents	3,564

14.9 Self-Reporting of Sexually Transmitted Infections

In the 2013 NDHS, respondents who had ever had sex were asked whether they had a sexually transmitted infection or symptoms of an STI (a bad-smelling, abnormal discharge from the vagina/penis or a genital sore or ulcer) in the 12 months preceding the survey.

Table 14.16 shows the self-reported prevalence of STIs and/or STI symptoms among women and men age $15-49$, by background characteristics. Women are more likely than men to report having had an STI or having experienced STI symptoms in the past 12 months (10 percent versus 6 percent). Five percent of women and men age $50-64$ reported having had an STI or STI symptoms in the past 12 months.

Table 14.16 Self-reported prevalence of sexually transmitted infections (STIs) and STI symptoms
Among women and men age 15-49 who ever had sexual intercourse, the percentage reporting having an STI and/or symptoms of an STI in the past 12 months, by background characteristics, Namibia 2013

Background characteristic	Women					Men				
	Percentage of women who reported having in the past 12 months:				Number of women who ever had sexual intercourse	Percentage of men who reported having in the past 12 months:				Number of men who ever had sexual intercourse
	STI	Bad- smelling/ abnormal genital discharge	Genital sore or ulcer	STI/genital discharge/ sore or ulcer		STI	Badsmelling/ abnormal discharge from penis	Genital sore or ulcer	STI/ abnormal discharge from penis/ sore or ulcer	
Age										
15-24	3.9	8.0	4.0	11.4	2,467	1.9	4.0	2.8	6.4	1,141
15-19	2.4	7.4	4.3	10.4	852	0.6	3.4	1.7	5.1	395
20-24	4.6	8.3	3.9	11.9	1,615	2.6	4.4	3.3	7.0	745
25-29	4.1	7.0	5.5	11.1	1,457	4.1	4.6	4.1	8.4	639
30-39	3.6	5.3	3.9	8.8	2,328	3.1	3.1	3.8	5.9	953
40-49	3.2	5.4	3.7	8.4	1,600	3.2	3.1	1.8	4.9	650
Marital status										
Never married	3.4	6.2	3.3	9.2	4,155	2.5	4.3	3.3	6.3	2,122
Married/living together	3.9	6.6	5.0	10.5	3,104	3.2	2.6	3.1	6.1	1,146
Divorced/separated/ widowed	4.7	8.1	6.0	12.9	593	6.8	3.6	1.9	8.1	115
Male circumcision										
Circumcised	na	na	na	na	na	4.2	5.1	3.6	8.1	908
Not circumcised	na	na	na	na	na	2.5	3.2	3.0	5.7	2,462
Residence										
Urban	4.2	7.6	4.2	11.0	4,510	2.7	3.6	2.5	5.9	2,014
Rural	3.0	5.0	4.2	8.6	3,342	3.2	3.8	4.1	6.9	1,369
Region										
Zambezi	1.7	5.5	2.6	8.0	420	4.7	3.3	3.5	6.1	204
Erongo	2.9	7.4	3.6	10.5	675	2.1	2.5	1.9	3.5	326
Hardap	5.4	9.5	3.3	12.6	261	0.0	0.0	0.7	0.7	130
//Karas	2.7	7.8	5.1	11.1	301	2.8	3.2	3.2	4.2	121
Kavango	5.3	6.3	11.7	15.0	774	3.7	1.9	4.7	8.0	271
Khomas	4.0	7.1	3.2	10.0	1,903	2.8	4.2	2.0	6.9	930
Kunene	9.4	8.5	5.3	14.7	247	2.8	2.8	2.6	5.7	94
Ohangwena	1.6	6.2	2.7	7.8	714	1.4	1.9	5.1	6.0	247
Omaheke	7.6	12.1	5.7	15.9	208	14.4	17.0	11.3	19.1	93
Omusati	0.9	2.1	1.4	3.2	671	2.6	2.4	2.0	4.9	211
Oshana	3.2	3.6	3.2	6.0	631	1.7	4.8	3.6	7.0	265
Oshikoto	2.9	5.6	4.0	9.4	582	2.2	5.8	4.9	8.5	285
Otjozondjupa	7.0	9.8	4.6	14.3	466	3.2	2.6	1.7	3.5	205
Education										
No education	3.8	6.4	6.3	11.1	402	2.6	3.4	4.6	6.1	291
Primary	3.8	6.8	6.4	10.8	1,541	3.5	4.7	4.7	8.1	734
Secondary	3.9	6.4	3.5	9.6	5,091	2.9	3.9	2.6	6.3	2,012
More than secondary	2.5	6.9	3.4	9.7	818	1.9	1.1	1.5	3.0	346
Wealth quintile										
Lowest	2.9	5.7	4.9	9.1	1,225	2.9	3.2	4.0	6.7	492
Second	3.4	4.9	4.6	8.6	1,413	3.0	3.3	4.0	6.7	622
Middle	3.7	6.0	3.8	9.8	1,574	3.2	6.3	4.2	8.9	749
Fourth	4.6	8.0	4.6	11.6	1,844	3.2	3.7	2.7	5.7	783
Highest	3.6	7.2	3.2	10.1	1,797	2.1	1.8	1.4	3.7	738
Total 15-49	3.7	6.5	4.2	10.0	7,852	2.9	3.7	3.1	6.3	3,383
50-64	1.8	2.7	2.7	4.8	787	3.6	1.7	2.6	5.0	450

Note: Total includes 14 men with missing information on circumcision.
na $=$ Not applicable

The prevalence of STIs or STI symptoms is somewhat higher among women and men age 20-29 and those who are divorced, separated, or widowed than among their counterparts. Circumcised men have a slightly higher prevalence of STIs or STI symptoms than uncircumcised men (8 percent and 6 percent, respectively). The prevalence of STIs or STI symptoms is higher among urban than rural women (11 percent versus 9 percent), while among men the proportions are similar in urban (6 percent) and rural (7 percent) areas. By region, the proportion of women reporting an STI or STI symptoms ranges from 3 percent in Omusati to 16 percent in Omaheke. Among men, the proportion is lowest in Hardap (1 percent) and highest in Omaheke (19 percent). There is no clear overall pattern in the prevalence of STIs or STI symptoms by education or wealth. Among men, however, the prevalence is lowest among those with more than a secondary education (3 percent) and those in the highest wealth quintile (4 percent).

There has been a slight increase since the 2006-07 NDHS in the percentage of respondents age 1549 who had an STI or STI symptoms in the preceding 12 months, from 7 percent to 10 percent of women and from 4 percent to 6 percent of men.

Figure 14.1 shows that more than six in ten women (63 percent) and men (62 percent) who had an STI or STI symptoms sought advice or treatment from a clinic, hospital, private doctor, or other health professional. Few respondents sought advice or treatment from a shop or pharmacy (3 percent of women and less than 1 percent of men) or any other source (1 percent each). About three in ten women (29 percent) and one in four men (26 percent) did not seek any treatment when they had an STI or STI symptoms.

Figure 14.1 Women and men seeking advice for treatment of STIs

\square Women ■Men
NDHS 2013

14.10 Injections

Injection overuse in a health care setting can contribute to the transmission of blood-borne pathogens because it amplifies the effect of unsafe practices such as reuse of injection equipment. To measure the potential risk of transmission of HIV associated with medical injections, NDHS respondents were asked whether they had received any injections from a health worker in the 12 months preceding the survey and, if so, whether their last injection was administered with a syringe from a new, unopened package. It should be noted that self-administered medical injections (e.g., insulin injections for diabetes) were not included in the calculations.

Table 14.17 shows the reported prevalence of injections and of safe injection practices. Thirtyseven percent of women and 17 percent of men age 15-49 reported receiving an injection from a health worker during the 12 months preceding the survey. Among respondents age 50-64, 23 percent of women and 20 percent of men had received an injection from a health worker in the past 12 months.

Table 14.17 Prevalence of medical injections
Percentage of women and men age 15-49 who received at least one medical injection in the past 12 months, the average number of medical injections per person in the past 12 months, and among those who received a medical injection, the percentage of last medical injections for which the syringe and needle were taken from a new, unopened package, by background characteristics, Namibia 2013

Background characteristic	Women					Men				
	Percentage who received a medical injection in the past 12 months	Average number of medical injections per person in the past 12 months	Number of women	For last injection, syringe and needle taken from a new, unopened package	Number of women receiving medical injections in the past 12 months	Percentage who received a medical injection in the past 12 months	Average number of medical injections per person in the past 12 months	Number of men	For last injection, syringe and needle taken from a new, unopened package	Number of men receiving medical injections in the past 12 months
Age										
15-24	39.6	1.1	3,691	97.4	1,462	16.6	0.4	1,730	95.8	287
15-19	41.2	1.0	1,906	96.7	784	19.0	0.4	922	94.6	175
20-24	37.9	1.2	1,786	98.3	677	13.9	0.4	808	97.6	112
25-29	41.7	1.5	1,489	98.2	622	16.4	0.6	658	96.1	108
30-39	34.1	1.3	2,370	97.8	807	16.8	0.5	968	98.7	163
40-49	28.0	1.1	1,625	96.8	456	18.6	0.8	665	97.3	124
Marital status										
Never married	37.6	1.1	5,458	97.7	2,050	16.4	0.4	2,745	95.4	451
Ever had sex	37.5	1.2	4,155	97.7	1,559	15.8	0.4	2,122	95.7	335
Never had sex	37.7	0.8	1,304	97.8	491	18.7	0.4	623	94.8	116
Married/living together	35.3	1.3	3,121	97.3	1,101	17.8	0.5	1,160	99.3	207
Divorced/separated/ widowed	32.8	1.5	597	97.5	196	20.5	1.7	116	*	24
Residence										
Urban	35.9	1.3	5,190	97.9	1,862	17.4	0.5	2,282	99.2	397
Rural	37.2	1.1	3,986	97.1	1,484	16.4	0.5	1,739	93.5	284
Region										
Zambezi	52.7	1.9	457	98.7	240	17.2	0.4	218	98.3	37
Erongo	33.8	1.1	771	98.0	261	15.3	0.8	372	97.3	57
Hardap	36.8	1.3	304	98.0	112	10.4	0.5	152	(97.4)	16
//Karas	42.3	1.3	343	98.3	145	17.1	0.4	151	100.0	26
Kavango	33.4	1.2	835	96.0	279	19.3	0.5	316	94.9	61
Khomas	34.2	1.3	2,202	98.9	753	18.8	0.4	1,023	100.0	192
Kunene	35.5	1.2	258	96.0	92	8.6	0.2	104	*	9
Ohangwena	37.7	1.1	894	97.9	337	19.5	0.9	328	(89.3)	64
Omaheke	34.2	1.2	225	89.6	77	4.1	0.9	103	*	4
Omusati	39.2	1.1	884	99.3	347	12.7	0.3	342	(94.0)	43
Oshana	35.9	1.1	755	97.2	271	17.3	0.5	335	(94.9)	58
Oshikoto	39.4	1.2	707	95.5	279	25.5	0.5	335	97.6	85
Otjozondjupa	28.5	1.3	540	95.0	154	11.9	0.3	241	(97.8)	29
Education										
No education	21.2	0.6	419	93.7	89	13.7	0.5	310	(95.1)	42
Primary	34.6	1.2	1,798	97.0	622	16.5	0.5	944	93.7	156
Secondary	37.8	1.3	6,029	97.7	2,281	16.9	0.5	2,400	97.9	406
More than secondary	38.2	1.2	930	99.0	355	21.1	0.6	368	98.3	78
Wealth quintile										
Lowest	36.9	1.2	1,429	97.7	528	15.0	0.6	594	93.0	89
Second	36.7	1.3	1,625	96.7	597	18.8	0.5	769	92.0	144
Middle	37.5	1.1	1,795	97.2	673	13.5	0.3	886	99.3	120
Fourth	37.1	1.2	2,116	98.0	786	18.0	0.4	917	99.3	165
Highest	34.5	1.3	2,211	98.0	763	19.2	0.7	855	98.7	164
Total 15-49	36.5	1.2	9,176	97.6	3,346	17.0	0.5	4,021	96.8	682
50-64	22.5	1.0	797	96.2	179	19.9	1.1	460	91.5	92

Note: Medical injections are those given by a doctor, nurse, pharmacist, dentist, or other health worker. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

The percentage of women who received medical injections is highest among those age 25-29 (42 percent). This percentage varies by region, ranging from a high of 53 percent in Zambezi to a low of 29 percent in Otjozondjupa. Among men, there are slight variations by age. By region, the percentage of men who received a medical injection in the past 12 months is lowest among those in Omaheke (4 percent) and highest among those in Oshikoto (26 percent). In the case of both women and men, the proportion who
received medical injections in the past 12 months is highest among those with more than a secondary education. There is no clear association with wealth.

Table 14.17 further shows that, on average, respondents age 15-49 received about one medical injection in the preceding 12 months.

More than 9 in 10 women and men age 15-49 (98 percent of women and 97 percent of men) reported that their last injection was given with a syringe and needle taken from a new, unopened package. There are no major variations by background characteristics.

14.11 HIVIAIDS-Related Knowledge and Behaviour among Young People

This section addresses HIV/AIDS-related knowledge among young Namibians age 15-24 and assesses the extent to which young people are engaged in behaviours that may place them at risk of contracting HIV.

14.11.1 Knowledge about HIVIAIDS and Source for Condoms

Knowledge of how HIV is transmitted is crucial to enabling people to avoid HIV infection, and this is especially true for young people, who are often at greater risk because they may have shorter relationships with more partners or engage in other risky behaviours. Table 14.18 shows the level of comprehensive knowledge of HIV/AIDS among young people and the percentage of young people who know a source for condoms. As discussed earlier, comprehensive knowledge of HIV/AIDS is defined as knowing that condom use and limiting sexual intercourse to one uninfected partner are HIV prevention methods, knowing that a healthy-looking person can have HIV, and rejecting the two most common local misconceptions about HIV transmission.

Table 14.18 shows that 62 percent of young women and 51 percent of young men have comprehensive knowledge of HIV/AIDS. In the case of young women, comprehensive knowledge about AIDS is lowest among those age 15-17 (52 percent), while among young men it varies only slightly by age. Never-married youth who have had sex and those who live in urban areas are more likely than those in other groups to have comprehensive knowledge about AIDS. For example, 67 percent of urban young women have comprehensive knowledge about AIDS, as compared with 55 percent of those in rural areas. Among both young women and young men, the percentage with comprehensive knowledge about AIDS increases with increasing education.

Knowledge of a source for condoms is very high among Namibian youth. Ninety-one percent of young women and 94 percent of young men know a place where they can obtain a condom.

Table 14.18 Comprehensive knowledge about AIDS and of a source of condoms among youth
Percentage of young women and young men age 15-24 with comprehensive knowledge about AIDS and percentage with knowledge of a source of condoms, by background characteristics, Namibia 2013

Background characteristic	Women age 15-24			Men age 15-24		
	Percentage with comprehensive knowledge of AIDS ${ }^{1}$	Percentage who know a condom source ${ }^{2}$	Number of women	Percentage with comprehensive knowledge of AIDS ${ }^{1}$	Percentage who know a condom source ${ }^{2}$	Number of men
Age						
15-19	55.9	85.3	1,906	51.4	90.0	922
15-17	52.2	80.5	1,076	49.5	86.2	576
18-19	60.7	91.6	830	54.5	96.4	346
20-24	67.8	96.6	1,786	50.6	98.4	808
20-22	67.8	95.9	1,136	51.7	97.7	494
23-24	67.7	98.0	650	49.0	99.5	314
Marital status						
Never married	63.4	90.2	3,184	51.9	93.6	1,642
Ever had sex	66.0	95.5	1,963	53.6	97.9	1,054
Never had sex	59.2	81.5	1,221	48.8	85.9	588
Ever married	50.7	94.8	507	35.6	100.0	88
Residence						
Urban	67.3	95.9	2,008	51.8	97.8	858
Rural	54.9	84.7	1,683	50.3	90.1	872
Education						
No education	22.7	72.2	66	20.6	88.1	63
Primary	38.2	78.4	638	36.9	82.5	409
Secondary	66.0	93.1	2,620	56.0	97.7	1,159
More than secondary	78.0	99.4	368	71.1	100.0	100
Total 15-24	61.6	90.8	3,691	51.1	93.9	1,730

${ }^{1}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one uninfected faithful partner can reduce the chance of getting the AIDS virus, knowing that a healthy-looking person can have the AIDS virus, and rejecting the 2 most common local misconceptions about AIDS transmission or prevention of the AIDS virus. The components of comprehensive knowledge are presented in Tables 14.2, 14.3.1, and 14.3.2.
${ }^{2}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

14.11.2 First Sex

Age at first sex is an important indicator of exposure to the risk of pregnancy and sexually transmitted infections. Young people who initiate sex at an early age are typically at higher risk of becoming pregnant or contracting an STI than young people who delay the onset of sexual activity. Consistent condom use can reduce such risks.

Among respondents age 15-24, a higher percentage of young men (13 percent) than young women (5 percent) have had sex before age 15 (Table 14.19). Similarly, 42 percent of women and 57 percent of men age 18-19 had sexual intercourse before age 18 .

As expected, the proportion of youth age 15-24 initiating sexual intercourse by age 15 is higher among those who have ever been married than among those who were not yet married at the time of the survey. This percentage is also higher among youth who know of a source of condoms than among those who do not. Rural women age 15-24 are more likely than their urban counterparts to have initiated sex before age 15 (7 percent and 4 percent, respectively). The difference is less pronounced among young men (12 percent in urban areas versus 14 percent in rural areas). Young people with no formal education are most likely to have had sexual intercourse by age 15 (21 percent of women and 18 percent of men), and those with more than a secondary education are least likely to have done so (less than 1 percent of women and 7 percent of men). Similarly, among women age 18-24, those with no formal education are more than three times as likely to have had sex for the first time before age 18 than those with more than a secondary education (67 percent versus 21 percent). By contrast, the proportion of young men age 18-24 who initiated sexual intercourse before age 18 shows little difference by educational status.

Table 14.19 Age at first sexual intercourse among young people
Percentage of young women and young men age $15-24$ who had sexual intercourse before age 15 and percentage of young women and young men age 18-24 who had sexual intercourse before age 18, by background characteristics, Namibia 2013

Background characteristic	Women age 15-24		Women age 18-24		Men age 15-24		Men age 18-24	
	Percentage who had sexual intercourse before age 15	Number of women	Percentage who had sexual intercourse before age 18	Number of women	Percentage who had sexual intercourse before age 15	Number of men	Percentage who had sexual intercourse before age 18	Number of men
Age								
15-19	6.8	1,906	na	na	13.4	922	na	na
15-17	8.2	1,076	na	na	13.3	576	na	na
18-19	5.0	830	47.4	830	13.5	346	59.4	346
20-24	3.9	1,786	39.7	1,786	12.7	808	55.2	808
20-22	4.0	1,136	41.2	1,136	12.8	494	56.1	494
23-24	3.8	650	36.9	650	12.5	314	53.8	314
Marital status								
Never married	4.3	3,184	37.0	2,142	12.8	1,642	56.7	1,067
Ever married	12.2	507	65.3	474	17.1	88	53.2	87
Knows condom source ${ }^{1}$								
Yes	5.5	3,351	42.3	2,486	13.4	1,625	56.5	1,129
No	4.8	340	38.2	130	8.6	105	(54.7)	26
Residence								
Urban	3.7	2,008	37.0	1,553	12.2	858	57.4	631
Rural	7.4	1,683	49.6	1,063	13.9	872	55.3	524
Education								
No education	21.3	66	67.2	50	18.4	63	59.1	53
Primary	13.8	638	66.2	300	14.0	409	52.7	199
Secondary	3.7	2,620	41.6	1,903	13.0	1,159	57.2	801
More than secondary	0.4	368	21.4	363	6.8	100	56.7	100
Total	5.4	3,691	42.1	2,616	13.1	1,730	56.5	1,154

Note: Figures in parentheses are based on 25-49 unweighted cases.
na $=$ Not applicable
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

Figure 14.2 shows trends in age at first sexual intercourse among young people between 2000 and 2013. The percentage of young women age 15-19 who had sex before age 15 decreased slightly between the 2000 and 2006-07 NDHS surveys, from 10 percent to 7 percent, and remained at 7 percent in 2013. Among young men age 15-19, there has been a steady decrease over the last 13 years in the proportion who had sex before age 15, from 31 percent in 2000 to 19 percent in 2006-07 and 13 percent in 2013. The percentage of women 18-19 who had sex before age 18 has decreased steadily over time, from 59 percent in 2000 to 47 percent in 2013. The percentage has decreased among young men as well, from 74 percent in 2000 to 59 percent in 2013.

Figure 14.2 Trends in age at first sexual intercourse
Percent

14.11.3 Premarital Sex

Table 14.20 shows the percentage of never-married women and men age $15-24$ who have never had sex, the percentage who engaged in sexual intercourse in the past 12 months, and, among those who had sexual intercourse within the past 12 months, the percentage who used a condom during their most recent sexual encounter.

Overall, 38 percent of women and 36 percent of men age 15-24 have never had sexual intercourse. Never-married young women and men age 15-19 have a relatively high level of abstinence (59 percent and 58 percent, respectively). Youth who do not know of a condom source, those who live in rural areas, and those with a primary education are more likely to have never had sex than youth in other groups.

Table 14.20 further shows that, among never-married young women age 15-24, 52 percent had sexual intercourse in the past 12 months. Among these women, only 68 percent reported using a condom during their last sexual encounter. Among never-married young men in this age group, again 52 percent reported having a sexual encounter in the past 12 months. More than eight in ten of these young men (83 percent) used a condom during their last sexual intercourse. The percentage of never-married youth who had sexual intercourse in the past 12 months increases with increasing age, as expected. However, among both young women and young men, the percentage who used a condom during their last sexual intercourse varies only slightly according to age.

The percentage of never-married youth who had sexual intercourse in the past 12 months is slightly higher among those living in urban (55 percent of women and 57 percent of men) than rural (47 percent of women and 48 percent of men) areas. There is no clear pattern with respect to education in the percentage of young men and women who have had sex in the past 12 months. On the other hand, there is a clear and increasing correlation between educational attainment and the percentage of never-married women and men who used a condom during their last sexual intercourse, with respondents at higher levels of education being more likely than those at lower levels to report having used a condom.

Among never-married women and men age 15-24, the percentage who have never had sexual intercourse, the percentage who had sexual intercourse in the past 12 months, and, among those who had premarital sexual intercourse in the past 12 months, the percentage who used a condom at the last sexual intercourse, by background characteristics, Namibia 2013

Background characteristic	Women					Men				
	Percentage who have never had sexual intercourse	Percentage who had sexual intercourse in the past 12 months	Number of nevermarried women	Women who had sexual intercourse in the past 12 months		Percentage who have never had sexual intercourse	Percentage who had sexual intercourse in the past 12 months	Number of nevermarried men	Men who had sexual intercourse in the past 12 months	
				Percentage who used a condom at last sexual intercourse	Number of women				Percentage who used a condom at last sexual intercourse	Number of men
Age										
15-19	58.7	34.1	1,793	68.1	612	57.5	32.5	915	82.4	297
15-17	72.1	23.7	1,042	66.1	248	72.3	20.5	575	75.9	118
18-19	40.2	48.5	751	69.5	364	32.7	52.7	340	86.7	179
20-24	12.0	73.9	1,391	67.9	1,027	8.4	76.9	727	82.8	559
20-22	14.9	71.3	933	65.6	665	11.8	73.8	462	82.6	341
23-24	6.2	79.1	458	72.1	362	2.5	82.2	265	83.1	218
Knows condom source ${ }^{1}$										
Yes	34.7	55.0	2,871	68.9	1,578	32.9	54.8	1,537	83.2	842
No	72.0	19.5	313	44.2	61	78.7	13.3	105	*	14
Residence										
Urban	35.2	55.3	1,724	72.8	953	29.7	56.9	804	84.8	457
Rural	42.0	47.0	1,461	61.3	686	41.6	47.6	838	80.2	399
Education										
No education	22.1	68.5	43	(42.9)	29	18.5	62.2	55	(61.2)	34
Primary	48.9	41.3	497	54.1	205	49.9	39.0	392	66.3	153
Secondary	38.0	51.0	2,306	69.3	1,175	33.4	54.3	1,098	87.2	597
More than secondary	27.0	67.8	338	77.2	229	15.6	74.2	98	90.0	73
Total 15-24	38.3	51.5	3,184	68.0	1,639	35.8	52.1	1,642	82.6	856

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home

14.11.4 Multiple Sexual Partners among Youth

The most common means of transmission of HIV in Namibia is through unprotected sex with an infected person. To prevent HIV transmission, it is important that young people practice safe sex. Tables 14.21.1 and 14.21.2 present data on the percentage of young people who engaged in sexual intercourse with more than one partner in the 12 months before the survey and the percentage who used a condom during their last sexual encounter.

Young men are more likely than young women to report having multiple sexual partners in the 12 months preceding the survey (9 percent and 3 percent, respectively). In general, the percentage of young men and young women who reported having sexual intercourse with more than one partner in the past 12 months increases with increasing age; in addition, it is higher among ever-married youth, those who know of a source of condoms, and those living in urban areas. The percentage of young women with multiple sexual partners is highest among those with no formal education (12 percent), while among young men the percentage is highest among those with more than a secondary education (15 percent).

Among young women and men who had multiple partners in the past 12 months, 68 percent and 79 percent, respectively, reported using a condom during their last sexual intercourse.

There has been a notable decrease over the last six years in the percentage of young men age 1524 who reported having more than one partner in the past 12 months, from 16 percent in 2006-07 to 9 percent in 2013. The percentage of young men with multiple partners who reported using a condom during their last sexual intercourse has increased from 74 percent to 79 percent over the same period.

Table 14.21.1 Multiple sexual partners in the past 12 months among young people: Women
Among all young women age 15-24, the percentage who had sexual intercourse with more than one sexual partner in the past 12 months, and among those having more than one partner in the past 12 months, the percentage reporting that a condom was used at last intercourse, by background characteristics, Namibia 2013

Background characteristic	Women age 15-24		Women age 15-24 who had $2+$ partners in the past 12 months	
	Percentage who had 2+ partners in the past 12 months	Number of women	Percentage who reported using a condom at last intercourse	Number of women
Age				
15-19	2.1	1,906	(61.4)	40
15-17	1.2	1,076	*	13
18-19	3.3	830	(74.1)	27
20-24	3.6	1,786	71.8	65
20-22	3.8	1,136	(69.6)	43
23-24	3.4	650	*	22
Marital status				
Never married	2.7	3,184	73.6	87
Ever married	3.5	507	*	18
Knows condom source ${ }^{1}$				
Yes	2.9	3,351	71.0	99
No	1.9	340	*	6
Residence				
Urban	3.8	2,008	73.1	77
Rural	1.7	1,683	(53.5)	28
Education				
No education	11.9	66	*	8
Primary	2.1	638	*	13
Secondary	2.7	2,620	76.0	72
More than secondary	3.2	368	*	12
Total 15-24	2.8	3,691	67.8	105

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

Table 14.21.2 Multiple sexual partners in the past 12 months among young people: Men

Among all young men age 15-24, the percentage who had sexual intercourse with more than one sexual partner in the past 12 months, and among those having more than one partner in the past 12 months, the percentage reporting that a condom was used at last intercourse, by background characteristics, Namibia 2013

Background characteristic	Men age 15-24		Men age 15-24 who had 2+ partners in the past 12 months	
	Percentage who had 2+ partners in the past 12 months	Number of men	Percentage who reported using a condom at last intercourse	Number of men
Age				
15-19	4.9	922	(75.1)	46
15-17	2.6	576	*	15
18-19	8.9	346	(82.8)	31
20-24	14.1	808	81.1	114
20-22	11.3	494	82.6	56
23-24	18.5	314	79.8	58
Marital status				
Never married	9.1	1,642	81.0	149
Ever married	12.1	88	*	11
Knows condom source ${ }^{1}$				
Yes	9.8	1,625	79.4	159
No	0.2	105	*	0
Residence				
Urban	10.0	858	84.0	86
Rural	8.5	872	74.1	74
Education				
No education	8.1	63	*	5
Primary	7.3	409	(66.0)	30
Secondary	9.4	1,159	81.8	109
More than secondary	15.1	100	*	15
Total 15-24	9.2	1,730	79.4	160

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

14.11.5 Age Mixing in Sexual Relationships

Research from around the world shows a steady and significant increase in rates of HIV infection among women, particularly women in Africa, Asia, Latin America, and the Caribbean. A substantial proportion of HIV/AIDS cases occur among young women age 15-29, indicating that many of these women were infected with HIV as adolescents. In many societies, young women have sexual relationships with men who are considerably older than they are. This practice can contribute to the spread of HIV and other STIs because if a younger, uninfected partner has sex with an older, infected partner, this can introduce the virus into a younger, uninfected cohort.

This section examines the prevalence of sexual intercourse between partners with large age differences. Women age 15-19 who had higher-risk sexual intercourse in the past 12 months were asked the age of all of their partners. In the event they did not know a partner's exact age, they were asked if the partner was older or younger than they were and, if older, whether the partner was 10 or more years older.

Table 14.22 shows that, in the year preceding the survey, 6 percent of young women age 15-19 who had sexual intercourse had sex with a man 10 or more years older. A higher percentage of young women who had sexual intercourse with an older man resided in rural than urban areas. The likelihood of a woman having higher-risk sexual intercourse with an older man does not change with age. Sexual intercourse between women age 15-19 and men 10 or more years older appears to decrease with increasing education.

Young men age 15-19 who reported that they had a sexual partner in the past 12 months were also asked the age of the partner. Less than 1 percent of young men reported having a partner 10 or more years older.

Table 14.22 Age mixing in sexual relationships among women and men age 15-19
Among women and men age 15-19 who had sexual intercourse in the past 12 months, percentage who had sexual intercourse with a partner who was 10 or more years older than themselves, by background characteristics, Namibia 2013

Background characteristic	Women age 15-19 who had sexual intercourse in the past 12 months		Men age 15-19 who had sexual intercourse in the past 12 months	
	Percentage who had sexual intercourse with a man 10+ years older	Number of women	Percentage who had sexual intercourse with a woman 10+ years older	Number of men
Age				
15-17	5.4	279	0.0	119
18-19	5.8	441	0.3	185
Marital status				
Never married	4.0	612	0.0	297
Ever married	14.9	107	*	7
Knows condom source ${ }^{1}$				
Yes	5.5	675	0.2	294
No	(8.6)	45	*	10
Residence				
Urban	4.2	333	0.0	140
Rural	6.9	386	0.3	164
Education				
No education	(11.2)	21	*	7
Primary	9.3	182	0.7	70
Secondary	4.4	482	0.0	217
More than secondary	*	34	*	9
Total	5.7	719	0.2	304

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

Key Findings

- In Namibia, 14.0 percent of adults age 15-49 and 16.4 percent of those age 50-64 are infected with HIV.
- HIV prevalence among respondents age 15-49 is 16.9 percent for women and 10.9 percent for men. HIV prevalence rates among women and men age 50-64 are similar (16.7 percent and 16.0 percent, respectively).
- HIV prevalence peaks in the 35-39 age group for both women and men (30.9 percent and 22.6 percent, respectively). It is lowest among respondents age 15-24 (2.5-6.4 percent for women and 2.0-3.4 percent for men).
- Among respondents age $15-49$, HIV prevalence is highest for women and men in Zambezi (30.9 percent and 15.9 percent, respectively) and lowest for women in Omaheke (6.9 percent) and men in Ohangwena (6.6 percent).
- Among women and men age 5-49, the percentage HIV positive decreases with education and it generally decreases with wealth.
- More than half of widowed women (51.7 percent) are infected with the AIDS virus.
- Men age 15-49 with a sexually transmitted infection (STI) or STI symptoms in the past 12 months are much more likely to test HIV positive than those who did not have an STI or STI symptoms (24.8 percent versus11.7 percent).
- In 76.4 percent of the 1,007 cohabiting couples who were tested for HIV in the 2013 NDHS, both partners were HIV negative; in 10.1 percent of the couples, both partners were HIV positive; and 13.5 percent of the couples were discordant (that is, one partner was infected with HIV and the other was not).

Information about the magnitude of and trends in national HIV prevalence in Namibia is obtained from sentinel surveillance of HIV among pregnant women attending antenatal care (ANC) clinics. The national HIV prevalence among pregnant women was estimated at 18.2 percent according to the 2012 HIV Antenatal Clinic Sentinel Surveillance Report (MoHSS, 2012e). In addition, Namibia is currently conducting its first Integrated Bio-Behavioural Surveillance Survey with high-risk populations, namely men who have sex with men and female sex workers. However, these surveillance data do not provide an estimate of the HIV prevalence among the general population in Namibia. In the absence of populationbased data, data from ANC sentinel surveillance are used (via the Spectrum model) to estimate the national HIV prevalence. Based on this model, the 2011/2012 HIV prevalence among adult population age 15-49 was estimated at 13.4 percent (MoHSS, 2012b).

The 2013 NDHS is the first nationally representative survey to provide direct HIV prevalence estimates for the general population in Namibia. The survey included HIV testing of a nationally representative sample of women and men age 15-64 in half of the selected survey households (the same households selected for the male survey). HIV prevalence is disaggregated by various background characteristics, such as age, residence, region, education, and wealth. In addition, HIV prevalence is
analysed according to demographic characteristics and sexual behaviour to identify factors associated with the epidemic.

Test results will be used to further refine HIV prevalence estimates based on the sentinel surveillance system and allow better monitoring of the epidemic. HIV prevalence estimates will also be used to project the future path of the HIV epidemic in Namibia and to target prevention, care, and treatment interventions effectively and efficiently.

The methodology for HIV testing is described in detail in Chapter 1. This chapter presents the results of the testing and provides information on HIV testing coverage rates among eligible survey respondents.

15.1 Participation Rates for HiV Testing

Tables 15.1.1 and 15.1.2 show the distributions of respondents age 15-49 and age 50-64, respectively, who were eligible for HIV testing by background characteristics, residence, and region. Overall, 79 percent of NDHS respondents age 15-49 who were eligible for testing were both interviewed and tested and 2 percent were tested but not interviewed. Among respondents age 50-64, 80 percent were interviewed and tested and 3 percent were tested but not interviewed.

Among respondents age 15-49 and 50-64 eligible for HIV testing, 8 percent each refused to provide blood. Six percent of respondents age 15-49 and 4 percent of respondents age 50-64 were absent at the time of blood collection.

HIV testing rate does not vary much by age for women. Among men, it ranges from 68 percent among those age 40-44 to 80 percent among those age 15-19. Participation of all eligible respondents age $15-49$ in HIV testing was higher among rural (84 percent) than urban residents (74 percent). By region, testing rates among respondents age 15-49 ranges from 60 percent in Khomas to 90 percent in Ohangwena. HIV testing rates among all respondents age 15-49 were lowest for respondents with more than secondary education (65 percent) and for those in the highest wealth quintile (68 percent).

Table 15.1.1 Coverage of HIV testing by background characteristics: Respondents age 15-49
Percent distribution of women and men age 15-49 eligible for HIV testing by testing status, according to background characteristics (unweighted), Namibia 2013

Background characteristic	Testing status								Total	Number
	DBS tested ${ }^{1}$		Refused to provide blood		Absent at the time of blood collection		Other/missing ${ }^{2}$			
	Interviewed	Not interviewed								
WOMEN 15-49										
Age										
15-19	85.6	1.3	4.7	1.3	1.7	1.9	2.4	1.0	100.0	991
20-24	83.3	2.0	4.5	1.7	2.3	3.4	1.1	1.7	100.0	974
25-29	81.4	2.2	6.3	1.2	3.1	2.1	1.5	2.2	100.0	813
30-34	82.5	2.9	5.0	1.9	1.6	2.9	1.4	1.9	100.0	699
35-39	82.8	2.0	5.8	1.7	0.9	2.1	1.8	2.9	100.0	656
40-44	84.1	1.0	5.7	1.6	3.3	1.2	1.4	1.6	100.0	491
45-49	81.7	2.1	6.5	1.6	2.1	2.1	1.4	2.6	100.0	431
Residence										
Urban	78.7	2.2	7.2	2.2	2.5	3.0	1.9	2.2	100.0	2,724
Rural	88.4	1.6	3.2	0.8	1.7	1.6	1.2	1.5	100.0	2,331
Region										
Zambezi	79.5	2.7	6.7	1.3	2.7	1.1	2.4	3.5	100.0	371
Erongo	80.3	3.4	5.7	1.9	0.8	3.4	1.7	2.9	100.0	476
Hardap	88.4	0.0	4.9	0.3	1.7	2.6	0.6	1.5	100.0	344
//Karas	87.2	0.7	4.9	0.2	2.8	2.1	1.2	0.9	100.0	430
Kavango	79.9	6.8	4.1	2.2	2.7	2.7	0.5	1.2	100.0	413
Khomas	66.1	1.8	11.0	4.8	5.2	5.3	2.5	3.4	100.0	563
Kunene	82.4	2.0	8.1	1.3	0.7	0.7	2.9	2.0	100.0	307
Ohangwena	94.6	1.3	0.3	0.3	0.8	1.6	0.3	1.0	100.0	386
Omaheke	82.8	1.0	6.8	0.0	2.4	1.7	3.4	2.0	100.0	296
Omusati	89.7	1.6	1.3	0.8	2.1	1.3	2.1	1.1	100.0	377
Oshana	88.8	0.5	2.4	1.6	0.8	3.2	1.6	1.1	100.0	374
Oshikoto	86.4	0.3	5.5	0.6	2.0	2.0	0.6	2.6	100.0	346
Otjozondjupa	84.9	1.9	6.2	3.0	1.1	0.5	1.6	0.8	100.0	372
Education										
No education	76.9	5.5	7.0	1.8	0.0	1.2	2.1	5.5	100.0	329
Primary	86.5	2.0	3.2	1.3	2.3	1.5	1.7	1.4	100.0	1,052
Secondary	84.6	1.6	5.2	1.4	2.1	2.3	1.4	1.5	100.0	3,281
More than secondary	68.9	0.8	11.6	3.1	3.6	5.7	2.8	3.6	100.0	389
Missing	0.0	25.0	0.0	0.0	0.0	50.0	0.0	25.0	100.0	4
Wealth quintile										
Lowest	88.5	2.3	2.3	0.5	2.1	1.8	1.5	0.9	100.0	777
Second	87.3	1.7	4.1	1.0	1.7	1.2	1.5	1.5	100.0	882
Middle	87.9	1.2	3.0	1.1	2.4	2.1	1.2	1.2	100.0	1,007
Fourth	81.7	2.5	6.0	1.8	2.0	2.5	1.3	2.1	100.0	1,262
Highest	73.8	1.8	9.8	2.8	2.3	3.6	2.5	3.3	100.0	1,127
Total 15-49	83.2	1.9	5.4	1.6	2.1	2.3	1.6	1.9	100.0	5,055
MEN 15-49										
Age										
15-19	79.6	1.8	5.1	2.9	2.1	3.4	2.5	2.5	100.0	989
20-24	73.5	2.3	8.7	2.4	2.8	5.9	2.1	2.3	100.0	884
25-29	73.6	2.5	5.8	3.8	2.6	6.7	2.5	2.5	100.0	728
30-34	69.6	2.3	8.1	3.1	3.2	7.0	2.4	4.2	100.0	616
35-39	71.3	2.1	6.1	3.9	1.6	7.1	2.1	5.7	100.0	561
40-44	67.8	3.9	6.6	3.3	4.5	5.1	3.7	5.1	100.0	488
45-49	75.1	1.4	6.5	1.7	4.2	4.5	1.4	5.1	100.0	354
Residence										
Urban	67.7	2.7	7.7	4.0	4.0	6.6	3.0	4.3	100.0	2,425
Rural	80.0	1.9	5.6	2.0	1.5	4.5	1.8	2.7	100.0	2,195
Region										
Zambezi	69.2	3.3	9.6	2.1	3.3	3.3	5.1	4.2	100.0	334
Erongo	71.7	1.8	4.3	1.8	5.3	5.1	4.9	4.9	100.0	488
Hardap	78.5	0.0	8.9	2.8	2.8	2.8	1.5	2.8	100.0	326
//Karas	78.3	1.5	3.1	4.1	3.3	6.6	0.3	2.8	100.0	392
Kavango	75.0	6.0	6.6	3.0	1.8	3.6	1.2	2.7	100.0	332
Khomas	53.8	2.5	11.6	5.6	5.7	11.8	3.2	5.7	100.0	558
Kunene	74.7	1.4	13.7	1.1	0.4	2.9	2.2	3.6	100.0	277
Ohangwena	84.6	0.7	1.4	1.8	0.0	3.9	5.4	2.2	100.0	279
Omaheke	77.6	3.7	7.1	3.1	1.4	3.4	0.7	3.1	100.0	295
Omusati	80.2	2.3	3.0	1.7	1.7	7.3	1.7	2.3	100.0	303
Oshana	75.3	1.5	3.7	2.5	3.7	7.7	1.9	3.7	100.0	324
Oshikoto	76.9	0.0	6.9	3.5	2.3	6.4	1.2	2.9	100.0	346
Otjozondjupa	76.8	4.6	5.2	4.6	1.1	3.3	1.4	3.0	100.0	366

Continued...

Table 15.1.1—Continued

Background characteristic	Testing status								Total	Number
	DBS tested ${ }^{1}$		Refused to provide blood		Absent at the time of blood collection		Other/missing ${ }^{2}$			
	Interviewed	Not interviewed								
Education										
No education	72.7	4.1	4.9	1.5	1.7	5.5	1.5	8.1	100.0	469
Primary	78.8	2.0	4.4	3.5	2.3	4.0	2.0	3.0	100.0	1,118
Secondary	73.8	2.1	7.4	2.8	3.1	5.4	2.7	2.8	100.0	2,655
More than secondary	60.2	1.9	11.0	4.4	4.4	9.9	3.3	4.7	100.0	362
Missing	0.0	6.3	0.0	31.3	0.0	56.3	0.0	6.3	100.0	16
Wealth quintile										
Lowest	80.9	2.1	5.0	1.8	1.9	3.7	1.9	2.7	100.0	674
Second	80.0	1.6	5.3	2.5	1.8	4.8	1.4	2.4	100.0	867
Middle	77.1	2.4	5.2	2.3	2.3	6.0	2.0	2.6	100.0	1,035
Fourth	72.0	2.8	7.3	3.7	3.1	5.3	2.1	3.7	100.0	1,080
Highest	60.6	2.4	9.9	4.5	4.7	7.6	4.5	6.0	100.0	964
Total 15-49	73.6	2.3	6.7	3.1	2.8	5.6	2.4	3.5	100.0	4,620
TOTAL 15-49										
Age										
15-19	82.6	1.6	4.9	2.1	1.9	2.7	2.5	1.8	100.0	1,980
20-24	78.6	2.1	6.5	2.0	2.5	4.6	1.6	2.0	100.0	1,858
25-29	77.7	2.3	6.0	2.5	2.9	4.3	1.9	2.3	100.0	1,541
30-34	76.5	2.6	6.5	2.4	2.4	4.8	1.9	3.0	100.0	1,315
35-39	77.5	2.1	5.9	2.7	1.2	4.4	2.0	4.2	100.0	1,217
40-44	76.0	2.5	6.1	2.5	3.9	3.2	2.6	3.4	100.0	979
45-49	78.7	1.8	6.5	1.7	3.1	3.2	1.4	3.7	100.0	785
Residence										
Urban	73.5	2.4	7.4	3.1	3.2	4.7	2.4	3.2	100.0	5,149
Rural	84.4	1.7	4.3	1.4	1.6	3.0	1.5	2.1	100.0	4,526
Region										
Zambezi	74.6	3.0	8.1	1.7	3.0	2.1	3.7	3.8	100.0	705
Erongo	75.9	2.6	5.0	1.9	3.1	4.3	3.3	3.9	100.0	964
Hardap	83.6	0.0	6.9	1.5	2.2	2.7	1.0	2.1	100.0	670
//Karas	83.0	1.1	4.0	2.1	3.0	4.3	0.7	1.8	100.0	822
Kavango	77.7	6.4	5.2	2.6	2.3	3.1	0.8	1.9	100.0	745
Khomas	59.9	2.1	11.3	5.2	5.4	8.6	2.9	4.5	100.0	1,121
Kunene	78.8	1.7	10.8	1.2	0.5	1.7	2.6	2.7	100.0	584
Ohangwena	90.4	1.1	0.8	0.9	0.5	2.6	2.4	1.5	100.0	665
Omaheke	80.2	2.4	6.9	1.5	1.9	2.5	2.0	2.5	100.0	591
Omusati	85.4	1.9	2.1	1.2	1.9	4.0	1.9	1.6	100.0	680
Oshana	82.5	1.0	3.0	2.0	2.1	5.3	1.7	2.3	100.0	698
Oshikoto	81.6	0.1	6.2	2.0	2.2	4.2	0.9	2.7	100.0	692
Otjozondjupa	80.9	3.3	5.7	3.8	1.1	1.9	1.5	1.9	100.0	738
Education										
No education	74.4	4.6	5.8	1.6	1.0	3.8	1.8	7.0	100.0	798
Primary	82.5	2.0	3.8	2.4	2.3	2.8	1.8	2.3	100.0	2,170
Secondary	79.8	1.9	6.1	2.0	2.5	3.7	2.0	2.1	100.0	5,936
More than secondary	64.7	1.3	11.3	3.7	4.0	7.7	3.1	4.1	100.0	751
Missing	0.0	10.0	0.0	25.0	0.0	55.0	0.0	10.0	100.0	20
Wealth quintile										
Lowest	85.0	2.2	3.6	1.1	2.0	2.7	1.7	1.7	100.0	1,451
Second	83.7	1.7	4.7	1.8	1.8	3.0	1.4	1.9	100.0	1,749
Middle	82.4	1.8	4.1	1.7	2.4	4.1	1.6	1.9	100.0	2,042
Fourth	77.2	2.6	6.6	2.7	2.5	3.8	1.7	2.9	100.0	2,342
Highest	67.7	2.1	9.9	3.6	3.4	5.5	3.4	4.5	100.0	2,091
Total 15-49	78.6	2.1	6.0	2.3	2.4	3.9	2.0	2.7	100.0	9,675

${ }^{1}$ Includes all dried blood samples (DBS) tested at the lab and for which there is a result (i.e., positive, negative, or indeterminate). Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
${ }^{2}$ Includes (1) other results of blood collection (e.g., technical problem in the field), (2) lost specimens, (3) non-corresponding bar codes, and (4) other lab results such as blood not tested for technical reason, not enough blood to complete the algorithm, etc.

Table 15.1.2 Coverage of HIV testing by background characteristics: Respondents age 50-64
Percent distribution of women and men age 50-64 eligible for HIV testing by testing status, according to background characteristics (unweighted), Namibia 2013

Background characteristic	Testing status								Total	Number
	DBS tested ${ }^{1}$		Refused to provide blood		Absent at the time of blood collection		Other/missing ${ }^{2}$			
	Interviewed	Not interviewed								
WOMEN 50-64										
Age										
50-54	86.2	2.5	3.4	2.0	1.2	1.5	0.7	2.5	100.0	407
55-59	82.0	3.3	7.4	2.2	1.1	0.7	1.1	2.2	100.0	272
60-64	85.0	2.5	4.2	0.4	1.3	0.8	0.4	5.4	100.0	240
Residence										
Urban	77.7	3.6	8.4	2.5	1.7	1.4	1.4	3.3	100.0	359
Rural	89.1	2.1	2.5	1.1	0.9	0.9	0.4	3.0	100.0	560
Region										
Zambezi	79.2	0.0	11.3	1.9	1.9	1.9	0.0	3.8	100.0	53
Erongo	86.7	0.0	5.0	0.0	0.0	3.3	1.7	3.3	100.0	60
Hardap	73.3	0.0	13.3	5.3	1.3	0.0	1.3	5.3	100.0	75
//Karas	91.3	1.4	1.4	1.4	2.9	0.0	1.4	0.0	100.0	69
Kavango	78.8	10.0	3.8	1.3	0.0	2.5	0.0	3.8	100.0	80
Khomas	64.6	4.6	13.8	6.2	3.1	1.5	1.5	4.6	100.0	65
Kunene	84.3	4.3	5.7	1.4	1.4	0.0	1.4	1.4	100.0	70
Ohangwena	91.0	4.5	1.5	0.0	0.0	0.0	0.0	3.0	100.0	67
Omaheke	91.9	1.6	1.6	0.0	1.6	0.0	0.0	3.2	100.0	62
Omusati	90.6	0.0	1.9	0.0	0.0	0.9	1.9	4.7	100.0	106
Oshana	90.5	0.0	1.6	0.0	3.2	3.2	0.0	1.6	100.0	63
Oshikoto	92.5	1.5	1.5	0.0	0.0	1.5	0.0	3.0	100.0	67
Otjozondjupa	84.1	6.1	2.4	3.7	1.2	0.0	0.0	2.4	100.0	82
Education										
No education	81.1	7.0	4.5	1.0	0.0	1.0	1.0	4.5	100.0	201
Primary	90.5	1.5	3.5	0.7	1.2	0.0	0.5	2.0	100.0	401
Secondary	84.2	0.8	4.6	2.5	2.5	2.1	0.8	2.5	100.0	241
More than secondary	67.1	4.1	13.7	4.1	0.0	2.7	1.4	6.8	100.0	73
Missing	0.0	0.0	0.0	33.3	0.0	33.3	0.0	33.3	100.0	3
Wealth quintile										
Lowest	87.0	3.6	4.2	0.5	0.5	1.0	0.5	2.6	100.0	192
Second	88.9	2.9	2.3	0.6	1.8	0.6	1.2	1.8	100.0	171
Middle	86.7	3.8	3.8	0.6	0.0	1.9	0.6	2.5	100.0	158
Fourth	89.2	2.0	2.9	1.5	1.0	0.0	0.5	2.9	100.0	204
Highest	72.2	1.5	10.3	4.6	2.6	2.1	1.0	5.7	100.0	194
Total 50-64	84.7	2.7	4.8	1.6	1.2	1.1	0.8	3.2	100.0	919
MEN 50-64										
Age										
50-54	70.3	2.2	6.6	4.8	1.5	7.7	1.1	5.9	100.0	273
55-59	76.1	5.1	5.6	2.0	1.5	4.1	1.5	4.1	100.0	197
60-64	73.5	3.9	6.1	3.9	0.6	5.5	1.1	5.5	100.0	181
Residence										
Urban	65.3	4.0	7.4	6.4	2.0	7.4	1.3	6.1	100.0	297
Rural	79.4	3.1	5.1	1.4	0.6	4.8	1.1	4.5	100.0	354
Region										
Zambezi	58.6	6.9	13.8	3.4	0.0	3.4	3.4	10.3	100.0	29
Erongo	74.6	0.0	7.5	3.0	1.5	7.5	1.5	4.5	100.0	67
Hardap	82.0	0.0	3.3	3.3	0.0	4.9	1.6	4.9	100.0	61
//Karas	81.0	3.2	7.9	0.0	0.0	3.2	1.6	3.2	100.0	63
Kavango	64.3	14.3	2.4	7.1	2.4	4.8	0.0	4.8	100.0	42
Khomas	44.4	11.1	0.0	5.6	3.7	24.1	1.9	9.3	100.0	54
Kunene	81.8	6.8	4.5	4.5	2.3	0.0	0.0	0.0	100.0	44
Ohangwena	79.3	0.0	3.4	0.0	3.4	0.0	3.4	10.3	100.0	29
Omaheke	77.1	1.4	8.6	1.4	1.4	5.7	0.0	4.3	100.0	70
Omusati	76.1	2.2	4.3	2.2	2.2	4.3	2.2	6.5	100.0	46
Oshana	74.1	3.7	11.1	0.0	0.0	7.4	0.0	3.7	100.0	27
Oshikoto	75.6	0.0	4.4	2.2	0.0	6.7	0.0	11.1	100.0	45
Otjozondjupa	73.0	1.4	9.5	10.8	0.0	2.7	1.4	1.4	100.0	74
Education										
No education	78.0	6.4	2.8	2.1	0.7	4.3	0.7	5.0	100.0	141
Primary	80.7	2.7	5.4	2.2	1.3	3.6	1.3	2.7	100.0	223
Secondary	69.0	2.4	10.0	4.3	1.9	6.2	0.5	5.7	100.0	210
More than secondary	58.0	4.3	4.3	7.2	0.0	15.9	4.3	5.8	100.0	69
Missing	0.0	0.0	0.0	25.0	0.0	12.5	0.0	62.5	100.0	8

Continued...

Table 15.1.2—Continued										
Background characteristic	Testing status								Total	Number
	DBS tested ${ }^{1}$		Refused to provide blood		Absent at the time of blood collection		Other/missing ${ }^{2}$			
	Interviewed	Not interviewed								
Wealth quintile										
Lowest	80.3	7.9	3.9	1.3	0.0	2.6	1.3	2.6	100.0	76
Second	78.6	2.7	6.3	0.0	1.8	2.7	0.9	7.1	100.0	112
Middle	83.9	3.2	3.2	3.2	1.6	3.2	1.6	0.0	100.0	124
Fourth	70.4	1.3	8.2	5.7	0.6	6.9	0.0	6.9	100.0	159
Highest	61.1	4.4	7.2	5.6	1.7	10.6	2.2	7.2	100.0	180
Total 50-64	73.0	3.5	6.1	3.7	1.2	6.0	1.2	5.2	100.0	651
				TOTAL	-64					
Age										
50-54	79.9	2.4	4.7	3.1	1.3	4.0	0.9	3.8	100.0	680
55-59	79.5	4.1	6.6	2.1	1.3	2.1	1.3	3.0	100.0	469
60-64	80.0	3.1	5.0	1.9	1.0	2.9	0.7	5.5	100.0	421
Residence										
Urban	72.1	3.8	7.9	4.3	1.8	4.1	1.4	4.6	100.0	656
Rural	85.3	2.5	3.5	1.2	0.8	2.4	0.7	3.6	100.0	914
Region										
Zambezi	72.0	2.4	12.2	2.4	1.2	2.4	1.2	6.1	100.0	82
Erongo	80.3	0.0	6.3	1.6	0.8	5.5	1.6	3.9	100.0	127
Hardap	77.2	0.0	8.8	4.4	0.7	2.2	1.5	5.1	100.0	136
//Karas	86.4	2.3	4.5	0.8	1.5	1.5	1.5	1.5	100.0	132
Kavango	73.8	11.5	3.3	3.3	0.8	3.3	0.0	4.1	100.0	122
Khomas	55.5	7.6	7.6	5.9	3.4	11.8	1.7	6.7	100.0	119
Kunene	83.3	5.3	5.3	2.6	1.8	0.0	0.9	0.9	100.0	114
Ohangwena	87.5	3.1	2.1	0.0	1.0	0.0	1.0	5.2	100.0	96
Omaheke	84.1	1.5	5.3	0.8	1.5	3.0	0.0	3.8	100.0	132
Omusati	86.2	0.7	2.6	0.7	0.7	2.0	2.0	5.3	100.0	152
Oshana	85.6	1.1	4.4	0.0	2.2	4.4	0.0	2.2	100.0	90
Oshikoto	85.7	0.9	2.7	0.9	0.0	3.6	0.0	6.3	100.0	112
Otjozondjupa	78.8	3.8	5.8	7.1	0.6	1.3	0.6	1.9	100.0	156
Education										
No education	79.8	6.7	3.8	1.5	0.3	2.3	0.9	4.7	100.0	342
Primary	87.0	1.9	4.2	1.3	1.3	1.3	0.8	2.2	100.0	624
Secondary	77.2	1.6	7.1	3.3	2.2	4.0	0.7	4.0	100.0	451
More than secondary	62.7	4.2	9.2	5.6	0.0	9.2	2.8	6.3	100.0	142
Missing	0.0	0.0	0.0	27.3	0.0	18.2	0.0	54.5	100.0	11
Wealth quintile										
Lowest	85.1	4.9	4.1	0.7	0.4	1.5	0.7	2.6	100.0	268
Second	84.8	2.8	3.9	0.4	1.8	1.4	1.1	3.9	100.0	283
Middle	85.5	3.5	3.5	1.8	0.7	2.5	1.1	1.4	100.0	282
Fourth	81.0	1.7	5.2	3.3	0.8	3.0	0.3	4.7	100.0	363
Highest	66.8	2.9	8.8	5.1	2.1	6.1	1.6	6.4	100.0	374
Total 50-64	79.8	3.1	5.4	2.5	1.2	3.1	1.0	4.0	100.0	1,570

${ }^{1}$ Includes all dried blood samples (DBS) tested at the lab and for which there is a result (i.e., positive, negative, or indeterminate). Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
${ }^{2}$ Includes (1) other results of blood collection (e.g., technical problem in the field), (2) lost specimens, (3) non-corresponding bar codes, and (4) other lab results such as blood not tested for technical reason, not enough blood to complete the algorithm, etc.

15.2 HIV Prevalence

15.2.1 HIV Prevalence by Age

Table 15.2 shows that the overall HIV prevalence among eligible respondents age 15-49 is 14.0 percent and among those age 50-64 it is 16.4 percent. Among respondents age $15-49$, the prevalence rate is 16.9 percent for women and 10.9 percent for men. HIV prevalence rates for women and men age 50-64 are similar (16.7 percent and 16.0 percent, respectively).

HIV prevalence peaks in the 35-39 age group for both women and men (30.9 percent and 22.6 percent, respectively), while the lowest rates are among respondents age 15-24 (2.5-6.4 percent for women and 2.0-3.4 percent for men). HIV prevalence for the $15-24$ age group is assumed to represent newer infections and therefore serves as a proxy for HIV incidence. The low HIV prevalence in this age group according to the 2013 NDHS HIV testing indicates a low recent infection rate among youth.

Table 15.2 HIV prevalence by age
Among de facto women and men age 15-64 who were interviewed and tested, the percentage HIV positive, by age, Namibia 2013

Age	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
15-19	2.5	835	2.0	860	2.3	1,695
20-24	6.4	815	3.4	734	5.0	1,548
25-29	16.3	647	9.4	614	13.0	1,261
30-34	28.0	566	16.6	465	22.8	1,031
35-39	30.9	513	22.6	429	27.1	942
40-44	27.1	376	21.9	313	24.8	689
45-49	28.6	300	21.8	265	25.4	565
50-54	22.0	320	16.7	177	20.1	497
55-59	15.5	187	19.4	141	17.2	327
60-64	8.7	183	11.0	121	9.6	303
Total 15-49	16.9	4,051	10.9	3,680	14.0	7,731
50-64	16.7	689	16.0	438	16.4	1,127

15.2.2 HIV Prevalence by Socioeconomic Characteristics

Table 15.3.1 shows the variation in HIV prevalence among respondents age 15-49 by various socioeconomic characteristics (religion, employment, residence, region, educational level, and wealth quintile). Respondents who were employed in the last 12 months (16.5 percent) are more likely than those who were not employed (11.2 percent) to be HIV positive (in this chapter, HIV positive refers to positive for HIV-1). This pattern is more pronounced among women, where 20.8 percent of employed women are HIV positive compared with 13.8 percent of unemployed women.

Women in rural areas (19.3 percent) are more likely than those in urban areas (15.0 percent) to be HIV positive. However, the opposite is true for men; rural residents have a slightly lower HIV prevalence than their urban counterparts (10.1 percent versus 11.5 percent). There are substantial variations in HIV prevalence by region. Only 6.9 percent of women age 15-49 in Omaheke are HIV positive compared with 30.9 of those in Zambezi. Among men, HIV prevalence is lowest in Ohangwena (6.6 percent) and highest in Zambezi (15.9 percent). HIV prevalence among women and men decreases with education and it generally decreases with wealth. Women and men with no education have the highest HIV prevalence (26.6 percent and 15.8 percent, respectively) and those with more than a secondary education have the lowest prevalence rates (5.6 percent and 6.0 percent, respectively). Men and women in the highest wealth quintile are the least likely to be HIV positive (5.5 percent and 3.0 percent, respectively).

Table 15.3.1 HIV prevalence by socioeconomic characteristics: Respondents age 15-49
Percentage HIV positive among women and men age 15-49 who were tested, by socioeconomic characteristics, Namibia 2013

Background characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Religion						
Roman Catholic	19.2	790	12.1	969	15.3	1,759
Protestant/Anglican	17.2	861	8.0	463	14.0	1,324
ELCIN	16.8	1,782	12.2	1,620	14.6	3,402
Seventh-Day Adventist	23.1	207	15.4	139	20.0	346
No religion	(4.8)	50	3.0	53	3.9	103
Other	9.5	351	5.9	430	7.6	780
Employment (last 12 months)						
Not employed	13.8	2,255	7.2	1,398	11.2	3,653
Employed	20.8	1,794	13.2	2,281	16.5	4,075
Residence						
Urban	15.0	2,280	11.5	2,088	13.3	4,367
Rural	19.3	1,771	10.1	1,592	15.0	3,364
Region						
Zambezi	30.9	212	15.9	197	23.7	409
Erongo	14.6	332	10.4	342	12.5	674
Hardap	8.8	151	7.5	138	8.2	289
//Karas	15.0	155	9.5	139	12.4	294
Kavango	19.8	364	13.5	290	17.0	654
Khomas	12.2	940	11.6	927	11.9	1,868
Kunene	8.9	112	10.6	95	9.7	206
Ohangwena	22.1	420	6.6	304	15.6	724
Omaheke	6.9	104	7.7	96	7.3	199
Omusati	21.9	380	12.1	316	17.4	695
Oshana	20.3	352	11.3	308	16.1	660
Oshikoto	16.4	299	10.5	306	13.4	605
Otjozondjupa	14.2	231	9.7	223	12.0	454
Education						
No education	26.6	193	15.8	295	20.0	488
Primary	25.8	807	14.0	897	19.6	1,704
Secondary	15.0	2,698	9.6	2,191	12.6	4,889
More than secondary	5.6	353	6.0	297	5.8	650
Wealth quintile						
Lowest	23.8	631	11.8	552	18.2	1,182
Second	24.4	739	15.7	743	20.0	1,481
Middle	20.4	791	14.1	839	17.2	1,630
Fourth	14.4	989	9.5	839	12.1	1,828
Highest	5.5	901	3.0	708	4.4	1,609
Total 15-49	16.9	4,051	10.9	3,680	14.0	7,731

Note: Figures in parentheses are based on 25-49 unweighted cases. Total includes 2 women with missing information on employment in the last 12 months.
ELCIN = Evangelical Lutheran Church in Namibia

Table 15.3.2 shows the variation in HIV prevalence among women and men age 50-64 by socioeconomic characteristics. Women in rural areas (15.7 percent) are less likely to be HIV positive than those in urban areas (18.2 percent), while rural men are more likely than urban men to be HIV positive (18.3 percent versus 13.5 percent). The regional differentials are notable, with HIV prevalence being highest in Zambezi (29.4 percent) and Oshana (27.3 percent), and lowest in Hardap (4.9 percent). Similar to respondents age 15-49, HIV prevalence for those age 50-64 generally decreases with education and wealth, although the patterns are not linear.

Table 15.3.2 HIV prevalence by socioeconomic characteristics: Respondents age 50-64
Percentage HIV positive among women and men age 50-64 who were tested, by socioeconomic characteristics, Namibia 2013

Background characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Religion						
Roman Catholic	21.2	157	20.1	86	20.8	244
Protestant/Anglican	11.2	139	10.4	64	10.9	203
ELCIN	18.1	309	20.0	191	18.8	500
Seventh-Day Adventist	(23.8)	25	*	14	16.7	40
No religion	*	10	*	13	(1.6)	23
Other	8.2	48	9.0	67	8.7	115
Employment (last 12 months)						
Not employed	15.8	399	14.9	159	15.5	559
Employed	18.0	290	16.7	279	17.3	568
Residence						
Urban	18.2	265	13.5	206	16.1	471
Rural	15.7	424	18.3	232	16.6	656
Region						
Zambezi	(37.6)	31	*	14	29.4	45
Erongo	11.4	41	21.8	45	16.8	86
Hardap	6.0	29	3.7	26	4.9	56
//Karas	9.4	27	10.1	24	9.7	51
Kavango	10.2	69	(20.8)	29	13.3	98
Khomas	(13.9)	93	*	80	11.5	172
Kunene	8.9	25	(5.6)	16	7.6	41
Ohangwena	13.9	68	*	27	18.6	95
Omaheke	7.3	22	9.0	25	8.2	48
Omusati	20.7	113	(23.6)	45	21.5	158
Oshana	32.8	57	*	25	27.3	82
Oshikoto	20.2	62	(29.0)	38	23.5	99
Otjozondjupa	12.5	51	13.3	45	12.9	96
Education						
No education	14.3	133	20.1	87	16.6	220
Primary	17.7	325	21.2	166	18.9	491
Secondary	18.2	182	10.8	143	15.0	325
More than secondary	(10.7)	49	(5.1)	42	8.2	91
Wealth quintile						
Lowest	17.9	159	15.4	59	17.2	219
Second	18.9	134	22.3	72	20.1	206
Middle	17.0	120	24.4	93	20.2	213
Fourth	18.4	149	19.7	96	18.9	245
Highest	10.5	127	2.9	117	6.8	244
Total 50-64	16.7	689	16.0	438	16.4	1,127

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 2 women with missing information on employment in the last 12 months. ELCIN = Evangelical Lutheran Church in Namibia

15.2.3 HIV Prevalence by Demographic and Health Characteristics

Tables 15.4.1 and 15.4.2 show HIV prevalence among respondents age 15-49 and 50-64, respectively, by demographic characteristics.

Widowed women age 15-49 are notably more likely to be HIV positive (51.7 percent) than women with different marital status (13.1-37.1 percent). HIV prevalence is higher among women in polygynous unions (22.6 percent) than those in non-polygynous unions (17.8 percent) and women not in union (16.1 percent). Number of times away from home has an inverse relationship with HIV prevalence among women; 18.3 percent of women who have not slept away from home in the past 12 months are HIV positive compared with 7.1 percent of those who have slept away five or more times. The amount of time spent away from home does not appear to be associated with HIV prevalence among women.

Women who were not pregnant or unsure of their pregnancy status at the time of the survey have a higher HIV prevalence than those who were pregnant (17.2 percent compared with 12.8 percent). Women who received antenatal care (ANC) from a public sector provider in the three years preceding the survey are more likely to be infected with HIV (18.3 percent) than those who did not receive ANC or did not have
a birth in the last three years (16.7 percent) and those who received ANC from a source other than the public sector (5.4 percent).

Among men, HIV prevalence is highest for divorced or separated men (19.8 percent) and those currently married or cohabiting at the time of the survey (19.1 percent) compared with men who never married (7.2 percent). Men who spent more than one month away from home have lower HIV prevalence (8.8 percent) when compared with those who spent less than one month away (12.1 percent) and those who did not spend any time away from home (11.0 percent).

Male circumcision reduces the risk of HIV infection, in part because of physiological differences that decrease the susceptibility to HIV infection among circumcised men. Three randomised controlled clinical trials conducted in Uganda, South Africa, and Kenya demonstrated that medical circumcision reduces the risk of HIV transmission among heterosexual men by 60-70 percent (Auvert et al., 2005). Table 15.4.1 shows that uncircumcised men are more likely to be HIV positive (11.9 percent) than men who have been circumcised (8.0 percent).

Table 15.4.1 HIV prevalence by demographic characteristics: Respondents age 15-49
Percentage HIV positive among women and men age 15-49 who were tested, by demographic characteristics, Namibia 2013

Demographic characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Marital status						
Never married	13.1	2,403	7.2	2,526	10.1	4,929
Ever had sexual intercourse	16.2	1,870	8.9	1,951	12.5	3,820
Never had sexual intercourse	2.2	534	1.4	576	1.8	1,109
Married/living together	18.4	1,366	19.1	1,057	18.7	2,423
Divorced or separated	37.1	193	19.8	92	31.5	285
Widowed	51.7	88	*	5	48.7	94
Type of union						
In polygynous union	22.6	87	*	23	18.7	110
In non-polygynous union	17.8	1,045	19.5	1,033	18.6	2,079
Not currently in union	16.1	2,685	7.6	2,623	11.9	5,308
Times slept away from home in past 12 months						
None	18.3	2,579	11.0	2,106	15.1	4,685
1-2	16.4	959	10.3	598	14.1	1,557
3-4	14.1	232	11.4	310	12.6	542
$5+$	7.1	278	10.8	644	9.6	922
Time away in past 12 months						
Away for more than 1 month	16.0	746	8.8	637	12.7	1,383
Away for less than 1 month	12.7	719	12.1	913	12.4	1,631
Not away	18.3	2,581	11.0	2,106	15.0	4,687
Currently pregnant						
Pregnant	12.8	279	na	na	na	na
Not pregnant or not sure	17.2	3,772	na	na	na	na
ANC for last birth in past 3 years						
ANC provided by the public sector	18.3	1,104	na	na	na	na
ANC provided by other than the public sector	5.4	91	na	na	na	na
No ANC/no birth in last 3 years	16.7	2,853	na	na	na	na
Male circumcision						
Circumcised	na	na	8.0	919	na	na
Not circumcised	na	na	11.9	2,745	na	na
Total 15-49	16.9	4,051	10.9	3,680	14.0	7,731

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 234 women with missing information on type of union, 2 women and 22 men with missing information on times slept away from home in the past 12 months, 6 women and 24 men with missing information on time away in the past 12 months, 3 women with missing information on ANC for last birth in the past 3 years, and 17 men with missing information on circumcision.
na $=$ Not applicable

Table 15.4.2 shows that HIV prevalence among respondents age 50-64 is highest for those who are widowed (25.2 percent) and divorced or separated (23.9 percent) and lowest among those who are married/living together (12.0 percent). Respondents who are not currently in union (23.4 percent) are more likely than other men to be HIV positive. There is no clear pattern in the relationship of HIV prevalence among respondents age 50-64 and the number of times or the amount of time spent away from home.

Table 15.4.2 HIV prevalence by demographic characteristics: Respondents age 50-64
Percentage HIV positive among women and men age 50-64 who were tested, by demographic characteristics, Namibia 2013

Demographic characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Marital status						
Never married	21.4	121	20.6	49	21.2	170
Ever had sexual intercourse	21.4	121	21.1	48	21.3	169
Never had sexual intercourse	*	0	*	1	*	1
Married/living together	9.4	338	14.5	349	12.0	687
Divorced or separated	27.3	64	(16.6)	30	23.9	94
Widowed	24.1	166	*	11	25.2	176
Type of union						
In polygynous union	(15.0)	30	*	15	(17.0)	45
In non-polygynous union	7.8	273	14.2	334	11.3	607
Not currently in union	23.7	351	21.9	89	23.4	440
Times slept away from home in past 12 months						
None	20.1	447	14.2	194	18.3	641
1-2	9.0	132	18.2	79	12.5	211
3-4	12.2	50	(35.0)	42	22.6	91
$5+$	12.0	59	11.1	123	11.4	182
Time away in past 12 months						
Away for more than 1 month	11.7	99	19.0	103	15.5	202
Away for less than 1 month	9.5	142	16.5	140	13.0	282
Not away	20.1	448	14.2	194	18.3	642
Male circumcision						
Circumcised	na	na	16.1	136	na	na
Not circumcised	na	na	16.0	301	na	na
Total 50-64	16.7	689	16.0	438	16.4	1,127

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 35 women with missing information on type of union, 1 man with missing information on times slept away from home in the past 12 months, 2 men with missing information on time away in the past 12 months, and 1 man with missing information on circumcision.
na $=$ Not applicable

15.2.4 HIV Prevalence by Sexual Risk Behaviour

Although HIV knowledge in the general population is relatively high, risky behaviours, including lack of condom use, are common and therefore remain a significant public health concern, as shown in Chapter 14. Tables 15.5 .1 and 15.5.2 present HIV prevalence by sexual behaviour characteristics among respondents age 15-49 and 50-64, respectively, who have ever had sexual intercourse. In reviewing these results, it is important to remember that responses about sexual risk behaviours may be subject to reporting bias. Also, sexual behaviour in the 12 months preceding the survey may not adequately reflect lifetime sexual risk. Nor is it possible to know the sequence of events (e.g., whether any reported condom use occurred before or after HIV transmission).

Table 15.5 .1 shows that among all respondents age $15-49$ who had ever had sex and were tested for HIV, 16.1 percent are HIV positive (19.1 percent of women and 12.6 percent of men). Among women, HIV prevalence is higher among those who had their first sexual intercourse before the age of 20 (18.919.9 percent) when compared with women whose age at first sex was age 20 or older (16.5 percent). By contrast, HIV prevalence among men increases with increasing age at sexual debut, from 8.4 percent of men who had sexual intercourse before age 16 to 18.0 percent among those whose first sexual encounter was at age 20 or older.

Caution should be used when interpreting HIV prevalence levels by number of sexual partners and partner concurrency in the past 12 months among women, because very few women report more than one
partner. HIV prevalence is higher among women who had no sexual partners (26.3 percent) in the past 12 months than among those who had one or more partners (17.9 percent and 17.6 percent, respectively). Among men, those with one sexual partner in the past 12 months (13.3 percent) are more likely to be infected with HIV than those with no partners or more than one partner (9.1 percent and 9.9 percent, respectively) in the past 12 months. Among men with multiple partners, those who had concurrent partners were more likely to be HIV positive (10.6 percent) than those who did not (8.7 percent).

Table 15.5 .1 shows no clear correlation between condom use at last sexual intercourse and HIV status among women or men. HIV prevalence is higher among women who did not have sexual intercourse in the past 12 months (25.9 percent) and those who used a condom during their most recent sexual encounter (20.6 percent) than among women who did not use a condom during their last sexual intercourse (15.3 percent). In contrast, men who did not use a condom during their most recent sexual intercourse (13.7 percent) are more likely to be HIV positive than men who used a condom (12.1 percent) or those who did not have sexual intercourse in the past 12 months (11.6 percent).

HIV prevalence generally increases with increasing number of lifetime partners for both women and men.

The number of men who paid for sexual intercourse is too small for meaningful data interpretation and conclusions and is not shown separately in Tables 15.5.1 and 15.5.2.

Table 15.5.1 HIV prevalence by sexual behaviour: Respondents age 15-49						
Percentage HIV positive among women and men age 15-49 who ever had sex and were tested for HIV, by sexual behaviour characteristics, Namibia 2013						
Sexual behaviour characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Age at first sexual intercourse						
<16	19.9	572	8.4	844	13.1	1,416
16-17	19.7	958	11.9	855	16.0	1,812
18-19	18.9	906	13.2	761	16.3	1,667
20+	16.5	854	18.0	613	17.2	1,467
Multiple sexual partners and partner concurrency in past 12 months						
0	26.3	533	9.9	381	19.5	915
1	17.9	2,863	13.3	2,314	15.8	5,177
2+	17.6	104	9.1	379	11.0	483
Had concurrent partners ${ }^{1}$	*	14	10.6	87	12.4	102
None of the partners were concurrent	16.8	90	8.7	291	10.6	381
Condom use at last sexual intercourse in past 12 months						
Used condom	20.6	1,441	12.1	1,655	16.1	3,096
Did not use condom	15.3	1,523	13.7	1,035	14.7	2,558
No sexual intercourse in past 12 months	25.9	546	11.6	401	19.8	947
Number of lifetime partners						
1	8.6	1,075	7.5	448	8.3	1,523
2	18.6	1,033	10.6	472	16.1	1,505
3-4	27.9	1,057	10.3	704	20.9	1,762
5-9	24.5	252	12.3	690	15.6	942
10+	25.5	38	18.4	598	18.8	636
Paid for sexual intercourse in past 12 months						
Yes	na	na	(16.8)	35	na	na
Used condom	na	na	*	26	na	na
Did not use condom	na	na	*	9	na	na
Total 15-49	19.1	3,513	12.6	3,094	16.1	6,607

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 223 women and 21 men with missing information on age at first sexual intercourse, 12 women and 20 men with missing information on multiple sexual partners and partner concurrency in the past 12 months, 3 women and 3 men with missing information on condom use at last sexual intercourse in the past 12 months, and 56 women and 182 men with missing information on number of lifetime partners. na $=$ Not applicable
${ }^{1}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with 2 or more people during the 12 months before the survey. (Respondents with concurrent partners include polygynous men who had overlapping sexual partnerships with 2 or more wives.)

Table 15.5.2 shows that HIV prevalence among respondents age 50-64 who have ever had sex is 16.3 percent among women and 15.7 percent among men. The overall HIV prevalence among women and men in this age group is higher among individuals who used a condom at their last sexual encounter (35.0 percent) than among those who did not have sexual intercourse in the past 12 months (18.1 percent) or who did not use a condom during their last sexual intercourse (9.7 percent). HIV prevalence is lowest among respondents who have only one lifetime partner (9.8 percent) when compared with those with two or more partners (16.2-20.5 percent).

Table 15.5.2 HIV prevalence by sexual behaviour: Respondents age 50-64
Percentage HIV positive among women and men age 50-64 who ever had sex and were tested for HIV, by sexual behaviour characteristics, Namibia 2013

Sexual behaviour characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Age at first sexual intercourse						
<16	14.4	78	(13.7)	35	14.2	114
16-17	13.3	97	14.1	86	13.7	183
18-19	18.5	153	14.8	116	16.9	269
20+	17.1	343	17.4	193	17.2	536
Multiple sexual partners and partner concurrency in past 12 months						
0	18.8	382	14.2	88	17.9	470
1	13.5	294	13.8	308	13.6	602
2+	*	1	(34.8)	29	(33.4)	30
Had concurrent partners ${ }^{1}$	*	1	*	15	*	15
None of the partners were concurrent	*	0	*	14	*	14
Condom use at last sexual intercourse in past 12 months						
Used condom	27.1	56	41.6	67	35.0	123
Did not use condom	10.2	239	9.2	270	9.7	509
No sexual intercourse in past 12 months	18.6	386	15.9	94	18.1	480
Number of lifetime partners						
1	11.5	247	2.1	54	9.8	301
2	20.0	193	(8.6)	41	18.0	233
3-4	19.7	162	7.7	68	16.2	230
5-9	12.9	52	25.7	76	20.5	128
10+	*	14	20.9	118	19.7	132
Paid for sexual intercourse in past 12 months						
Yes	na	na	*	5	na	na
Used condom	na	na	*	2	na	na
Did not use condom	na	na	*	3	na	na
Total 50-64	16.3	681	15.7	431	16.1	1,112

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 9 women and 1 man with missing information on age at first sexual intercourse, 4 women and 6 men with missing information on multiple sexual partners and partner concurrency in the past 12 months, and 15 women and 73 men with missing information on number of lifetime partners.
na = Not applicable
${ }^{1}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with 2 or more people during the 12 months before the survey. (Respondents with concurrent partners include polygynous men who had overlapping sexual partnerships with 2 or more wives.)

In summary, the results presented in Tables 15.5 .1 and 15.5.2 do not demonstrate a consistent relationship between sexual risk behaviours and HIV prevalence. Additional analysis may be necessary to understand such relationships because they are often confounded by other factors associated with both sexual behaviours and HIV prevalence.

15.3 HIV Prevalence among Young People

As specified in the United Nations General Assembly Special Session (UNGASS) on HIV and AIDS, young people in the 15-24 age range are an important group to monitor with regard to reductions in HIV incidence at the population level (UN General Assembly, 2001).

Table 15.6 shows that HIV prevalence among youth age $15-24$ is 3.6 percent (4.4 percent among young women and 2.7 percent among young men). Given the low overall HIV prevalence among youth, there are no major variations in HIV prevalence levels by most background characteristics.

Table 15.6 HIV prevalence among young people by background characteristics						
Percentage HIV positive among women and men age 15-24 who were tested for HIV, by background characteristics, Namibia 2013						
	Women		Men		Total	
Background characteristic	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Age						
15-19	2.5	835	2.0	860	2.3	1,695
15-17	2.4	465	1.9	535	2.1	1,000
18-19	2.8	370	2.2	325	2.5	695
20-24	6.4	815	3.4	734	5.0	1,548
20-22	4.5	494	2.4	442	3.5	937
23-24	9.3	320	5.0	292	7.2	612
Marital status						
Never married	4.0	1,401	2.5	1,517	3.3	2,918
Ever had sex	5.1	900	3.3	968	4.1	1,868
Never had sex	2.2	501	1.2	549	1.7	1,051
Married/living together	6.6	225	5.9	74	6.4	298
Divorced/separated/widowed	(6.3)	24	*	3	(5.6)	27
Currently pregnant						
Pregnant	3.5	128	na	na	na	na
Not pregnant or not sure	4.5	1,521	na	na	na	na
Residence						
Urban	4.5	903	2.9	804	3.8	1,707
Rural	4.4	746	2.4	790	3.3	1,536
Region						
Zambezi	19.2	87	12.8	74	16.3	161
Erongo	3.5	124	4.8	116	4.1	240
Hardap	3.8	55	2.4	44	3.2	98
//Karas	3.0	50	2.7	57	2.8	107
Kavango	4.6	166	1.9	132	3.4	298
Khomas	2.8	385	1.8	334	2.3	719
Kunene	2.2	40	1.8	32	2.0	73
Ohangwena	2.7	189	0.0	174	1.4	363
Omaheke	2.7	36	3.9	36	3.3	72
Omusati	3.8	158	3.6	209	3.7	367
Oshana	5.9	145	1.2	158	3.4	303
Oshikoto	3.5	128	1.8	142	2.6	270
Otjozondjupa	4.6	86	3.0	86	3.8	172
Education						
No education	(8.5)	28	2.1	59	4.1	87
Primary	7.6	282	2.3	385	4.5	666
Secondary	3.6	1,174	2.7	1,062	3.2	2,236
More than secondary	4.0	166	4.8	88	4.3	254
Wealth quintile						
Lowest	3.6	251	2.6	241	3.1	492
Second	6.5	293	3.2	317	4.8	610
Middle	5.1	300	4.4	378	4.7	678
Fourth	3.8	411	2.1	346	3.0	757
Highest	3.5	395	0.7	312	2.3	706
Total 15-24	4.4	1,649	2.7	1,594	3.6	3,243

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ Not applicable

In general, HIV prevalence among young women and men increases with age. Young people who are married or living together with a partner are more likely to be infected with HIV than those who have never been married. By region, Zambezi has the highest HIV prevalence among young people (16.3 percent), while Ohangwena has the lowest prevalence (1.4 percent). There is no clear pattern in the
relationship between HIV prevalence and education. Young respondents age $15-24$ in the second and middle wealth quintiles (4.7-4.8 percent) are somewhat more likely to be infected with HIV than those in the other quintiles (2.3-3.1 percent).

Table 15.7 shows HIV prevalence among young people by sexual behaviour. HIV prevalence among respondents age $15-24$ who have ever had sex is 4.5 percent (5.4 percent for women and 3.4 percent for men). HIV prevalence is lowest among women and men with two or more sexual partners (4.1 percent and 1.5 percent, respectively). There are too few young people age $15-24$ with concurrent partners in the past 12 months to allow for meaningful interpretations regarding the relationship between HIV prevalence and this indicator.

Young women and men who did not use a condom during their most recent sexual intercourse are more likely to be HIV positive (6.2 percent and 6.0 percent, respectively) than those who reported using a condom during their last sexual intercourse (4.6 percent and 2.8 percent, respectively).

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 4 women and 2 men with missing information on multiple sexual partners and partner concurrency in the past 12 months and 3 women with missing information on condom use at last sexual intercourse in the past 12 months.
${ }^{1}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with 2 or more people during the 12 months before the survey. (Respondents with concurrent partners include polygynous men who had overlapping sexual partnerships with 2 or more wives.)

15.4 HIV Prevalence by Other Characteristics Related to HIV Risk

A strong link exists between sexually transmitted infections and sexual transmission of HIV. Many studies have demonstrated that STIs are a co-factor in HIV transmission. Management and treatment of STIs can play an important role in the reduction of HIV transmission. The 2013 NDHS asked respondents who had ever had sex if they had contracted a disease through sexual contact in the past 12 months or if they had any symptoms associated with STIs (an abnormal discharge from the vagina or penis or a genital sore or ulcer).

Table 15.8 shows HIV prevalence among respondents age 15-64 who have ever had sex and were tested for HIV by whether they had an STI or symptoms in the past 12 months and by prior HIV testing. Data show that for women age 15-49, there is no notable difference in HIV prevalence by whether or not the woman had an STI or STI symptoms in the past 12 months. Among men age 15-49, however, the percentage HIV positive is notably higher among those who had an STI or STI symptoms in the past 12 months (24.8 percent) than those who did not have an STI or STI symptoms (11.7 percent). Respondents who had been tested for HIV previously are more likely to be HIV positive than those who had not been tested previously (18.3 percent and 6.6 percent, respectively). Among respondents who had been tested
previously for HIV, the prevalence was somewhat higher for those who had not received the test results (20.1 percent) than among individuals who had received the results of their last test (18.2 percent).

Similar patterns are observed for respondents age 50-64, as shown in the bottom panel of Table 15.8.

Table 15.8 HIV prevalence by other characteristics: Respondents age 15-64
Percentage HIV positive among women and men age $15-64$ who ever had sex and were tested for HIV, by whether they had an STI or STI symptoms in the past 12 months and by prior testing for HIV, Namibia 2013

Characteristic	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
15-49						
Sexually transmitted infection in past 12 months						
Had STI or STI symptoms	20.4	348	24.8	207	22.1	555
No STI, no symptoms	19.1	3,138	11.7	2,856	15.6	5,994
Prior HIV testing						
Ever tested	20.6	3,157	14.9	2,202	18.3	5,359
Received results	20.6	3,099	14.9	2,134	18.2	5,233
Did not receive results	24.3	58	16.5	68	20.1	126
Never tested	6.0	335	6.8	892	6.6	1,226
Total 15-49	19.1	3,513	12.6	3,094	16.1	6,607
50-64						
Sexually transmitted infection in past 12 months						
Had STI or STI symptoms	(33.7)	34	(31.1)	23	32.7	57
No STI, no symptoms	15.6	639	14.8	402	15.3	1,040
Prior HIV testing						
Ever tested	21.1	468	21.1	301	21.1	769
Received results	21.3	457	20.9	288	21.2	746
Did not receive results	*	10	*	13	(18.5)	24
Never tested	6.0	213	2.8	129	4.8	342
Total 50-64	16.3	681	15.7	431	16.1	1,112

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 35 women and 37 men with missing information on sexually transmitted infections in the past 12 months and 21 women with missing information on prior HIV testing.

Table 15.9 shows HIV prevalence among men age $15-49$ by circumcision status, according to background characteristics. As mentioned earlier, HIV prevalence for men age 15-49 is lower among circumcised (8.0 percent) than among uncircumcised men (11.9 percent). The pattern of lower HIV prevalence among circumcised than uncircumcised men is observed across most background characteristics. For each age group, circumcised men have lower HIV prevalence than those who are not circumcised; the difference is especially pronounced for men age 35-39 and 45-49 (11.7 percentage points each). The difference in HIV prevalence between uncircumcised and circumcised men is larger among urban than rural men (5.2 percentage points versus 2.1 percentage points).

For all regions, with the exception of //Karas, Kavango, and Ohangwena, HIV prevalence is lower among circumcised men than uncircumcised men. Among uncircumcised men age 15-49, the highest HIV prevalence was recorded in Zambezi (17.6 percent) and the lowest in Ohangwena (5.2 percent). Among circumcised men, there are too few cases who are HIV-positive to allow for a robust analysis of HIV prevalence by region.

By education and wealth, the largest gap in HIV prevalence between uncircumcised and circumcised men is observed among those with no education (11.2 percentage points higher) and men in the middle wealth quintile (9.5 percentage points higher).

Among men age 15-49 who were tested for HIV, the percentage HIV positive by whether circumcised, according to background characteristics, Namibia 2013				
Background characteristic	Circumcised		Not circumcised	
	Percentage HIV positive	Number	Percentage HIV positive	Number
Age				
15-19	0.0	171	2.5	682
20-24	1.8	167	3.9	566
25-29	8.4	170	9.9	443
30-34	10.9	125	18.7	340
35-39	14.1	114	25.8	313
40-44	17.5	88	23.7	226
45-49	13.7	84	25.4	176
Religion				
Roman Catholic	10.2	208	12.8	753
Protestant/Anglican	8.2	159	7.9	302
ELCIN	7.9	333	13.3	1,283
Seventh-Day Adventist	*	28	18.2	110
No religion	(0.0)	27	(6.2)	26
Other	7.4	162	5.1	267
Residence				
Urban	7.8	605	13.0	1,471
Rural	8.5	313	10.6	1,273
Region				
Zambezi	(7.7)	31	17.6	165
Erongo	6.4	104	12.2	238
Hardap	(3.4)	18	8.1	120
//Karas	10.9	30	9.1	107
Kavango	14.7	93	12.2	195
Khomas	6.8	268	13.7	652
Kunene	9.4	47	11.8	47
Ohangwena	(16.2)	38	5.2	265
Omaheke	6.7	44	8.7	51
Omusati	(11.2)	51	12.3	264
Oshana	(6.6)	62	12.5	246
Oshikoto	(2.1)	46	11.9	260
Otjozondjupa	5.6	89	12.5	135
Education				
No education	7.6	81	18.8	213
Primary	13.2	187	14.3	706
Secondary	7.7	551	10.3	1,630
More than secondary	0.7	100	8.0	195
Wealth quintile				
Lowest	13.1	86	11.6	464
Second	11.6	170	17.0	570
Middle	6.5	160	16.0	677
Fourth	11.7	245	8.7	587
Highest	1.4	257	3.6	448
Total 15-49	8.0	919	11.9	2,745
50-64	16.1	136	16.0	301

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
ELCIN = Evangelical Lutheran Church in Namibia

15.5 HIV Prevalence among Couples

A total of 1,007 cohabiting couples were tested for HIV in the 2013 NDHS. The results shown in Table 15.10 indicate that, among 76.4 percent of cohabiting couples, both partners tested negative for HIV. Both partners were HIV positive in 10.1 percent of cohabiting couples, while 13.5 percent of couples were discordant (i.e., one partner was infected and the other was not). In 8.1 percent of the couples, the male partner was infected and the woman was not, while in 5.4 percent of the couples, the woman was infected and the man was not. Differences by background characteristics exist. The percentage who are discordant is highest among couples where the female and the male partner are age 30-39 (17.0 percent and 18.4 percent, respectively), where the man is older than the woman by 15 years or more (20.8 percent), in couples where the woman or the man has no education (16.8 percent and 17.4 percent, respectively), and among couples in the second wealth quintile (21.5 percent).

Table 15.10 HIV prevalence among couples
Percent distribution of couples living in the same household, both of whom were tested for HIV, by HIV status, according to background characteristics, Namibia 2013

Background characteristic	Both HIV positive	Man HIV positive, woman HIV negative	Woman HIV positive, man HIV negative	Both HIV negative	Total	Number
Woman's age						
15-19	(2.0)	(0.0)	(1.3)	(96.7)	100.0	48
20-29	6.6	7.2	3.9	82.3	100.0	330
30-39	14.8	10.7	6.3	68.2	100.0	376
40-49	9.4	6.7	7.0	76.9	100.0	252
Man's age						
15-19	*	*	*	*	100.0	5
20-29	6.9	3.6	4.4	85.2	100.0	166
30-39	10.0	10.1	8.3	71.7	100.0	318
40-49	14.8	8.2	4.4	72.7	100.0	288
50-64	7.1	8.6	3.7	80.6	100.0	229
Age difference between partners						
Woman older	8.2	7.4	9.2	75.2	100.0	153
Same age/man older by 0-4 years	8.5	7.2	5.8	78.6	100.0	377
Man older by 5-9 years	9.2	6.6	2.9	81.3	100.0	302
Man older by 10-14 years	15.0	12.0	5.3	67.7	100.0	105
Man older by 15+ years	20.3	14.7	6.1	59.0	100.0	69
Type of union						
Non-polygynous	10.1	8.4	5.1	76.3	100.0	819
Polygynous	(12.2)	(3.2)	(4.0)	(80.7)	100.0	53
Multiple partners in past 12 months ${ }^{1}$						
Both no	9.3	8.1	5.2	77.4	100.0	910
Man yes, woman no	13.9	7.1	5.3	73.7	100.0	55
Woman yes, man no	*	*	*	*	100.0	7
Both yes	*	*	*	*	100.0	
Either missing	(28.8)	(11.5)	(2.4)	(57.3)	100.0	34
Concurrent sexual partners in past 12 months 2						
Both no	10.2	7.9	5.5	76.4	100.0	981
Man yes, woman no	(8.5)	(16.0)	(1.9)	(73.7)	100.0	24
Woman yes, man no	*	*	*	*	100.0	2
Both yes	*	*	*	*	100.0	0
Residence						
Urban	9.4	7.4	5.5	77.7	100.0	610
Rural	11.2	9.1	5.4	74.3	100.0	397
Region						
Zambezi	9.6	10.0	11.1	69.3	100.0	63
Erongo	13.0	4.6	4.7	77.7	100.0	110
Hardap	5.3	3.6	7.3	83.8	100.0	60
//Karas	5.7	4.7	3.7	86.0	100.0	55
Kavango	14.7	9.0	5.0	71.4	100.0	108
Khomas	7.2	9.4	3.5	79.9	100.0	233
Kunene	2.5	10.2	6.3	81.1	100.0	36
Ohangwena	(13.2)	(19.6)	(4.7)	(62.5)	100.0	42
Omaheke	3.8	5.1	1.5	89.6	100.0	39
Omusati	(24.9)	(5.0)	(12.1)	(57.9)	100.0	55
Oshana	(11.7)	(14.5)	(5.8)	(68.0)	100.0	46
Oshikoto	15.1	7.1	4.2	73.7	100.0	61
Otjozondjupa	6.6	5.9	6.0	81.5	100.0	97
Woman's education						
No education	8.7	8.0	8.8	74.5	100.0	100
Primary	11.8	8.6	5.9	73.6	100.0	260
Secondary	11.4	7.9	5.0	75.7	100.0	550
More than secondary	0.0	7.5	2.8	89.7	100.0	97
Man's education						
No education	12.7	9.0	8.4	69.9	100.0	128
Primary	15.2	7.9	5.9	71.1	100.0	258
Secondary	8.8	8.6	4.5	78.0	100.0	506
More than secondary	1.8	4.8	5.1	88.2	100.0	115
Wealth quintile						
Lowest	16.2	8.4	9.6	65.7	100.0	162
Second	13.3	14.2	7.3	65.2	100.0	179
Middle	17.0	9.7	7.3	66.1	100.0	208
Fourth	4.0	6.1	3.4	86.4	100.0	225
Highest	3.3	3.5	1.3	91.9	100.0	232
Total couples	10.1	8.1	5.4	76.4	100.0	1,007

Note: The table is based on couples for whom a valid test result (positive or negative) is available for both partners. Figures in parentheses are based on $25-49$ unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Total includes 135 couples with missing information on type of union.
${ }^{1}$ A respondent is considered to have had multiple sexual partners in the past 12 months if he or she had sexual intercourse with 2 or more people during this time period. (Respondents with multiple partners include polygynous men who had sexual intercourse with 2 or more wives.) ${ }^{2}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with 2 or more people during the 12 months before the survey. (Respondents with concurrent partners include polygynous men who had overlapping sexual partnerships with 2 or more wives.)

SELF-REPORTED PRIOR HIV TESTING AND TREATMENT

Key Findings

- Forty-nine percent of women and 38 percent of men age 15-49 were tested for HIV in the year preceding the survey and received the test results. This is a notable increase since the 2006-07 NDHS, when the corresponding percentages were 29 percent and 18 percent.
- Young women age 15-24 who have had sexual intercourse in the last 12 months are much more likely than their male counterparts in the same age group to have been tested for HIV and to have received the results of their test (58 percent versus 39 percent).
- The majority of HIV testing occurs at public health facilities (84 percent of women and 76 percent of men age 15-64).
- Only 61 percent of women and 37 percent of men age 15-49 who tested HIV positive in the 2013 NDHS reported that they were HIV positive based on previous testing.
- Among women age 15-64 who tested positive for HIV in the 2013 NDHS, only slightly more than half (51 percent) reported they are HIV positive and are currently taking ARVs.
- Ninety-four percent of women had an HIV test either during antenatal care or during labour and received the results for their most recent birth.

TIhis chapter presents information related to prior HIV testing and treatment among 2013 NDHS respondents and provides insight into the coverage of HIV programmes in Namibia. The Namibian government has instituted programmes that provide voluntary counselling and HIV testing to the country's general population and, specifically, pregnant women. Also, programmes are in place, in which drugs that suppress opportunistic infections (e.g., cotrimoxazole) and anti-retroviral drugs are provided to people living with HIV when their condition warrants such treatment. Finally, the government encourages safe medical circumcision of men, based on research indicating that it reduces the risk of HIV acquisition.

16.1 Coverage of HIV Testing Services

Knowledge of HIV status is important for helping individuals decide to adopt safer sex practices to reduce the risk of becoming infected or transmitting HIV. For those who are HIV-positive, knowledge of their HIV status allows them to take measures to protect their sexual partners and to access treatment services. To assess awareness and coverage of prior HIV testing behaviour, respondents were asked if they knew where to get an HIV test and whether they had ever been tested for HIV. If they said they had been tested for HIV, respondents were asked if they had received the results of their last test. Tables 16.1.1 and 16.1.2 present information on prior testing among women and men, respectively.

Overall, 97 percent of women age 15-49 and 95 percent of women age 50-64 know a place where they can get an HIV test (Table 16.1.1). Women age 15-19 (93 percent) and those who have not yet initiated sexual activity (91 percent) are less likely than other women to know of a place to obtain an HIV test. Knowledge of a place to obtain an HIV test increases with increasing education, from 89 percent among women with no education to 99 percent among those with a secondary education or higher. There is little variation by residence, region, or wealth.

More than eight in ten women age 15-49 in Namibia (81 percent) have been tested for HIV. This percentage is notably lower among women age 50-64 (68 percent). Only 2 percent of women age 15-49 and 1 percent of those age 50-64 have been tested for HIV and did not receive the test results.

The percentage of women who have been tested for HIV is higher among those age 25-39, those currently or previously married, those in urban areas, and those in Oshana. The likelihood of women having been tested for HIV increases with increasing education. Women in the highest wealth quintile are less likely to have been tested (77 percent) than women in the lowest four quintiles (81-84 percent).

About half of women age 15-49 (49 percent) and about three in ten women age 50-64 (27 percent) had been tested in the past 12 months and received the results of their last test.

Table 16.1.2 shows that 94 percent of men know where to get an HIV test. Variations by background characteristics are similar to those observed for women. More than six in ten men age 15-49 (63 percent) and more than seven in ten of those age 50-64 (71 percent) have been tested for HIV. A small proportion of men age 15-64 have been tested for HIV and did not receive the results (2-3 percent).

The percentage of men age 15-49 who have been tested for HIV is highest among those age 30-39 (81 percent) and those currently married (82 percent). Men in urban areas (71 percent) are much more likely than those in rural areas (53 percent) to have ever been tested for HIV. By region, this percentage ranges from 47 percent in Omusati to 74 percent each in Erongo and Khomas. The percentage of men who have been tested for HIV generally increases with increasing education and wealth. For example, 57 percent of men with no education have been tested for HIV, as compared with 86 percent of men with more than a secondary education.

Thirty-eight percent of men age 15-49 and 31 percent of those age $50-64$ had been tested in the past 12 months and received the results of their last test.

Coverage of HIV testing has shown a remarkable increase in the last six years, from 55 percent of women and 34 percent of men age 15-49 in the 2006-07 NDHS survey to 81 percent and 63 percent, respectively, in 2013.

Percentage of women age $15-49$ who know where to get an HIV test, percent distribution of women age $15-49$ by testing status and by whether they received the results of the last test, the percentage of women ever tested, and the percentage of women age 15-49 who were tested in the past 12 months and received the results of the last test, according to background characteristics, Namibia 2013

Background characteristic	Percentage who know where to get an HIV test	Percent distribution of women by testing status and by whether they received the results of the last test			Total	Percentage ever tested	Percentage who have been tested for HIV in the past 12 months and received the results of the last test	Number of women
		Ever tested and received results	Ever tested, did not receive results	Never tested ${ }^{1}$				
Age								
15-24	95.4	62.0	1.9	36.1	100.0	63.9	43.4	3,691
15-19	93.2	41.7	1.7	56.6	100.0	43.4	28.5	1,906
20-24	97.7	83.6	2.1	14.3	100.0	85.7	59.3	1,786
25-29	98.5	93.4	2.2	4.4	100.0	95.6	61.9	1,489
30-39	98.7	91.5	2.4	6.1	100.0	93.9	54.6	2,370
40-49	98.6	87.6	2.5	9.8	100.0	90.2	42.5	1,625
Marital status								
Never married	96.8	72.4	1.7	25.9	100.0	74.1	47.6	5,458
Ever had sex	98.6	86.3	1.9	11.8	100.0	88.2	57.5	4,155
Never had sex	91.0	28.1	1.1	70.8	100.0	29.2	16.1	1,304
Married/living together	98.0	89.0	2.9	8.1	100.0	91.9	51.4	3,121
Divorced/separated/widowed	99.1	90.8	2.7	6.5	100.0	93.5	51.1	597
Residence								
Urban	98.3	80.5	2.0	17.4	100.0	82.6	49.7	5,190
Rural	96.1	77.6	2.4	20.0	100.0	80.0	48.4	3,986
Region								
Zambezi	96.7	78.6	4.7	16.7	100.0	83.3	49.2	457
Erongo	98.3	82.7	1.2	16.1	100.0	83.9	50.2	771
Hardap	97.7	74.2	2.0	23.8	100.0	76.2	41.3	304
//Karas	99.2	80.7	2.8	16.5	100.0	83.5	49.8	343
Kavango	96.1	79.7	4.5	15.9	100.0	84.1	52.9	835
Khomas	98.2	79.2	1.9	18.9	100.0	81.1	47.7	2,202
Kunene	94.8	79.9	1.8	18.3	100.0	81.7	49.8	258
Ohangwena	96.1	79.6	1.7	18.6	100.0	81.4	53.1	894
Omaheke	95.3	81.6	2.1	16.3	100.0	83.7	50.3	225
Omusati	96.9	74.2	0.7	25.1	100.0	74.9	46.3	884
Oshana	98.9	84.9	1.3	13.8	100.0	86.2	51.4	755
Oshikoto	98.0	79.6	2.5	17.8	100.0	82.2	50.4	707
Otjozondjupa	95.3	74.5	2.8	22.6	100.0	77.4	44.3	540
Education								
No education	88.8	73.3	4.1	22.6	100.0	77.4	40.0	419
Primary	94.4	75.0	2.8	22.2	100.0	77.8	42.6	1,798
Secondary	98.6	80.2	1.9	17.9	100.0	82.1	51.0	6,029
More than secondary	98.7	83.9	2.3	13.8	100.0	86.2	53.9	930
Wealth quintile								
Lowest	95.9	77.7	3.6	18.7	100.0	81.3	48.8	1,429
Second	96.0	80.2	2.5	17.3	100.0	82.7	50.4	1,625
Middle	97.7	82.0	1.7	16.4	100.0	83.6	53.3	1,795
Fourth	98.1	81.4	1.5	17.1	100.0	82.9	51.0	2,116
Highest	98.2	75.2	2.2	22.6	100.0	77.4	43.3	2,211
Total 15-49	97.3	79.2	2.2	18.6	100.0	81.4	49.1	9,176
50-64	95.0	67.0	1.3	31.7	100.0	68.3	26.8	797

${ }^{1}$ Includes "don't know/missing"

Percentage of men age 15-49 who know where to get an HIV test, percent distribution of men age 15-49 by testing status and by whether they received the results of the last test, the percentage of men ever tested, and the percentage of men age 15-49 who were tested in the past 12 months and received the results of the last test, according to background characteristics, Namibia 2013

Background characteristic	Percentage who know where to get an HIV test	Percent distribution of men by testing status and by whether they received the results of the last test			Total	Percentage ever tested	Percentage who have been tested for HIV in the past 12 months and received the results of the last test	Number of men
		Ever tested and received results	Ever tested, did not receive results	Never tested ${ }^{1}$				
Age								
15-24	90.9	39.9	1.3	58.8	100.0	41.2	26.1	1,730
15-19	86.9	24.6	1.2	74.2	100.0	25.8	13.9	922
20-24	95.5	57.3	1.5	41.2	100.0	58.8	40.0	808
25-29	96.3	75.1	2.7	22.2	100.0	77.8	47.5	658
30-39	97.1	79.3	2.1	18.6	100.0	81.4	50.9	968
40-49	97.3	76.5	3.1	20.5	100.0	79.5	41.7	665
Marital status								
Never married	93.3	53.2	1.8	45.0	100.0	55.0	34.3	2,745
Ever had sex	96.4	63.7	1.8	34.5	100.0	65.5	42.0	2,122
Never had sex	82.7	17.7	1.7	80.6	100.0	19.4	8.1	623
Married/living together	97.1	79.1	2.8	18.1	100.0	81.9	46.5	1,160
Divorced/separated/widowed	91.6	69.8	0.3	29.8	100.0	70.2	45.7	116
Residence								
Urban	97.2	69.0	1.9	29.0	100.0	71.0	44.3	2,282
Rural	90.6	50.9	2.2	46.9	100.0	53.1	30.0	1,739
Region								
Zambezi	98.1	59.6	2.1	38.3	100.0	61.7	31.0	218
Erongo	97.3	71.2	2.7	26.0	100.0	74.0	46.7	372
Hardap	97.5	66.4	2.5	31.1	100.0	68.9	32.0	152
//Karas	91.8	52.8	3.9	43.3	100.0	56.7	33.7	151
Kavango	85.9	46.2	2.9	50.9	100.0	49.1	31.4	316
Khomas	97.9	72.4	1.9	25.7	100.0	74.3	47.0	1,023
Kunene	91.2	54.4	0.7	44.9	100.0	55.1	30.3	104
Ohangwena	92.2	57.2	0.8	42.0	100.0	58.0	36.0	328
Omaheke	94.7	64.9	2.8	32.3	100.0	67.7	44.1	103
Omusati	91.0	45.7	1.7	52.6	100.0	47.4	26.2	342
Oshana	97.0	62.8	1.2	35.9	100.0	64.1	38.9	335
Oshikoto	90.8	49.9	2.5	47.6	100.0	52.4	30.2	335
Otjozondjupa	92.3	63.4	1.6	35.0	100.0	65.0	39.9	241
Education								
No education	84.2	54.4	2.1	43.5	100.0	56.5	36.5	310
Primary	89.4	51.1	2.3	46.6	100.0	53.4	29.4	944
Secondary	96.9	62.8	1.7	35.5	100.0	64.5	39.9	2,400
More than secondary	98.8	82.2	3.6	14.2	100.0	85.8	50.2	368
Wealth quintile								
Lowest	88.9	48.9	2.0	49.1	100.0	50.9	27.9	594
Second	91.4	54.9	1.9	43.3	100.0	56.7	34.8	769
Middle	94.5	59.6	1.7	38.7	100.0	61.3	37.4	886
Fourth	96.9	67.8	1.7	30.6	100.0	69.4	44.4	917
Highest	97.8	70.0	2.9	27.0	100.0	73.0	42.4	855
Total 15-49	94.3	61.2	2.0	36.8	100.0	63.2	38.1	4,021
50-64	93.5	67.9	3.0	29.1	100.0	70.9	31.1	460

${ }^{1}$ Includes "don't know/missing"

16.2 HIV Testing among Youth

Obtaining an HIV test can be more difficult for youth than for adults because many youth lack experience or face barriers in accessing health services. Table 16.2 shows that 80 percent of young women and 55 percent of young men age 15-24 who were sexually active in the 12 months before the survey have been tested for HIV and received the results.

The percentage of young women and men who have been tested for HIV and received the test results increases steadily with age and peaks among those age 23-24 (91 percent of women and 72 percent of men). Ever-married youth are more likely to have had an HIV test and received the results than those who have never been married. Young women and men in urban areas are more likely to have been tested for HIV than their rural counterparts, the gap being much more pronounced among young men (62 percent
versus 47 percent). The percentage of young women and men who have been tested and received the results increases with increasing education. For example, only 67 percent of young women with no education have been tested for HIV and received the results, as compared with 85 percent of those with more than a secondary education.

Table 16.2 further shows that 58 percent of sexually active young women and 39 percent of sexually active young men had been tested for HIV in the past 12 months and received the results of their last test. Differentials by background characteristics are similar to those observed with respect to the percentage of young women and men who had ever been tested and received the results.

Table 16.2 Recent HIV tests among youth						
Among young women and young men age 15-24 who have had sexual intercourse in the past 12 months, the percentage who were tested for HIV in the past 12 months and received the results of the last test, by background characteristics, Namibia 2013						
	Women age 15-24 who have had sexual intercourse in the past 12 months:			Men age 15-24 who have had sexual intercourse in the past 12 months:		
Background characteristic	Percentage who have ever been tested for HIV and received results	Percentage who have been tested for HIV in the past 12 months and received the results of the last test	Number of women	Percentage who have ever been tested for HIV and received results	Percentage who have been tested for HIV in the past 12 months and received the results of the last test	Number of men
Age						
15-19	64.7	48.4	719	41.5	27.6	304
15-17	52.7	39.3	279	41.9	27.2	119
18-19	72.3	54.1	441	41.2	27.8	185
20-24	87.2	63.1	1,402	61.2	43.6	638
20-22	85.0	60.3	854	53.6	36.9	371
23-24	90.6	67.4	548	71.8	53.0	267
Marital status						
Never married	77.3	58.1	1,639	54.4	37.9	856
Ever married	87.2	58.1	481	59.2	44.3	86
Knows condom source ${ }^{1}$						
Yes	80.5	58.9	2,032	55.2	38.8	928
No	57.4	39.5	89	*	*	14
Residence						
Urban	80.4	59.2	1,225	61.7	44.8	511
Rural	78.4	56.5	896	46.7	30.9	431
Education						
No education	67.4	41.5	52	31.9	19.8	42
Primary	70.2	49.2	334	38.5	23.1	169
Secondary	81.2	60.2	1,478	59.5	42.2	656
More than secondary	84.9	60.9	257	63.8	51.1	75
Total 15-24	79.6	58.1	2,121	54.8	38.5	942

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ For this table, the following responses are not considered a source for condoms: friends, family members, and home.

16.3 Couple Counselling and Testing

Respondents who indicated that they had been tested for HIV were asked whether they received HIV counselling and testing individually or as a couple. Those who received individual HIV counselling and testing were asked if they would consider counselling and testing as a couple in the future. Results are shown in Tables 16.3.1 and 16.3.2.

Among women and men age 15-49 who have ever been tested for HIV and who ever had sex, onefourth (25 percent each) received HIV counselling and testing as a couple. Respondents age 15-19 (17 percent of women and 9 percent of men) were the least likely to have been counselled and tested as a couple (Table 16.3.1). As expected, currently married women and men were most likely to have been counselled and tested as a couple (32 percent of women and 38 percent of men). Urban women were slightly more likely to have been counselled and tested as a couple than those in rural areas (26 percent versus 23 percent). Among women, the percentage who received counselling and testing as a couple ranged from 20 percent in Ohangwena to 30 percent in Omaheke. Among men, the percentage was lowest
in Hardap (17 percent) and highest in Omusati (36 percent). Women with more than a secondary education (30 percent) and those in the highest wealth quintile (28 percent) were most likely to have been counselled and tested as a couple. Differentials by education and wealth did not follow a clear pattern among men.

Table 16.3.2 shows that a large majority of respondents age 15-49 who received HIV counselling and testing individually reported that they would consider HIV counselling and testing as a couple in the future (88 percent of women and 90 percent of men, respectively). This percentage tends to decrease with age among both women and men. It is highest among never-married women and men who have ever had sex (89 percent and 92 percent, respectively) and among urban respondents (91 percent each). The percentage of women who would consider HIV counselling and testing as a couple in the future ranges from 73 percent in Omusati to 97 percent in Otjozondjupa, while among men it is lowest in Kavango (57 percent) and highest in Omaheke and Oshana (98 percent each). This percentage is highest among women and men with more than secondary education (94 percent and 95 percent, respectively) and among women in the highest wealth quintile and men in the highest two wealth quintiles (93 percent each).

Among women and men age 50-64 who were tested individually, 59 percent and 88 percent, respectively, would consider HIV counselling and testing as a couple in the future.

Table 16.3.1 Couple counselling and testing
Among women and men age 15-49 who have who ever had sex and who have ever been tested for HIV, percentage who received HIV counselling and testing as a couple, according to background characteristics, Namibia 2013

Background characteristic	Women		Men	
	Percentage who received HIV counselling and testing as a couple	Number	Percentage who received HIV counselling and testing as a couple	Number
Age				
15-24	21.4	2,027	12.4	608
15-19	17.1	577	8.7	153
20-24	23.1	1,450	13.7	455
25-29	26.4	1,404	26.1	501
30-34	24.4	1,175	27.4	414
35-39	27.3	1,024	33.4	367
40-44	27.6	835	33.6	302
45-49	24.2	608	31.3	218
Marital status				
Never married	19.6	3,666	17.0	1,390
Married/living together	32.4	2,853	38.3	939
Divorced/separated/ widowed	18.6	555	20.3	82
Residence				
Urban	25.7	4,067	25.3	1,569
Rural	23.4	3,007	25.6	841
Region				
Zambezi	27.4	370	35.1	131
Erongo	27.5	619	29.9	267
Hardap	27.8	225	17.4	101
//Karas	25.1	274	24.3	82
Kavango	20.4	682	24.5	145
Khomas	26.9	1,701	21.6	740
Kunene	20.3	209	23.8	56
Ohangwena	19.7	677	26.6	171
Omaheke	29.5	183	31.1	69
Omusati	25.6	612	35.6	133
Oshana	21.1	593	27.1	197
Oshikoto	27.4	530	18.9	168
Otjozondjupa	23.2	399	27.4	149
Education				
No education	22.3	321	30.7	173
Primary	22.8	1,342	24.0	465
Secondary	24.6	4,658	24.8	1,473
More than secondary	29.7	754	27.5	300
Wealth quintile				
Lowest	23.5	1,104	26.3	281
Second	22.8	1,279	24.1	419
Middle	23.5	1,436	28.1	509
Fourth	24.9	1,665	25.2	610
Highest	28.0	1,590	23.8	590
Total 15-49	24.7	7,074	25.4	2,410
50-64	19.6	541	28.7	320

Table 16.3.2 Consideration of couple counselling and testing in the future
Among women and men age 15-49 who have ever been tested for HIV and who were tested individually, percentage who would consider HIV counselling and testing as a couple in the future, according to background characteristics, Namibia 2013

Background characteristic	Women		Men	
	Percentage who would consider HIV counselling and testing as couple in future	Number	Percentage who would consider HIV counselling and testing as couple in future	Number
Age				
15-24	88.2	1,904	85.2	635
15-19	82.7	718	76.3	225
20-24	91.6	1,186	90.2	410
25-29	92.8	1,045	93.0	381
30-34	91.7	888	91.6	301
35-39	88.8	755	90.4	248
40-44	85.7	614	92.7	202
45-49	74.4	471	94.0	155
Marital status				
Never married	86.2	3,294	89.1	1,273
Ever had sex	88.8	2,927	91.6	1,153
Never had sex	65.0	366	65.2	120
Married/living together	95.0	1,929	92.9	583
Divorced/separated/ widowed	75.0	455	80.0	65
Residence				
Urban	90.9	3,210	91.4	1,214
Rural	84.8	2,468	87.5	707
Region				
Zambezi	96.4	274	93.9	87
Erongo	92.9	476	94.5	194
Hardap	86.7	167	96.0	87
//Karas	94.4	218	92.1	66
Kavango	87.2	563	56.5	115
Khomas	91.1	1,312	90.5	601
Kunene	94.8	167	94.9	44
Ohangwena	80.9	593	90.2	145
Omaheke	87.2	132	98.0	48
Omusati	73.3	502	74.5	115
Oshana	86.3	517	97.7	161
Oshikoto	89.9	434	96.9	144
Otjozondjupa	96.5	323	94.3	115
Education				
No education	84.8	250	85.8	122
Primary	83.3	1,089	88.5	391
Secondary	89.2	3,768	90.0	1,179
More than secondary	93.5	570	94.5	229
Wealth quintile				
Lowest	83.4	898	86.6	228
Second	85.3	1,046	85.6	334
Middle	88.9	1,159	87.3	398
Fourth	89.3	1,328	93.2	481
Highest	92.5	1,247	93.4	479
Total 15-49	88.3	5,678	89.9	1,921
50-64	58.8	438	87.9	233

16.4 Place of Last Hiv Test

Table 16.4 shows the place where women and men age 15-64 who had been tested for HIV received their last test. The majority of respondents (84 percent of women and 76 percent of men) were tested at a public sector facility; only 14 percent of women and 19 percent of men were tested at a private sector facility.

With respect to specific types of public facilities, 37 percent of women and 40 percent of men were tested in a government hospital, and 39 percent of women and 21 percent of men were tested in a government primary health care clinic. In the private sector, women (10 percent) and men (13 percent) were most likely to have received their last test in a private hospital, clinic, or doctor's office.

16.5 HIV Prevalence by Prior Hiv Test Results

Respondents who said that they had ever been tested for HIV were asked to provide the result of their last HIV test. Tables 16.5 .1 and 16.5 .2 show the percentage of respondents age $15-49$ and $50-64$, respectively, who tested positive in the 2013 NDHS, according to their self-reported HIV status.

Among respondents age 15-49 who were previously tested and who reported that their last HIV test result was positive, 91 percent of women and 84 percent of men tested positive in the 2013 NDHS. Among respondents age 50-64, the respective percentages were 90 percent and 86 percent. This means that 9-10 percent of women and 14-16 percent of men who reported in the interview that they were HIVpositive had negative or indeterminate HIV test results in the 2013 NDHS. The possible reasons for these differences cannot be fully explained without further investigation. A combination of false positives with regard to previous testing and false negatives with regard to testing in the 2013 NDHS may have contributed to the differences among these respondents. Due to the high sensitivity and specificity of the HIV tests used, this is likely to be a small number of cases. However, these possibilities are hypotheses and cannot be verified because of the limitations of anonymous testing within the context of a large-scale, population-based survey, which does not allow for follow-up interviews and subsequent HIV testing among respondents that would elicit additional information.

Seven percent of women and 8 percent of men age 15-49 who reported that their last HIV test result prior to the survey was negative tested HIV positive in the 2013 NDHS. These percentages were 6 percent and 8 percent, respectively, among women and men age 50-64. There are a few possible reasons that could explain this difference. First, respondents could have seroconverted since their last HIV test. Second, respondents could have knowingly reported a false negative HIV status due to discomfort about disclosing that they are HIV positive to the survey interviewer. Third, respondents could have received a false negative on their prior HIV test or a false positive on their NDHS test. The likelihood of the third possibility is very small given the high sensitivity and specificity of HIV tests. The proportion of respondents who seroconverted between their last HIV test and the survey is also likely to be small given the estimated incidence rates of HIV and the relatively short duration between the date of respondents' last HIV test and the 2013 NDHS. Again, these are only hypotheses that are difficult to verify without further follow-up interviews and subsequent HIV testing.

Table 16.5.1 also shows that 35 percent of women and 21 percent of men age 15-49 who declined to disclose their status or who reported that their last HIV test result was indeterminate, or for whom privacy was not obtained, had positive HIV test results in the 2013 NDHS.

Table 16.5.1 HIV prevalence by self-reported prior HIV testing: Respondents 15-49
Among women and men age 15-49 who were tested in the 2013 NDHS, the percentage who tested positive for HIV in the 2013 NDHS, by prior testing for HIV and self-reported HIV status, Namibia 2013

Self-reported HIV status	Women		Men		Percentage HIV positive	Number
	Percentage HIV positive	Number	Percentage HIV positive	Number		
Previously tested						
Received results						
Positive	90.7	456	84.0	175	88.8	630
Negative	7.3	2,713	8.0	1,951	7.6	4,664
Other ${ }^{1}$	34.9	69	21.1	110	26.4	180
Did not receive results	21.3	98	14.1	79	18.1	178
Not previously tested	4.0	694	4.7	1,365	4.5	2,058
Total 15-49	16.9	4,051	10.9	3,680	14.0	7,731

Note: Total includes 21 women with missing information on prior HIV testing.
${ }^{1}$ Includes respondents who reported their test result as indeterminate, respondents who declined to disclose their test result, missing responses, and respondents for whom privacy was not obtained to ask the question on result of last HIV test

Table 16.5.2 HIV prevalence by self-reported prior HIV testing: Respondents age 50-64
Among women and men age 50-64 who were tested in the 2013 NDHS, the percentage who tested positive for HIV in the 2013 NDHS, by prior testing for HIV and self-reported HIV status, Namibia 2013

Self-reported HIV status	Women		Men		Total	
	Percentage HIV positive	Number	Percentage HIV positive	Number	Percentage HIV positive	Number
Previously tested						
Received results						
Positive	90.2	83	(86.2)	44	88.8	126
Negative	5.6	371	8.3	239	6.7	610
Other ${ }^{1}$	*	6	*	9	*	15
Did not receive result of last test	*	10	*	14	(18.1)	24
Not previously tested	7.0	219	2.7	132	5.4	351
Total 50-64	16.7	689	16.0	438	16.4	1,127

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes respondents who reported their test result as indeterminate, respondents who declined to disclose their test result, missing responses, and respondents for whom privacy was not obtained to ask the question on result of last HIV test

Tables 16.6.1 and 16.6.2 show the percent distribution of HIV positive and HIV negative women and men age 15-49 and 50-64, respectively, by self-reported HIV status. Tables 16.6.1 and 16.6.2 differ from Tables 16.5.1 and 16.5 .2 in that the denominators and numerators represent different groups of people. In Tables 16.5.1 and 16.5.2, the numerators include the number of respondents who are HIV positive, and the denominators include the number of respondents in the various categories of prior HIV testing and self-reported test results. For example, as mentioned above, among women age 15-49 who selfreported their HIV status as positive, 91 percent are HIV positive according to the 2013 NDHS testing. In Tables 16.6 .1 and 16.6.2, the denominators are respondents who are HIV positive or HIV negative based on the 2013 NDHS testing, and the numerators include the number of respondents in the various prior HIV testing categories.

Table 16.6 .1 shows that 61 percent of women and 37 percent of men age 15-49 who tested positive in the 2013 NDHS actually reported that they were HIV positive based on prior testing. These percentages are somewhat higher among women and men age $50-64$ (65 percent and 54 percent, respectively) (Table 16.6.2). Among women and men age 15-49 who were HIV positive according to the 2013 NDHS testing, 29 percent and 39 percent, respectively, reported that they had been tested for HIV prior to the survey and that the result of their last HIV test was negative. The proportions for women and
men age 50-64 were 18 percent and 28 percent, respectively. It is possible that some respondents knew they were HIV positive but were unwilling to disclose their status to the interviewer. Other possible explanations for this discrepancy between self-reported and actual HIV status include some respondents seroconversion since the most recent HIV test, receiving a false negative result on the prior HIV test, or receiving a false positive result on the 2013 NDHS test. These explanations, however, are only possibilities that can be neither ruled out nor verified.

Remarkably, only four percent of HIV-positive women and 16 percent of HIV-positive men age 15-49 reported that they had never been tested for HIV prior to the survey. Among respondents age 50-64, the respective percentages were 13 percent and 5 percent.

Among HIV-negative women age 15-49, 75 percent had had an HIV test with a negative result, and 20 percent had never been tested for HIV prior to the survey; among women age 50-64, these percentages were 61 percent and 36 percent, respectively. Fifty-five percent of HIV-negative men age 1549 and 60 percent of those age 50-64 had had an HIV test with a negative result. An additional 40 percent of HIV-negative men age 15-49 and 35 percent of HIV-negative men age 50-64 had not been previously tested.

Table 16.6.1 Prior HIV testing by current HIV status: Respondents 15-49
Percent distribution of women and men age $15-49$ by self-reported HIV status, according to HIV status from the 2013 NDHS HIV test result, Namibia 2013

Self-reported HIV status	Women		Men		Total	
	HIV positive	HIV negative	HIV positive	HIV negative	HIV positive	HIV negative
Previously tested						
Received results						
Positive	60.5	1.3	36.6	0.9	51.6	1.1
Negative	28.8	74.7	38.8	54.7	32.5	64.9
Other ${ }^{1}$	3.5	1.3	5.8	2.7	4.4	2.0
Did not receive results	3.0	2.3	2.8	2.1	3.0	2.2
Not previously tested	4.1	19.8	16.0	39.7	8.5	29.6
Total 15-49	100.0	100.0	100.0	100.0	100.0	100.0
Number	683	3,367	401	3,279	1,085	6,646

${ }^{1}$ Includes respondents who reported their test result as indeterminate, respondents who declined to disclose their test result, missing responses, and respondents for whom privacy was not obtained to ask the question on result of last HIV test

Table 16.6.2 Prior HIV testing by current HIV status: Respondents 50-64
Percent distribution of women and men age 50-64 by self-reported HIV status, according to HIV status from the 2013 NDHS HIV test result, Namibia 2013

Self-reported HIV status	Women		Men		Total	
	HIV positive	HIV negative	HIV positive	HIV negative	HIV positive	HIV negative
Previously tested						
Received results						
Positive	64.9	1.4	53.7	1.6	60.6	1.5
Negative	18.1	61.0	28.2	59.7	21.9	60.5
Other ${ }^{1}$	2.9	0.5	7.6	1.0	4.7	0.7
Did not receive results	0.9	1.6	4.7	2.8	2.4	2.1
Not previously tested	13.2	35.5	5.1	34.9	10.1	35.2
Total 50-64	100.0	100.0	100.0	100.0	100.0	100.0
Number	115	574	70	368	185	942

${ }^{1}$ Includes respondents who reported their test result as indeterminate, respondents who declined to disclose their test result, missing responses, and respondents for whom privacy was not obtained to ask the question on result of last HIV test

Given the amount of discordance between the 2013 NDHS HIV test results and the self-reported information on HIV status among respondents who said they had been tested prior to the survey and knew their test result, and the high percentage of respondents who have been tested within the 12 months
preceding the survey (see Tables 16.1.1 and 16.1.2) leaving little time for seroconversion, the information on self-reported HIV status in the 2013 NDHS should be interpreted with caution.

16.6 Self-Reported Use of Antiretroviral Medications (ARVs)

In the 2013 NDHS, respondents who reported that the result of their last HIV test was positive were asked whether they were taking ARVs daily at the time of the survey. Table 16.7 presents the percentage of women age 15-64 who have been previously tested for HIV and received the result of their last test and the percent distribution of women who have been tested for HIV and received the test results by the self-reported result of their last HIV test. It also shows the percentage of women who reported that they are HIV positive and that they were taking ARVs daily at the time of the survey.

It can be seen in Table 16.7 that 79 percent of women age 15-49 and 95 percent of women age 5064 who reported they are HIV positive are currently taking ARVs. As shown in the bottom half of the table, the results on self-reported ARV use among the subsample of respondents who were eligible for and participated in the 2014 NDHS HIV test are similar to those for the entire survey. However, as presented in Tables 16.6 .1 and 16.6.2, the group with self-reported positive results accounts for only 61-65 percent of all women who tested positive for HIV in the survey.

Table 16.7 Self-reported HIV status and ARV use: Women
Percentage of women age 15-64 who have ever been tested for HIV and received the result of their last test, percent distribution of women who have ever been tested for HIV and received the test results by the self-reported result of the last HIV test, and among women who reported that they are HIV positive, the percentage who were taking ARVs daily at the time of the survey, according to age, Namibia 2013

	Among all women		Among women who have ever been tested for HIV and received the result of the last HIV test:				Number	Among respondents who reported that they were HIV positive:	
Age	Ever tested for HIV and received the result of the last test	Number	Positive	Negative	Other ${ }^{1}$	Total		Percentage currently taking ARVs daily	Number
ALL WOMEN									
15-49	79.2	9,176	12.6	84.4	3.0	100.0	7,271	79.3	918
50-64	67.0	797	17.0	81.3	1.7	100.0	534	95.4	91
WOMEN TESTED FOR HIV IN THE 2013 NDHS									
15-49	79.9	4,051	14.1	83.8	2.1	100.0	3,238	80.0	456
50-64	66.7	689	18.0	80.7	1.3	100.0	460	95.5	83

ARV = antiretroviral
${ }^{1}$ Includes respondents who reported their test result as indeterminate, respondents who declined to disclose their test result, missing responses, and respondents for whom privacy was not obtained to ask the question on result of last HIV test

Figure 16.1 presents the percent distribution of all women age 15-64 who tested positive for HIV in the 2013 NDHS according to their self-reported HIV status and current ARV use. The figure shows that, among women age 15-64 who had a positive HIV test result in the 2013 NDHS, only slightly more than half (51 percent) are currently taking ARVs. If some respondents knew they were HIV positive and were taking ARVs but did not report that they were HIV positive during the interview, then they would be misclassified as non-users, and the percentage of HIV-positive women taking ARVs could be underestimated.

Figure 16.1 Self-reported ARV use and HIV status among HIV-positive women age 15-64

* Includes women who reported their test result as indeterminate, women who declined to disclose their test result, missing responses, and women for whom privacy was not obtained to ask the question on result of last HIV test

16.7 HIV Testing during Pregnancy

Table 16.8 presents information on HIV screening during pregnancy among women who gave birth in the two years preceding the survey. This service is a key tool in reducing HIV transmission from mother to child. According to Table 16.8, 83 percent of women who gave birth during the two years preceding the survey received HIV counselling during antenatal care (ANC) visits (i.e., someone talked with the respondent about all three of the following topics: (1) babies getting the AIDS virus from their mother, (2) preventing the virus, and (3) getting tested for the virus). More than eight in ten women who were tested for HIV received the test results and post-test counselling (82 percent), and about one in ten (11 percent) received the results but did not receive post-test counselling. Less than 1 percent of women were tested for HIV during an antenatal care visit but did not receive their test results.

Eighty-one percent of women who gave birth in the two years preceding the survey received preand post-test counselling on HIV, an HIV test during ANC, and the test results. Women age 25-29 (87 percent) and never-married women (84 percent) are more likely than other women to have been counselled and tested for HIV during ANC and to have received the test results. This percentage increases with increasing education, from 57 percent among women with no education to 84 percent among those with a secondary education or higher. Wealth does not appear to have a clear relationship with counselling and testing for HIV during ANC among women with a birth in the two years preceding the survey.

Ninety-four percent of women had an HIV test either during antenatal care or during labour for their most recent birth and received the results, and 87 percent of women received the test results and disclosed them to their partner. Forty-five percent of women who received ANC for their last birth in the past two years reported that their partner was tested for HIV during any of their ANC visits.

Table 16.8 Pregnant women counselled and tested for HIV
Among all women age 15-49 who gave birth in the two years preceding the survey, the percentage who received HIV counselling, the percentage who received an HIV test during antenatal care for their most recent birth by whether they received their results and pre- and post-test counselling, and percentage who received an HIV test at the time during ANC or labour for their most recent birth by whether they received their test results, according to background characteristics, Namibia 2013

Background characteristic	Percentage who received counselling on HIV during antenatal care ${ }^{1}$	Percentage who were tested for HIV during antenatal care and who:			Percentage who received counselling on HIV and an HIV test during ANC, and the results	Percentage who had an HIV test during ANC or labour and who: ${ }^{2}$		Received results and disclosed them to their partner	Number of women who gave birth in the past two years ${ }^{3}$	Percentage of women who received ANC care for their last birth in the past two years whose partner was tested for HIV during any of the ANC visits	Number of women who received ANC care for their last birth in the past two years
		Received results and received pre- and post-test counselling	Received results and did not receive pre- and post-test counselling	Did not receive results		Received results	Did not receive results				
Age											
15-24	79.8	77.8	14.1	1.4	77.9	93.2	1.2	83.8	704	40.5	681
15-19	73.7	76.0	16.6	1.9	71.6	94.4	1.9	82.6	209	34.4	201
20-24	82.4	78.6	13.0	1.2	80.6	92.7	1.0	84.3	496	43.0	481
25-29	87.9	83.9	11.0	0.7	87.0	95.8	0.7	90.3	497	48.3	486
30-39	83.4	84.5	7.5	0.3	81.7	94.1	0.1	88.8	631	46.4	608
40-49	79.4	84.1	6.1	0.7	77.3	93.2	0.7	87.7	115	48.4	108
Marital status											
Never married	86.0	83.4	10.5	0.9	84.4	95.5	0.6	86.5	1,009	44.4	987
Married/living together	80.7	79.8	11.6	0.8	78.9	92.7	0.8	88.7	860	45.6	824
Divorced/separated/ widowed	70.6	85.8	3.6	0.0	70.1	91.8	0.0	82.6	78	43.2	73
Residence											
Urban	81.7	80.1	13.2	0.1	81.0	94.6	0.1	89.0	925	45.0	899
Rural	84.2	83.6	8.4	1.5	81.8	93.7	1.3	85.8	1,022	44.8	985
Region											
Zambezi	84.7	89.3	3.8	1.4	82.2	93.7	1.4	89.0	112	38.9	109
Erongo	86.8	82.9	11.8	0.0	86.5	95.9	0.0	88.2	136	36.5	135
Hardap	80.1	81.7	7.5	2.0	77.5	89.9	2.0	83.4	73	36.6	70
//Karas	86.1	83.4	12.4	0.0	86.1	97.3	0.0	94.5	61	55.4	60
Kavango	79.6	82.9	7.2	1.5	76.8	91.6	1.5	83.6	231	31.2	221
Khomas	75.9	71.7	20.7	0.0	75.5	94.5	0.0	90.8	344	47.5	333
Kunene	75.7	78.1	11.5	1.3	73.5	90.4	1.3	81.3	69	35.3	65
Ohangwena	92.2	89.3	7.5	1.4	90.8	97.7	0.9	89.0	254	51.5	250
Omaheke	69.0	78.8	8.9	0.0	66.7	89.2	0.0	73.9	59	40.1	54
Omusati	90.5	89.2	3.7	1.4	86.9	94.5	1.4	82.9	189	45.4	186
Oshana	91.8	84.3	14.0	0.0	91.8	98.3	0.0	95.8	127	56.4	127
Oshikoto	82.3	81.8	13.3	1.2	80.9	97.1	0.5	95.4	154	57.3	152
Otjozondjupa	76.5	75.7	7.0	0.6	74.6	87.0	0.6	75.9	137	42.3	123
Education											
No education	58.8	73.5	3.6	2.7	56.9	79.7	2.7	70.3	110	29.2	96
Primary	81.6	80.2	8.4	1.8	78.2	90.6	1.5	83.8	438	42.0	416
Secondary	85.4	84.4	10.8	0.4	84.3	96.6	0.3	89.6	1,295	46.9	1,268
More than secondary	84.2	67.1	26.8	0.0	84.2	93.9	0.0	91.8	105	46.4	105
Wealth quintile											
Lowest	80.7	81.9	8.9	1.6	78.6	91.9	1.0	83.8	415	44.6	393
Second	83.7	84.1	8.0	1.8	81.7	93.6	1.8	86.8	439	44.1	425
Middle	86.4	86.0	8.1	0.3	84.5	95.8	0.3	88.7	423	42.9	415
Fourth	85.0	83.3	9.4	0.1	84.4	95.3	0.1	89.1	389	47.4	378
Highest	77.3	70.5	23.3	0.0	76.3	94.4	0.0	88.7	281	46.0	274
Total 15-49	83.0	81.9	10.7	0.8	81.4	94.2	0.7	87.3	1,947	44.9	1,884

${ }^{1}$ In this context, "pre-test counselling" means that someone talked with the respondent about all three of the following topics: (1) babies getting the AIDS virus from their mother, (2) preventing the virus, and (3) getting tested for the virus
${ }^{2}$ Women were asked whether they were tested for HIV during labour only if they were not tested for HIV during ANC
${ }^{3}$ The denominator for percentages includes women who did not receive antenatal care for their last birth in the past two years

16.8 Early Infant Diagnosis

Women who gave birth in the two years preceding the survey were asked about the HIV testing status of their last-born child; the results are shown in Table 16.9. Twenty-eight percent of women age 15-49 with a birth in the two years preceding the survey reported that their lastborn child was tested during the first eight weeks of his/her life, an additional 1 percent reported that their child was not tested during the first eight weeks but was tested during the first 18 months of his/her life. Fifteen percent of women reported that their last-born child was tested more than once during the first 18 months.

Among the 752 unweighted women with a birth in the two years preceding the survey whose last-born child was tested for HIV, only 18 reported that their child received a positive test result. This number of cases is too few to investigate coverage of ARVs among HIV-positive children.

BLOOD PRESSURE AND BLOOD GLUCOSE

Key Findings

- Among eligible respondents age 35-64, more than 4 in 10 women (44 percent) and men (45 percent) have elevated blood pressure or are currently taking medicine to lower their blood pressure.
- Forty-nine percent of women and 61 percent of men are not aware that they have elevated blood pressure.
- Forty-three percent of women and 34 percent of men with hypertension are taking medication for their condition.
- Only 29 percent of women and 20 percent of men with hypertension are taking medication and have their blood pressure under control.
- Six percent of women and 7 percent of men are diabetic; that is, they have elevated fasting plasma glucose values or report that they are taking diabetes medication. An additional 7 percent of women and 6 percent of men are prediabetic.
- Sixty-seven percent of women and 74 percent of men with diabetes are taking medication to lower their blood glucose.
- Women and men with a higher-than-normal body mass index (25.0 or higher) are more likely to have elevated blood pressure and elevated fasting blood glucose.

Around the world, whether in developed or developing countries, the rapid increase in noncommunicable diseases (NCDs) is becoming a challenge to achieving global progress in improving population health. This group of chronic diseases-that is, diabetes, cardiovascular disease, cancer, and chronic respiratory disease-contributes to almost 60 percent of the death toll around the world, and 80 percent of these deaths occur in developing countries, including Namibia. With each passing day, this death toll will rise unless proper measures are taken. Based on current trends, by 2020 NCDs will account for 73 percent of deaths and 60 percent of the disease burden in developing countries (WHO, 2010b).

In most cases, these NCD-associated risk factors are modifiable and preventable. Hence, early identification and prevention of high blood pressure and elevated plasma lipid and blood glucose levels can reduce people's risk of developing coronary heart disease and stroke by 80 percent and their risk of type 2 diabetes by 90 percent (CDC, 2009). As in many countries throughout the world, NCDs such as cardiovascular diseases, diabetes, cancer and chronic respiratory diseases are the leading cause of death in Namibia, accounting for 43 percent of all deaths. ${ }^{1}$

17.1 Coverage Rates for Blood Pressure and Blood Glucose Measurement

The 2013 NDHS is the first national survey in Namibia to include biomarker measurements of blood pressure and fasting blood glucose. These biomarkers were collected in an effort to provide information on the prevalence of high blood pressure and elevated fasting blood glucose among a subsample of women and men age 35-64 in half of the survey households (the same households selected for the male survey). Blood pressure and blood glucose levels were measured among consenting respondents. Table 17.1 shows that 2,584 women and 2,163 men age $35-64$ were eligible for these tests.

[^17]Among these individuals, 81 percent of women and 71 percent of men had their blood pressure measured, and 75 percent of women and 64 percent of men had their blood glucose measured.

Table 17.1 Coverage of testing for blood pressure and fasting blood glucose measurement among women and men age 35-64
Percentage of women and men age 35-64 eligible for blood pressure and blood glucose measurements, by testing status, according to selected background characteristics (unweighted), Namibia 2013

Background characteristic	Women			Men		
	Percentage measured for blood pressure ${ }^{1}$	Percentage measured for fasting blood glucose	Number of women	Percentage measured for blood pressure ${ }^{1}$	Percentage measured for fasting blood glucose	Number of men
Age						
35-39	76.0	69.9	674	66.8	58.2	581
40-44	81.8	74.9	506	66.0	60.6	515
45-49	83.4	77.8	446	72.9	64.2	377
50-54	83.1	78.0	432	70.7	65.2	290
55-59	81.9	75.8	281	80.0	73.2	205
60-64	80.8	77.6	245	81.0	75.9	195
Residence						
Urban	77.5	70.9	1,249	63.7	56.7	1,172
Rural	83.7	78.8	1,335	79.0	72.1	991
Region						
Zambezi	77.6	73.3	161	64.2	57.5	120
Erongo	84.3	77.9	204	66.4	61.4	259
Hardap	81.6	77.0	196	75.9	73.8	191
//Karas	84.0	77.3	238	75.3	67.1	219
Kavango	83.9	77.8	180	80.0	68.1	135
Khomas	60.6	50.6	241	48.5	38.1	239
Kunene	86.6	79.3	179	81.3	71.5	144
Ohangwena	84.6	79.8	188	73.8	66.7	84
Omaheke	83.1	79.7	172	74.7	70.2	198
Omusati	83.5	81.9	243	72.1	67.2	122
Oshana	85.1	70.1	174	70.5	54.5	112
Oshikoto	81.3	80.1	176	76.2	69.8	126
Otjozondjupa	77.6	74.1	232	73.4	70.6	214
Education						
No education	78.1	72.5	375	76.8	69.7	366
Primary	86.0	82.1	827	76.2	70.1	608
Secondary	80.8	74.0	1,132	69.2	62.4	931
More than secondary	68.1	60.3	229	60.3	49.6	224
Wealth quintile						
Lowest	87.9	82.6	447	82.9	76.7	275
Second	83.0	78.1	466	77.7	69.0	355
Middle	84.7	79.0	471	74.2	65.7	434
Fourth	78.7	73.7	596	66.9	61.5	538
Highest	72.4	65.1	604	61.3	54.7	561
50-64	82.2	77.2	958	76.4	70.6	690
Total 35-64	80.7	75.0	2,584	70.7	63.8	2,163

Note: Total includes 21 women (unweighted) and 34 men (unweighted) with missing data on education.

17.2 High Blood Pressure

High blood pressure, or hypertension, is among the major risk factors for cardiovascular disease. Health facility-based records indicate that hypertension is the leading cause of disability among adults in Namibia. According to the Ministry of Health and Social Services (MoHSS) Health Information System (2007), heart failure, hypertension, and stroke collectively were responsible for 8 percent of all health facility deaths.

NDHS respondents were asked several questions to determine their history of hypertension, including whether they had ever been told by a doctor or other health worker that they had high blood pressure and, if so, whether they had been told that on two or more occasions. If they reported being told one or more times that they had high blood pressure, they were asked additional questions about specific actions they were taking at the time of the survey to lower their blood pressure.

17.2.1 History and Treatment of High Blood Pressure

In addition to the NDHS blood pressure measurement, women and men age $35-64$ were asked questions related to their experiences with blood pressure measurement and treatment or advice received to lower their blood pressure.

Tables 17.2 and 17.3 summarise the findings. Overall, 20 percent of women and 13 percent of men age 35-64 reported that they were told by a health professional that they have high blood pressure or hypertension. As might be expected, these percentages generally increase with age and are higher among respondents who are obese or overweight. Women and men in urban areas are more likely than those in rural areas to have been told they have high blood pressure or hypertension by a health professional. By region, this percentage ranges from 11 percent in Ohangwena to 31 percent in Kunene among women and from 7 percent in Oshana to 20 percent in Kunene and Erongo among men. Overall, the percentage of women who have been told that they have high blood pressure or hypertension decreases with increasing education, while the percentage increases among men. The percentage of respondents who have been told by a health professional that they have high blood pressure or hypertension tends to increase with increasing wealth, with the relationship being more linear among men than among women.

Table 17.2 History of hypertension
Percentage of women and men age 35-64 who were ever told by a health professional that they have high blood pressure or hypertension, according to selected background characteristics, Namibia 2013

Background characteristic	Women		Men	
	Percentage of women ever told by a health professional they had hypertension or high blood pressure	Number of women	Percentage of men ever told by a health professional they had hypertension or high blood pressure	Number of men
Age				
35-39	7.8	713	5.7	577
40-44	18.2	523	8.3	503
45-49	21.3	435	10.7	365
50-54	26.7	442	18.2	274
55-59	34.1	264	28.2	198
60-64	28.5	243	34.1	173
Nutritional status ${ }^{1}$				
Thin (BMI <18.5)	7.4	213	7.8	246
Normal (BMI 18.5-24.9)	16.1	894	13.0	831
Overweight (BMI 25-29.9)	24.2	515	32.4	264
Obese ($\mathrm{BMI} \geq 30.0$)	41.5	538	40.7	151
Residence				
Urban	22.7	1,314	14.6	1,229
Rural	17.0	1,307	11.5	862
Region				
Zambezi	16.4	120	10.7	90
Erongo	23.7	185	20.0	234
Hardap	25.6	110	13.7	105
//Karas	23.3	115	14.8	100
Kavango	17.6	206	8.7	151
Khomas	21.7	530	14.9	514
Kunene	30.6	85	20.3	64
Ohangwena	11.0	264	7.6	118
Omaheke	20.2	79	9.8	90
Omusati	21.9	323	15.2	162
Oshana	12.5	213	7.2	142
Oshikoto	16.8	204	11.9	146
Otjozondjupa	26.0	187	11.5	174
Education				
No education	23.7	348	11.4	309
Primary	20.9	816	12.5	575
Secondary	18.3	1,164	13.9	900
More than secondary	18.8	268	16.9	273
Wealth quintile				
Lowest	11.2	476	6.2	278
Second	18.5	468	10.7	322
Middle	21.0	465	11.6	401
Fourth	26.0	560	15.2	507
Highest	21.0	652	17.8	583
50-64	29.2	950	25.5	645
Total 35-64	19.9	2,621	13.3	2,091

Note: Total includes 26 women and 34 men with missing information on education.
${ }^{1}$ Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

Table 17.3 shows that three-fourths of women and men who were told that they had high blood pressure were taking prescribed medication to control their blood pressure. More than six in ten respondents (64 percent of both women and men) received advice to reduce their salt intake, 34 percent of women and 38 percent of men received advice or treatment to lose weight, 26 percent of women and 31 percent of men received advice or treatment to stop smoking, and 42 percent of women and 51 percent of men received advice to start exercising or do more exercise. In addition, 11 percent of women and 8 percent of men reported that they were taking herbal or traditional remedies.

Table 17.3 Actions taken or advice received to lower blood pressure
Among respondents age 15-64 who were ever told by a health professional that they have high blood pressure or hypertension, the percentage taking specific actions or who received specific advice to lower blood pressure, Namibia 2013

Actions taken/advice received to lower	Women	Men
blood pressure	75.3	75.0
Prescribed medication	64.4	64.4
Advice to reduce salt intake Advice/treatment to lose weight	33.6	38.0
Advice/treatment to stop smoking Advice to start/do more exercise	26.3	30.9
Taking any herbal or traditional remedies	11.3	51.0
Number of respondents told they have high blood pressure or hypertension by a health provider	521	279

17.2.2 Prevalence of High Blood Pressure

The 2013 NDHS Woman's Questionnaire and Man's Questionnaire included questions to determine if respondents had been diagnosed as hypertensive and if they were taking medication to control their blood pressure. Respondents were also asked if their blood pressure could be measured as part of the survey. It should be noted that the blood pressure measurements taken in the survey are not intended to provide a medical diagnosis of the disease and are regarded only as a statistical description of the survey population.

To measure blood pressure, the survey interviewers were provided with a fully automatic, digital device with automatic upper-arm inflation and automatic pressure release. Interviewers were trained in the use of this device according to the manufacturer's recommended protocol. Three measurements of systolic and diastolic blood pressure (measured in millimetres of mercury [mmHg]) were taken during the survey interview, with an interval of at least 10 minutes between measurements. The average of the second and third measurements was used to classify individuals with respect to hypertension, following internationally recommended categories (WHO, 1999). Individuals were classified as hypertensive if their systolic blood pressure was 140 mmHg or higher or if their diastolic blood pressure was 90 mmHg or higher. Elevated blood pressure was classified as mild, moderate, or severe according to the cutoff points recommended by the World Health Organization and the National Institutes of Health (WHO, 1999; NIH, 1997).

Blood pressure status	$\underline{\text { Systolic }(\mathrm{mmHg})}$		Diastolic (mmHg)
Optimal	<120	$\underline{\text { and }}$	<80
Normal	$120-129$	$\underline{\text { or }}$	$80-84$
High normal	$130-139$	$\underline{\text { or }}$	$85-89$
Level of hypertension			
Grade 1, mild	$140-159$	$\underline{\text { or }}$	$90-99$
Grade 2, moderate	$160-179$	$\underline{\text { or }}$	$100-109$
Grade 3, severe	$180+$	$\underline{\text { or }}$	$110+$

Following internationally recommended guidelines, individuals were considered hypertensive if they had a normal average blood pressure reading but were taking antihypertensive medication.

Tables 17.4 .1 and 17.4 .2 show the prevalence of hypertension among survey respondents age 35 64. Forty-four percent of women and 45 percent of men were classified as hypertensive; that is, they had a systolic blood pressure of at least 140 mmHg or a diastolic blood pressure of at least 90 mmHg at the time of the survey or they were currently taking antihypertensive medication to control their blood pressure. The term "hypertension" as used in this report is not meant to be a clinical diagnosis of the disease; rather, it is intended to provide an indication of the disease burden in the population at the time of the survey.

As expected, the prevalence of hypertension is associated with age; it is lowest among respondents age 35-39 and highest among those age 55-64. Fifty-one percent of urban women and men are considered hypertensive, as compared with 38 percent of rural respondents. The prevalence of hypertension is highest among women and men living in Khomas (57 percent each), women with no formal education (53 percent), and men with more than a secondary education (59 percent). The prevalence of hypertension tends to increase with increasing wealth among both women and men, although the relationship is not linear.

Although overall rates of hypertension among adults in Namibia are relatively low, hypertension is a serious health problem among adults age 45 and older and those who are obese. A first step toward bringing hypertension under control is awareness by individuals of their condition and its implications in terms of premature disability and death. Educating the population about the adverse effects of hypertension and promoting blood pressure screening, particularly for older individuals, should be an important focus of health programmes.
Table 17.4.1 Blood pressure status: Women

Background characteristic	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure						Total	Normal blood pressure and taking medicine	Number of women
		Normal			Elevated					
		Optimal <120 and 80 mmHg	$\begin{gathered} \text { Normal 120-129/ } \\ 80-84 \mathrm{mmHg} \end{gathered}$	$\begin{aligned} & \text { High normal } \\ & 130-139 / \\ & 85-89 \mathrm{mmHg} \end{aligned}$	$\begin{aligned} & \text { Mildly elevated } \\ & \text { (Grade 1) } \\ & 140-159 / \\ & 90-99 \mathrm{mmHg} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Moderately } \\ \text { elevated } \\ \text { (Grade 2) } 160-179 / \\ 100-109 \mathrm{mmHg} \\ \hline \end{gathered}$	Severely elevated (Grade 3) $180+/ 110+\mathrm{mmHg}$			
Age										
35-39	26.6	41.2	18.9	16.9	16.9	5.5	0.7	100.0	3.6	514
40-44	40.6	34.4	18.8	13.2	23.1	8.1	2.4	100.0	7.0	412
45-49	48.8	27.1	12.4	18.0	27.9	9.6	4.9	100.0	6.4	354
50-54	51.3	23.8	14.4	19.8	23.9	13.3	4.8	100.0	9.3	361
55-59	62.1	20.6	14.6	15.0	29.3	16.2	4.2	100.0	12.4	210
60-64	55.4	26.2	12.9	23.1	22.8	9.4	5.7	100.0	17.5	196
Nutritional status ${ }^{2}$										
Thin (BMI <18.5)	24.6	46.5	17.5	13.6	15.8	4.7	1.8	100.0	2.3	174
Normal (BMI 18.5-24.9)	37.5	36.1	15.6	15.3	20.8	8.7	3.4	100.0	4.6	820
Overweight (BMI 25-29.9)	46.3	25.9	13.5	22.6	25.5	8.9	3.5	100.0	8.3	480
Obese (BMI ³0.0)	62.0	18.1	17.4	18.2	29.2	13.3	3.9	100.0	15.6	496
Residence										
Urban	50.6	26.7	14.3	18.2	25.2	12.6	3.0	100.0	9.9	953
Rural	38.3	34.3	17.3	16.4	21.3	7.0	3.6	100.0	6.3	1,094
Region										
Zambezi	38.8	32.5	19.0	19.8	19.5	8.1	1.0	100.0	10.1	94
Erongo	48.2	31.3	11.2	23.8	21.5	7.4	4.8	100.0	14.4	156
Hardap	52.1	21.9	14.6	19.1	27.2	14.7	2.6	100.0	7.7	91
//Karas	45.7	28.1	16.8	18.7	22.8	10.2	3.4	100.0	9.4	96
Kavango	37.1	42.3	15.0	13.0	18.3	9.2	2.3	100.0	7.4	172
Khomas	57.3	25.2	13.2	13.6	26.6	18.3	3.2	100.0	9.3	319
Kunene	41.9	30.3	23.6	14.6	18.4	9.0	4.2	100.0	10.3	74
Ohangwena	35.5	30.9	20.2	19.5	20.9	5.6	2.8	100.0	6.2	222
Omaheke	51.0	22.7	23.0	15.8	27.7	6.9	4.0	100.0	12.5	66
Omusati	39.8	32.4	12.7	19.9	22.7	7.0	5.3	100.0	4.8	270
Oshana	32.6	35.5	17.5	15.9	19.9	8.2	3.1	100.0	1.4	182
Oshikoto	41.0	36.6	18.9	11.3	26.3	4.8	2.2	100.0	7.8	161
Otjozondjupa	52.2	23.6	13.5	21.6	28.0	10.3	3.1	100.0	10.8	145
Education										
No education	52.8	27.0	14.4	12.4	24.2	15.6	6.4	100.0	6.6	263
Primary	42.9	28.6	17.1	17.8	24.1	8.5	4.0	100.0	6.4	697
Secondary	41.7	34.0	15.3	17.6	22.4	8.3	2.4	100.0	8.6	904
More than secondary	45.2	29.4	18.2	20.6	19.5	11.2	1.1	100.0	13.5	172

Table 17.4.1-Continued										
Background characteristic	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure						Total	Normal blood pressure and taking medicine	Number of women
		Normal			Elevated					
		$\begin{gathered} \text { Optimal }<120 \text { and } \\ 80 \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { Normal } 120-129 / \\ 80-84 \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { High normal } \\ 130-139 / \\ 85-89 \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { Mildly elevated } \\ \text { (Grade 1) } \\ 140-159 / \\ 90-99 \mathrm{mmHg} \\ \hline \end{gathered}$	Moderately elevated (Grade 2) $160-179 /$ $100-109 \mathrm{mmHg}$	Severely elevated (Grade 3) $180+/ 110+\mathrm{mmHg}$			
Wealth quintile										
Lowest	32.5	39.0	19.5	13.0	19.0	6.6	2.8	100.0	4.0	418
Second	41.2	32.0	17.0	17.6	22.3	7.4	3.6	100.0	7.8	384
Middle	44.6	28.0	14.8	18.0	25.5	9.3	4.3	100.0	5.5	386
Fourth	52.9	25.5	11.5	20.4	27.2	11.8	3.6	100.0	10.3	432
Highest	48.4	29.5	17.0	17.1	21.5	12.4	2.4	100.0	12.0	427
50-64	55.3	23.5	14.1	19.3	25.1	13.1	4.9	100.0	12.3	768
Total 35-64	44.0	30.8	15.9	17.2	23.1	9.6	3.3	100.0	8.0	2,048

 population at the time of the survey.
2^{2} Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
Table 17.4.2 Blood pressure status: Men

Background characteristic	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure						Total	Normal blood pressure and taking medicine	Number of men
		Normal			Elevated					
		Optimal <120 and 80 mmHg	$\begin{gathered} \text { Normal } \\ 120-129 / \\ 80-84 \mathrm{mmHg} \\ \hline \end{gathered}$	High normal $130-$ $139 /$ $85-89 \mathrm{mmHg}$	$\begin{aligned} & \text { Mildly elevated } \\ & \text { (Grade 1) } \\ & 140-159 / \\ & 90-99 \mathrm{mmHg} \end{aligned}$	$\begin{gathered} \text { Moderately } \\ \text { elevated } \\ \text { (Grade 2) } \\ 160-179 / \\ 100-109 \mathrm{mmHg} \end{gathered}$	Severely elevated (Grade 3) $180+/ 110+\mathrm{mmHg}$			
Age										
35-39	30.8	32.9	24.2	14.3	18.8	7.8	1.9	100.0	2.2	366
40-44	40.2	28.9	19.5	15.5	22.9	9.5	3.8	100.0	4.0	312
45-49	41.7	31.5	17.6	13.2	21.9	12.4	3.4	100.0	4.0	250
50-54	51.8	22.2	16.3	16.0	29.5	12.0	3.9	100.0	6.3	184
55-59	63.7	25.7	9.1	13.9	29.6	16.0	5.7	100.0	12.5	154
60-64	65.2	19.5	13.3	17.0	25.2	11.2	13.8	100.0	15.0	140
Nutritional status ${ }^{2}$										
Thin (BMI <18.5)	29.2	44.2	19.0	10.7	20.5	3.4	2.2	100.0	3.0	214
Normal (BMI 18.5-24.9)	39.1	31.4	18.0	15.0	21.2	10.4	4.0	100.0	3.6	776
Overweight (BMI 25-29.9)	58.5	17.4	19.0	17.2	24.3	14.8	7.4	100.0	12.0	249
Obese (BMI ≥ 30.0)	69.8	8.8	17.0	15.6	37.4	16.4	4.8	100.0	11.2	146
Residence										
Urban	50.8	23.5	18.8	14.4	25.7	12.2	5.4	100.0	7.6	731
Rural	37.8	33.4	17.6	15.2	21.1	9.2	3.5	100.0	4.0	675
Region										
Zambezi	46.7	20.8	25.3	13.7	30.9	6.6	2.7	100.0	6.5	59
Erongo	53.1	18.5	22.6	18.6	23.0	11.3	6.2	100.0	12.7	158
Hardap	42.5	27.4	19.3	16.0	21.4	11.7	4.2	100.0	5.2	79
//Karas	47.1	25.7	17.2	14.6	28.2	11.1	3.3	100.0	4.6	74
Kavango	30.4	42.7	17.2	12.8	21.4	5.1	0.8	100.0	3.1	121
Khomas	56.5	21.6	16.8	13.9	25.8	14.8	7.1	100.0	8.8	253
Kunene	39.0	28.4	16.6	21.2	20.2	9.7	3.9	100.0	5.2	51
Ohangwena	43.6	30.9	19.2	9.1	22.0	16.2	2.5	100.0	2.8	84
Omaheke	45.1	25.0	17.2	16.6	24.2	12.9	4.2	100.0	3.9	69
Omusati	43.0	30.9	15.6	12.9	25.3	9.6	5.7	100.0	2.3	117
Oshana	35.0	34.4	22.8	11.6	21.6	8.6	1.1	100.0	3.8	102
Oshikoto	33.4	41.2	13.8	16.7	16.3	7.9	4.1	100.0	5.0	111
Otjozondjupa	44.3	26.9	16.3	16.5	24.6	9.8	5.9	100.0	4.0	127
Education										
No education	43.4	34.0	14.1	13.5	22.2	11.2	5.0	100.0	5.0	236
Primary	43.1	31.4	16.2	15.6	22.7	10.5	3.6	100.0	6.3	422
Secondary	42.9	25.8	21.0	14.7	22.7	10.7	5.1	100.0	4.4	594
More than secondary	58.8	19.2	19.2	14.8	31.4	11.6	3.9	100.0	12.0	147

Table 17.4.2-Continued										
Background characteristic	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure						Total	Normal blood pressure and taking medicine	Number of men
			Normal			Elevated				
		Optimal <120 and 80 mmHg	$\begin{gathered} \text { Normal } \\ 120-129 / \\ 80-84 \mathrm{mmHg} \end{gathered}$	$\begin{gathered} \text { High normal 130- } \\ 139 / \\ 85-89 \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Mildly elevated } \\ & \text { (Grade 1) } \\ & 140-159 / \\ & 90-99 \mathrm{mmHg} \end{aligned}$	$\begin{gathered} \hline \text { Moderately } \\ \text { elevated } \\ \text { (Grade 2) } \\ 160-179 / \\ 100-109 \mathrm{mmHg} \end{gathered}$	Severely elevated (Grade 3) $180+/ 110+\mathrm{mmHg}$			
Wealth quintile										
Lowest	30.3	39.3	20.2	12.3	20.8	6.4	0.9	100.0	2.2	230
Second	43.8	30.6	15.8	14.4	24.3	12.2	2.7	100.0	4.6	248
Middle	40.9	28.3	17.4	16.9	20.9	12.2	4.4	100.0	3.4	287
Fourth	50.5	27.4	15.4	14.1	23.0	11.8	8.3	100.0	7.3	325
Highest	52.9	19.2	22.3	15.8	27.7	10.5	4.5	100.0	10.2	316
50-64	59.6	22.6	13.1	15.6	28.3	13.1	7.4	100.0	10.8	478
Total 35-64	44.6	28.3	18.2	14.8	23.5	10.8	4.5	100.0	5.9	1,406

[^18]Figure 17.1 shows the level of awareness and treatment status of hypertensive women and men. About half of women (49 percent) and about six in ten men (61 percent) who have high blood pressure reported that they are unaware of their condition. Twenty-nine percent of hypertensive women and 20 percent of hypertensive men are being treated and have brought their blood pressure under control, and 14 percent each are being treated but still have elevated blood pressure. Eight percent of hypertensive women and 6 percent of hypertensive men are aware that they have elevated blood pressure.

Figure 17.1 Awareness of high blood pressure and treatment status among women and men age $35-64$ with high blood pressure ${ }^{2}$

17.3 DIABETES

Diabetes is a chronic disease characterised by chronic hyperglycaemia that requires lifelong treatment. Over time, diabetes can damage the heart, blood vessels, eyes, kidneys, and nerves. The global spread of diabetes has given it the characteristics of a pandemic. WHO estimates that 347 million people worldwide have diabetes. In 2004, an estimated 3.4 million people died from consequences of fasting high blood sugar. More than 80 percent of diabetes deaths occur in low- and middle-income countries. ${ }^{3}$ WHO estimated that in 2008 diabetes caused 4 percent of adult deaths in Namibia. ${ }^{4}$

As mentioned above, all women and men age 35-64 in the subsample of households selected for the male survey for the 2013 NDHS were eligible to have their blood glucose levels tested. Respondents were asked if they had eaten or drunk anything at all (except water) from the time they had awakened in the morning until the time of the glucose testing. If respondents were fasting at the time of the interview, a capillary blood sample was obtained from their middle or ring finger. If they were not fasting at the time of the interview, an appointment was made for the next morning to collect and test a fasting capillary blood sample (as described below).

Blood glucose was measured using the HemoCue 201+ blood glucose analyser in capillary whole blood obtained from adults’ middle or ring finger after an overnight fast. The finger was cleaned with a swab containing 70 percent isopropyl alcohol, allowed to dry, and pricked with a retractable, non-reusable lancet. The first two drops of blood were wiped away, and the third drop was drawn into the glucose microcuvette by capillary action after placing the tip of the microcuvette in the middle of the blood drop. The outside of the microcuvette was wiped clean with gauze and placed in the HemoCue 201+ analyser to obtain a glucose measurement. The analyser displayed blood glucose measurements in millimoles per litre ($\mathrm{mmol} / \mathrm{L}$).

[^19]The WHO cutoff points for measuring fasting plasma glucose were used (WHO, 2006b). These cutoff points correspond to the clinical classifications of normal fasting plasma glucose levels, prediabetes, and diabetes. Fasting plasma glucose values between 3.9 and $6.0 \mathrm{mmol} / \mathrm{L}$ are considered to be normal. A fasting plasma glucose value of 6.1 to $6.9 \mathrm{mmol} / \mathrm{L}$ is classified as prediabetes, and values of $7.0 \mathrm{mmol} / \mathrm{L}$ or above are considered to be diabetes. The chart below summarises fasting plasma glucose values as they relate to diabetes classifications.

The data are presented according to the fasting plasma glucose measurements obtained from the respondents. These measurements provide a cross-sectional assessment of the prevalence of diabetes in the surveyed population at the time of the NDHS interviews and do not represent a medical diagnosis of diabetes. Although the results of the fasting plasma glucose measurements are regarded only as a statistical description of the survey population, they are useful in providing insight into the size and characteristics of the population at risk for diabetes. For the purposes of the survey, fasting plasma glucose values are not presented using the diagnostic terms prediabetes and diabetes. In a clinical setting, an individual's fasting plasma glucose would be measured and the levels monitored over a prolonged period of time, with a clinical history for that individual prior to diagnosing whether he or she had diabetes. In the survey setting, an individual's fasting plasma glucose was measured for one day only, and the value was recorded to provide information on the national status of this important NCD.

17.3.1 History of Diabetes

In addition to the NDHS blood glucose measurement, women and men age $35-64$ were asked questions related to their experiences with blood glucose measurement and treatment or advice to lower their blood glucose.

Table 17.5 presents the findings. Overall, only 3 percent of women and men age $35-64$ reported that they were told by a health professional that they had high blood sugar levels or diabetes prior to the survey.

Table 17.5 History of diabetes
Percentage of women and men age $35-64$ who were ever told by a health professional that they have high blood sugar or diabetes, according to selected background characteristics, Namibia 2013

Background characteristic	Women		Men	
	Percentage of women ever told by a health professional they had high blood sugar or diabetes	Number of women	Percentage of men ever told by a health professional they had high blood sugar or diabetes	Number of men
Age				
35-39	1.4	713	0.5	577
40-44	1.9	523	1.4	503
45-49	2.9	435	1.2	365
50-54	4.0	442	4.7	274
55-59	3.7	264	6.7	198
60-64	3.4	243	7.8	173
Nutritional status ${ }^{1}$				
Thin (BMI <18.5)	0.1	225	0.5	263
Normal (BMI 18.5-24.9)	0.8	1,048	0.8	1,051
Overweight (BMI 25-29.9)	3.2	609	5.2	407
Obese (BMI ≥ 30.0)	6.0	652	6.1	327
Residence				
Urban	3.8	1,314	3.3	1,229
Rural	1.4	1,307	1.6	862
Region				
Zambezi	3.2	120	2.6	90
Erongo	2.2	185	4.7	234
Hardap	9.8	110	5.9	105
//Karas	6.5	115	3.9	100
Kavango	0.5	206	1.4	151
Khomas	3.0	530	2.1	514
Kunene	10.7	85	4.5	64
Ohangwena	1.7	264	0.0	118
Omaheke	1.7	79	0.9	90
Omusati	0.8	323	1.6	162
Oshana	0.6	213	2.1	142
Oshikoto	0.0	204	1.5	146
Otjozondjupa	3.5	187	3.5	174
Education				
No education	1.5	348	0.5	309
Primary	2.1	816	1.4	575
Secondary	2.9	1,164	3.1	900
More than secondary	3.8	268	6.0	273
Wealth quintile				
Lowest	0.4	476	0.4	278
Second	1.0	468	0.6	322
Middle	1.6	465	0.8	401
Fourth	4.5	560	2.3	507
Highest	4.5	652	6.2	583
50-64	3.7	950	6.2	645
Total 35-64	2.6	2,621	2.6	2,091

Note: Total includes 26 women and 34 men with missing information on education.
${ }^{1}$ Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

Table 17.6 shows that 67 percent of women and 74 percent of men who were told they had high blood glucose or diabetes were taking prescribed medication to lower their blood glucose. More than seven in ten respondents (76 percent of women and 73 percent of men) received advice on a special diet, 58 percent of women and 72 percent of men received advice or treatment to lose weight, 48 percent of women and 53 percent of men received advice or treatment to stop smoking, and 64 percent of women and 75 percent of men received advice to start exercising or do more exercise. Also, 14 percent of women and 20 percent of men reported that they were taking herbal or traditional remedies.

Table 17.6 Actions taken or advice received to lower high blood glucose or diabetes
Among respondents who were ever told by a health professional that they have high blood glucose or diabetes, the percentage taking specific actions or who received specific advice to lower blood glucose, Namibia 2013

Actions taken/advice received		
to lower high blood glucose/diabetes	Women	Men
Prescribed medication	66.6	73.8
Advice on special diet	75.9	72.7
Advice/treatment to lose weight	58.2	71.6
Advice/treatment to stop smoking	48.2	53.2
Advice to start/do more exercise	64.4	75.5
Taking any herbal or traditional remedies	14.2	20.0
Number of respondents told they have high \quad blood glucose or diabetes by a health provider	68	54

17.3.2 Prevalence and Treatment of Diabetes

The fasting whole blood glucose measurements taken in the survey provide a cross-sectional assessment of elevated fasting plasma values in the surveyed population at the time of the NDHS interviews and do not represent a medical diagnosis of diabetes. Tables 17.7.1 and 17.7.2 present fasting plasma glucose levels among women and men, respectively.

The data show that 6 percent of women and 7 percent of men have diabetes; that is, they either have fasting plasma glucose (FPG) values of $7 \mathrm{mmol} / \mathrm{L}$ or higher or report that they are currently taking diabetes medication. Similar to "hypertension," the term "diabetes" in this report is not meant to be a clinical diagnosis of the disease; rather, it provides an indication of the disease burden in the population at the time of the survey. The findings also show that 7 percent of women and 6 percent of men are prediabetic (i.e., their FPG values are 6.1-6.9 mmol/L). Only 1 percent of women and men are taking medication for diabetes.

Table 17.7.1 shows that, among women, diabetes increases with age; 3 percent of women age 35 39 have elevated FPG values or are currently taking diabetes medicine, as compared with 8 percent of women age 55-59. Obese women (12 percent) are much more likely than other women to have high blood glucose or diabetes. The data further show that urban women are twice as likely as rural women to be classified as having diabetes (8 percent versus 4 percent). By region, women in Hardap have the highest prevalence of diabetes (19 percent), and women in Kavango have the lowest prevalence (1 percent). The prevalence of diabetes is highest among women with more than a secondary education (7 percent) and women in the highest wealth quintile (9 percent).

Table 17.7.2 shows that men age 60-64 have the highest prevalence of diabetes (13 percent). Similar to women, the prevalence is highest among obese men (19 percent) and is higher among urban (8 percent) than rural (5 percent) men. Men in Hardap are most likely to have diabetes (14 percent) and men in Kavango least likely (3 percent). Diabetes prevalence increases with increasing education, ranging from 2 percent among men with no education to 15 percent among those with more than a secondary education. The prevalence of diabetes generally increases with increasing wealth.

Table 17.7.1 Prevalence of diabetes by background characteristics: Women
Among women age 35-64, prevalence of diabetes, percent distribution by fasting plasma glucose (FPG) values, and percentage with normal fasting plasma glucose level and taking medication, according to selected background characteristics, Namibia 2013

Background characteristic	Prevalence of diabetes ${ }^{1}$	Fasting plasma glucose values				Total	Normal FPG and taking medicine	Number of women
		$<3.9 \mathrm{mmol} / \mathrm{L}$ (below normal)	$\begin{gathered} \hline 3.9-6.0 \mathrm{mmol} / \mathrm{L} \\ \text { (normal) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6.1-6.9 \mathrm{mmol} / \mathrm{L} \\ & \text { (prediabetic) } \\ & \hline \end{aligned}$	$\geq 7 \mathrm{mmol} / \mathrm{L}$ (elevated)			
Age								
35-39	2.9	5.9	85.5	5.8	2.7	100.0	0.1	465
40-44	6.5	1.7	87.5	4.8	6.1	100.0	0.4	370
45-49	6.7	3.4	82.7	8.2	5.8	100.0	0.9	321
50-54	5.5	4.3	84.0	7.6	4.1	100.0	1.4	337
55-59	7.6	2.4	82.3	9.3	6.0	100.0	1.6	192
60-64	7.2	8.1	75.7	10.3	5.8	100.0	1.4	187
Nutritional status ${ }^{2}$								
Thin (BMI <18.5)	1.7	11.3	76.4	10.6	1.7	100.0	0.0	168
Normal (BMI 18.5-24.9)	3.3	4.5	85.3	7.1	3.0	100.0	0.3	760
Overweight (BMI 25-29.9)	5.7	2.7	87.9	4.4	5.0	100.0	0.7	438
Obese ($\mathrm{BMI} \geq 30.0$)	11.5	2.1	79.8	8.8	9.2	100.0	2.4	444
Residence								
Urban	8.0	4.7	82.2	6.5	6.6	100.0	1.4	839
Rural	3.7	3.8	85.2	7.7	3.3	100.0	0.4	1,034
Region								
Zambezi	5.7	1.8	89.2	4.9	4.2	100.0	1.5	88
Erongo	4.7	2.7	86.5	7.5	3.4	100.0	1.3	143
Hardap	19.4	5.9	71.6	8.3	14.2	100.0	5.2	86
//Karas	9.5	5.8	82.9	3.6	7.6	100.0	1.9	89
Kavango	0.7	4.4	84.3	10.6	0.7	100.0	0.0	159
Khomas	6.3	6.4	82.5	5.4	5.7	100.0	0.6	261
Kunene	11.0	6.7	81.3	4.4	7.7	100.0	3.2	68
Ohangwena	6.6	3.1	83.0	7.4	6.6	100.0	0.0	207
Omaheke	2.9	6.2	81.0	10.6	2.1	100.0	0.7	63
Omusati	2.6	5.1	85.5	7.3	2.1	100.0	0.5	265
Oshana	6.5	1.7	83.4	8.5	6.5	100.0	0.0	147
Oshikoto	3.1	3.6	88.6	4.7	3.1	100.0	0.0	161
Otjozondjupa	4.9	2.5	83.3	9.8	4.3	100.0	0.6	135
Education								
No education	5.1	5.3	81.7	8.3	4.7	100.0	0.3	248
Primary	5.1	4.3	84.2	6.8	4.6	100.0	0.4	660
Secondary	5.8	4.1	85.1	6.1	4.7	100.0	1.1	803
More than secondary	7.3	2.8	81.0	10.9	5.3	100.0	2.0	149
Wealth quintile								
Lowest	1.5	4.8	86.0	7.7	1.5	100.0	0.0	394
Second	3.6	5.3	84.7	6.4	3.6	100.0	0.0	362
Middle	4.2	3.7	86.2	6.3	3.8	100.0	0.4	356
Fourth	9.4	3.3	82.6	6.5	7.6	100.0	1.8	393
Highest	9.3	3.9	79.8	8.8	7.5	100.0	1.8	369
50-64	6.5	4.8	81.4	8.8	5.0	100.0	1.5	717
Total 35-64	5.6	4.2	83.8	7.1	4.8	100.0	0.8	1,873

Note: Total includes 12 women with missing information on education.
${ }^{1}$ An individual was classified as having diabetes if he/she had a fasting plasma glucose of $7 \mathrm{mmol} / \mathrm{L}$ or above at the time of the survey or was currently taking medication to manage diabetes. The term "diabetes" as used in this table is not meant to be a clinical diagnosis of the disease; rather, it provides an indication of the disease burden in the population at the time of the survey.
${ }^{2}$ Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

Table 17.7.2 Prevalence of diabetes by socioeconomic characteristics: Men
Among men age 35-64, prevalence of diabetes, percent distribution by fasting plasma glucose (FPG) values, and percentage with normal fasting plasma glucose level and taking medication, according to selected background characteristics, Namibia 2013

Background characteristic	Prevalence of diabetes ${ }^{1}$	Fasting plasma glucose values				Total	Normal FPG and taking medicine	Number of men
		$<3.9 \mathrm{mmol} / \mathrm{L}$ (below normal)	$\begin{gathered} \hline 3.9-6.0 \mathrm{mmol} / \mathrm{L} \\ \text { (normal) } \end{gathered}$	$\begin{aligned} & \hline 6.1-6.9 \mathrm{mmol} / \mathrm{L} \\ & \text { (prediabetic) } \\ & \hline \end{aligned}$	$\geq 7 \mathrm{mmol} / \mathrm{L}$ (elevated)			
Age								
35-39	4.2	9.0	83.2	3.6	4.2	100.0	0.0	308
40-44	5.2	10.2	80.1	5.5	4.3	100.0	0.9	269
45-49	2.9	6.2	83.5	8.1	2.3	100.0	0.7	214
50-54	12.3	8.2	72.2	8.9	10.8	100.0	1.5	163
55-59	8.1	14.2	72.4	9.5	3.9	100.0	4.2	136
60-64	13.3	7.7	77.3	4.9	10.1	100.0	3.1	131
Nutritional status ${ }^{2}$								
Thin (BMI <18.5)	4.3	12.5	77.3	6.2	4.0	100.0	0.3	192
Normal (BMI 18.5-24.9)	3.6	9.5	81.9	5.6	3.0	100.0	0.6	674
Overweight (BMI 25-29.9)	11.1	8.2	78.2	4.2	9.4	100.0	1.7	221
Obese ($\mathrm{BMI} \geq 30.0$)	19.0	3.4	69.5	13.6	13.5	100.0	5.5	121
Residence								
Urban	8.4	9.3	78.0	6.3	6.3	100.0	2.1	608
Rural	4.9	8.9	80.5	6.2	4.4	100.0	0.6	613
Region								
Zambezi	4.4	13.2	80.5	5.3	1.1	100.0	3.3	52
Erongo	8.2	6.2	82.0	6.2	5.6	100.0	2.6	146
Hardap	14.4	12.0	71.6	6.5	9.9	100.0	4.4	76
//Karas	7.0	5.3	81.2	7.2	6.3	100.0	0.7	68
Kavango	3.1	5.8	84.8	6.3	3.1	100.0	0.0	103
Khomas	7.5	11.2	75.1	8.2	5.5	100.0	2.0	187
Kunene	6.7	10.9	75.9	7.3	5.9	100.0	0.8	45
Ohangwena	4.6	7.6	78.5	9.3	4.6	100.0	0.0	73
Omaheke	3.5	6.5	83.4	7.0	3.2	100.0	0.4	64
Omusati	6.1	11.3	79.9	3.8	5.0	100.0	1.1	110
Oshana	4.0	11.3	79.0	7.2	2.4	100.0	1.6	75
Oshikoto	8.7	7.0	79.0	5.3	8.7	100.0	0.0	102
Otjozondjupa	5.9	10.8	80.2	3.1	5.9	100.0	0.0	120
Education								
No education	1.7	8.4	84.3	5.6	1.7	100.0	0.0	212
Primary	4.9	10.3	79.0	6.7	4.0	100.0	0.9	376
Secondary	8.2	9.3	79.1	4.5	7.2	100.0	1.1	509
More than secondary	14.6	6.3	70.9	14.2	8.5	100.0	6.1	118
Wealth quintile								
Lowest	5.1	9.0	81.3	5.2	4.5	100.0	0.5	213
Second	1.2	12.2	78.5	8.1	1.2	100.0	0.0	208
Middle	4.6	8.8	84.0	3.2	4.0	100.0	0.6	248
Fourth	6.9	8.0	81.9	4.4	5.7	100.0	1.1	283
Highest	13.8	8.2	71.0	10.7	10.1	100.0	3.8	269
50-64	11.3	9.9	73.8	7.9	8.4	100.0	2.9	431
Total 35-64	6.7	9.1	79.3	6.3	5.3	100.0	1.3	1,221

Note: Total includes 7 men with missing information on education
${ }^{1}$ An individual was classified as having diabetes if he/she had a fasting plasma glucose of $7 \mathrm{mmol} / \mathrm{L}$ or above at the time of the survey or was currently taking medication to manage diabetes. The term "diabetes" as used in this table is not meant to be a clinical diagnosis of the disease; rather, it provides an indication of the disease burden in the population at the time of the survey.
${ }^{2}$ Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

Key Findings

- Knowledge of tuberculosis (TB) among women and men age 15-49 is nearly universal (99 percent and 98 percent, respectively).
- Eighty-six percent of women and 81 percent of men age 15-49 correctly responded that TB is spread through the air by coughing.
- Thirty percent of women and 31 percent of men would want to keep a family member's TB status a secret.
- Only 4 percent of women age $15-49$ smoke cigarettes, as compared with 19 percent of men.
- Forty-four percent of women and 62 percent of men age 15-49 always use seatbelts, whereas 20 percent of young women and 13 percent of young men age 15-19 never use seatbelts.
- Five percent of women and 12 percent of men age 15-49 are physically active at work, while 16 percent of women and 32 percent of men engage in non-work-related physical activity.
- Most men who are physically active exercise five to seven days each week in both urban and rural areas.

Ahealthy population is an end in itself, along with being one of the most basic requirements for quality of life and a basic foundation for a country's economic growth and development. It is important for the population to live a healthy lifestyle, free from communicable and noncommunicable diseases and free from use of destructive substances. Healthy eating habits and positive mental health are also associated with improved health outcomes.

Around the world, whether in developed or developing countries, the rapid increases in noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer are becoming a challenge in achieving global progress. Namibia, similar to other countries that are in an epidemiological transition, is experiencing an increase in noncommunicable diseases, obesity, and other conditions associated with urbanisation and modern, less active lifestyles, combined with new and reemerging infectious diseases such as HIV/AIDS and sexually transmitted infections. This imposes a double burden on the country, with Namibia facing exposure to diseases characteristic of both developed and developing societies.

This chapter presents information on adult health issues in Namibia such as cancer screening, knowledge of and attitudes concerning tuberculosis, fruit and vegetable consumption, mental health, use of tobacco and alcohol, and health insurance coverage.

18.1 Knowledge of and Attitudes toward Tuberculosis

Tuberculosis (TB) is a communicable disease that is of public health concern in Namibia. Since TB primarily affects economically productive age groups, it has a negative socioeconomic impact on individuals, families, and society at large (Ministry of Health and Social Services [MoHSS], 2010d). TB is caused by Mycobacterium tuberculosis, whose transmission is mainly airborne through droplets coughed or sneezed out by infected persons. The infection is primarily concentrated in the lungs, but in some cases it can be transmitted to other areas of the body. With a case notification rate of 529 cases per 100,000 inhabitants in 2012, Namibia continues to experience TB in epidemic proportions (MoHSS, 2013a). Namibia developed the Second Medium Term Strategic Plan (MTP) for Tuberculosis and Leprosy
covering the period 2010-2015; this plan focuses on fighting TB through prevention and treatment efforts at the national, regional, and district levels. Namibia's first drug resistance TB survey, conducted in 2008, showed a multidrug-resistant TB prevalence of 4 percent among patients who had not previously been treated for TB and 17 percent among those who had previously received at least one month of TB treatment. If the second MTP is to succeed, it is vital that the strategies put in place also address community knowledge and attitudes.

The 2013 NDHS collected information from women and men age 15-64 on knowledge of and attitudes toward TB. Specifically, respondents were asked whether they had ever heard of the illness, how it spreads from one person to another, whether it can be cured, and whether they would want to keep the information secret if a member of their family contracted TB. This information is useful in policy formulation and implementation of programmes designed to combat and limit the spread of the disease and address issues of discrimination. The findings are presented in Tables 18.1.1 and 18.1.2.

Table 18.1.1 Knowledge of and attitudes concerning tuberculosis: Women
Percentage of women age 15-49 who have heard of tuberculosis (TB), and among women who have heard of TB, the percentage who know that TB is spread through the air by coughing, the percentage who believe that TB can be cured, and the percentage who would want to keep secret that a family member has TB, according to background characteristics, Namibia 2013

Background characteristic	All women		Women who have heard of TB			
	Percentage who have heard of TB	Number of women	Percentage who report that TB is spread through the air by coughing	Percentage who believe that TB can be cured	Percentage who would want a family member's TB kept secret	Number of women
Age						
15-19	98.2	1,906	82.0	86.9	40.1	1,871
20-24	98.7	1,786	86.0	92.9	28.9	1,763
25-29	99.2	1,489	86.3	95.2	28.9	1,477
30-34	99.2	1,260	88.3	96.2	27.1	1,250
35-39	98.7	1,110	85.0	96.2	26.3	1,096
40-44	98.8	917	87.5	96.6	22.6	906
45-49	99.8	708	85.6	95.0	24.2	707
50-54	99.0	797	78.8	94.4	25.4	789
Residence						
Urban	98.7	5,503	89.0	95.4	25.9	5,432
Rural	99.1	4,470	80.0	91.2	33.6	4,427
Region						
Zambezi	97.2	494	85.2	92.8	45.5	480
Erongo	99.5	820	90.3	96.3	19.1	815
Hardap	97.7	341	89.5	88.5	27.5	333
//Karas	99.2	374	91.3	96.7	27.8	371
Kavango	99.0	913	84.4	88.8	48.4	905
Khomas	97.9	2,317	89.8	95.7	28.0	2,269
Kunene	98.6	286	84.0	92.3	23.2	282
Ohangwena	99.8	974	72.0	93.9	28.9	971
Omaheke	98.7	249	88.5	93.3	24.4	246
Omusati	99.6	1,013	77.9	91.5	24.8	1,009
Oshana	99.5	822	82.6	95.7	24.5	818
Oshikoto	99.4	774	84.4	93.6	34.4	769
Otjozondjupa	98.9	596	89.7	89.6	21.4	590
Education						
No education	96.7	572	69.3	84.0	33.8	554
Primary	98.8	2,168	77.7	90.0	37.4	2,141
Secondary	99.1	6,238	87.5	95.0	27.9	6,180
More than secondary	98.9	995	93.6	97.0	18.3	985
Wealth quintile						
Lowest	98.8	1,614	75.4	89.3	40.4	1,595
Second	98.6	1,776	80.4	92.0	33.7	1,751
Middle	98.6	1,927	83.4	93.3	29.9	1,901
Fourth	99.0	2,285	88.7	95.4	25.2	2,263
Highest	99.1	2,371	92.6	95.8	22.0	2,349
Total 15-49	98.8	9,176	85.5	93.4	29.7	9,070
50-64	99.0	797	78.8	94.4	25.4	789

Table 18.1.2 Knowledge of and attitudes concerning tuberculosis: Men
Percentage of men age 15-49 who have heard of tuberculosis (TB), and among men who have heard of TB, the percentage who know that TB is spread through the air by coughing, the percentage who believe that TB can be cured, and the percentage who would want to keep secret that a family member has TB, according to background characteristics, Namibia 2013

Background characteristic	All men		Men who have heard of TB			
	Percentage who have heard of TB	Number of men	Percentage who report that TB is spread through the air by coughing	Percentage who believe that TB can be cured	Percentage who would want a family member's TB kept secret	Number of men
Age						
15-19	97.6	922	77.7	88.9	40.4	900
20-24	98.4	808	81.4	92.4	34.6	795
25-29	98.1	658	81.7	96.4	29.0	646
30-34	98.0	520	82.2	94.7	22.8	510
35-39	98.9	448	83.2	97.2	23.9	443
40-44	98.0	376	84.2	96.4	31.1	368
45-49	99.4	289	83.8	96.1	25.9	287
Residence						
Urban	98.3	2,282	86.3	95.3	31.1	2,243
Rural	98.2	1,739	74.8	91.7	31.6	1,707
Region						
Zambezi	98.0	218	83.4	84.2	37.0	213
Erongo	97.9	372	90.7	95.8	19.3	364
Hardap	99.2	152	77.8	81.6	32.8	151
//Karas	93.2	151	84.5	92.5	25.0	141
Kavango	98.8	316	93.1	94.3	11.8	312
Khomas	98.2	1,023	85.1	97.1	34.0	1,004
Kunene	95.0	104	83.2	94.2	41.3	99
Ohangwena	99.6	328	63.7	97.2	34.5	327
Omaheke	98.5	103	91.1	96.3	45.1	102
Omusati	98.9	342	67.2	92.7	32.1	338
Oshana	99.0	335	79.9	93.6	26.0	331
Oshikoto	99.0	335	74.3	92.0	29.8	332
Otjozondjupa	97.2	241	85.6	90.6	56.8	234
Education						
No education	96.8	310	67.0	91.0	28.8	300
Primary	97.3	944	72.2	90.2	35.0	918
Secondary	98.8	2,400	85.2	95.1	31.6	2,372
More than secondary	97.9	368	91.4	96.4	22.3	360
Wealth quintile						
Lowest	97.6	594	71.4	91.7	28.9	580
Second	98.1	769	77.5	91.8	32.8	754
Middle	98.6	886	78.0	93.7	31.8	874
Fourth	98.9	917	83.8	94.8	30.7	906
Highest	97.7	855	92.5	95.8	31.9	835
Total 15-49	98.2	4,021	81.3	93.7	31.3	3,950
50-64	97.7	460	83.8	96.7	26.0	449

Nearly all women and men have heard of TB. Eighty-six percent of women and 81 percent of men age 15-49 correctly responded that TB is spread through the air by coughing. A lower proportion of women age 50-64 (79 percent) responded that TB is spread through the air by coughing, when compared with men in the same age group (84 percent). Knowledge increases with education and wealth among both women and men. For example, seven in ten women and men age 15-49 with no education report that TB is spread through the air by coughing, compared with more than nine in ten women and men with more than a secondary education. More than 90 percent of both women and men believe that TB can be cured, with small differences across subgroups. When asked whether they would want to keep a family member's TB status a secret, 30 percent of women and 31 percent of men age 15-49 responded that they would. This is a noticeable increase since the 2006-07 NDHS survey, when 15 percent of women and 18 percent of men reported that they would want to keep a family member's TB status a secret. Fear of discrimination is highest among young women and men age 15-19.

18.2 Cancer Screening

18.2.1 Breast Cancer and Cervical Cancer Screening

Breast self-examination (BSE) for cancer is a very important part of every adult woman's personal health regimen. BSE should be performed monthly beginning at age 20 and should continue each month
throughout a woman's lifetime. In addition to BSE, adult women should undergo regular clinical breast examinations performed by a health professional. Table 18.2 shows the percentage of women who have performed a breast cancer self-exam or had an exam by a health professional (doctor or nurse/midwife). Questions on BSE and clinical breast exams were included for the first time in the 2013 NDHS.

About one-third of women (33 percent) age 15-49 have ever had a breast cancer examination; 31 percent have performed a self-exam, and 23 percent have had a clinical exam. Women age 45-49, those who have 3-4 children, women who are divorced, separated, or widowed, those with more than a secondary education, and those in the highest wealth quintile are more likely to have performed a breast cancer self-exam or to have had an examination by a health professional than other women. Thirty nine percent of women in urban areas have ever had a breast cancer self-exam compared with 18 percent of women in rural areas. More than half of the women in Erongo (52 percent) have ever had a breast cancer self-exam compared with only one in ten women in Kavango.

The 2013 NDHS also included questions on cervical cancer screening. The Pap test checks for changes in the cells of the cervix (the lower part of the uterus/womb that opens into the birth canal) that show cervical cancer or conditions that may develop into cervical cancer. Pre-cancerous changes are usually caused by the sexually transmitted human papillomavirus (HPV). The Pap test aims to detect and prevent the progression of HPV-induced cervical cancer and other abnormalities in the female genital tract. If detected early, cervical cancer can be cured. All women who are age 21 or older or who are sexually active should have an annual Pap test. During the survey, all women age 15-64 were asked whether they had ever heard of cervical cancer and whether they had had an exam for cervical cancer. Women who reported having had a cervical cancer exam were asked about the type of exam they had.

Table 18.2 shows that 66 percent of women age 15-49 have heard of cervical cancer and 25 percent have had a cervical cancer exam. Women age 35 and older, those with 3-4 children, women who are married or living together with a partner, urban women and those living in Oshana, women with more than a secondary education, and those in the highest wealth quintile are more likely than their counterparts in the other categories to have had a cervical cancer exam.

Percentage of women age 15-49 who have ever performed a breast cancer self-examination or had an examination by a health professional, percentage who have heard of cervical cancer, and percentage who have ever had a cervical cancer test or examination by type, according to background characteristics, Namibia 2013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Among women age 15-49 who have had a cervical cancer exam, the vast majority (93 percent) have had a Pap test; 2 percent have had a visual exam with acetic acid.

18.2.2 Prostate Cancer Screening

Prostate cancer starts in the prostate gland, which is a small, walnut-sized structure that makes up part of a man's reproductive system. Prostate cancer can be detected through a digital rectal exam. Also, the blood level of prostate-specific antigen (PSA), a protein that is produced by the prostate, can be tested.

All men age 40-64 were asked whether they had ever heard of prostate cancer. Men who had heard of prostate cancer were also asked if they had ever had a prostate cancer test or exam.

Table 18.3 shows that 64 percent of men age 40-64 have heard of prostate cancer. Men age 50-54, urban men, men in Omaheke, those with more than a secondary education, and men in the highest wealth quintile are most likely to have heard of prostate cancer.

Twenty-seven percent of men 4064 reported that they have had a test or exam for prostate cancer. This percentage increases with age, from 23 percent among men age 40-44 to 31 percent among men age 55-64. Urban men are nearly twice as likely as rural men to report having had a test or exam (29 percent versus 17 percent). Forty-two percent of men in //Karas report having had a test or exam for prostate cancer, as compared with 10 percent of men in Kunene. The percentage of men who have had a prostate cancer test or exam increases with increasing education and wealth. Men with more than a secondary education are nearly seven times as likely as men with no education to have had a test or exam (40 percent compared with 6 percent). Similarly, men in the highest wealth quintile are more than three times as likely as men in the lowest quintile to report having had a test or exam for prostate cancer.

Table 18.3 Knowledge of and testing for prostate cancer				
Percentage of men age 40-64 who have heard of prostate cancer, and among men who have heard of prostate cancer, the percentage who have ever had an examination or test, according to background characteristics, Namibia 2013				
Background characteristic	Heard of prostate cancer	Number of men	Ever had a test/exam for prostate cancer	Number of men
Age				
40-44	53.3	376	22.9	200
45-49	63.0	289	25.9	182
50-54	75.1	184	29.0	138
55-59	73.1	152	31.0	111
60-64	68.0	124	31.4	84
Residence				
Urban	10.4	2,282	28.9	237
Rural	8.4	1,739	16.8	146
Region				
Zambezi	6.7	218	24.1	15
Erongo	10.6	372	27.1	40
Hardap	12.7	152	20.6	19
//Karas	11.5	151	41.5	17
Kavango	7.4	316	24.4	24
Khomas	10.2	1,023	28.5	105
Kunene	7.4	104	9.7	8
Ohangwena	6.4	328	27.9	21
Omaheke	18.0	103	18.2	19
Omusati	8.2	342	16.6	28
Oshana	10.0	335	10.7	33
Oshikoto	7.1	335	15.4	24
Otjozondjupa	12.9	241	32.3	31
Education				
No education	9.6	310	6.3	30
Primary	10.7	944	13.3	101
Secondary	7.4	2,400	26.9	176
More than secondary	20.6	368	40.0	76
Wealth quintile				
Lowest	8.1	594	13.5	48
Second	6.9	769	10.4	53
Middle	6.0	886	11.0	53
Fourth	11.2	917	21.8	103
Highest	14.6	855	42.0	125
Total 40-64	63.7	1,125	27.1	716

18.3 Use of Tobacco

Smoking has a powerful negative impact on population health. Smoking is a known risk factor for cardiovascular disease; it causes lung cancer and other forms of cancer and contributes to the severity of pneumonia, emphysema, and chronic bronchitis. It may also have an impact on individuals who are exposed to secondhand smoke. For example, inhaling secondhand smoke may adversely affect children's growth and cause childhood illnesses, especially respiratory diseases. Because smoking is an acquired behaviour, all morbidity and mortality caused by smoking is preventable.

On 29 May 2007 in Geneva, the World Health Organization (WHO) signalled the urgent need for countries to make all indoor public places and workplaces 100 percent smoke-free with the release of its new policy recommendations on protection from exposure to secondhand tobacco smoke. ${ }^{1}$ The Namibian government's Tobacco Control Act (Act No. 1 of 2010) aims to control the use of tobacco products. Tobacco use is addictive, affects the health of persons of all ages, and negates the achievements gained through the programs of the Namibian Health Policy Framework.

[^20]According to WHO, tobacco kills more than 6 million people worldwide each year, among whom more than 10 percent are non-users exposed to secondhand smoke. Tobacco smoking is responsible for 90 percent of lung cancer, 70 percent of chronic respiratory illnesses, and 25 percent of heart disease. More than 80 percent of the world's smokers live in low- and middle-income countries. Because there is a lag of several years between when people start using tobacco and when their health suffers, the health consequences are not felt immediately.

Women and men interviewed in the 2013 NDHS were asked about their smoking habits. Tables 18.4.1 and 18.4.2 show the percentage of women and men who smoke cigarettes or tobacco and the percent distribution of male cigarette smokers by number of cigarettes smoked in the preceding 24 hours, according to background characteristics. Due to the small numbers of female smokers, a breakdown by number of cigarettes smoked by background characteristics is not shown separately.

Table 18.4.1 Use of tobacco: Women
Percentage of women age 15-49 who smoke cigarettes or a pipe or use other tobacco products, and the percentage who use tobacco daily among tobacco users, according to background characteristics and maternity status, Namibia 2013

Background characteristic	Uses tobacco			Does not usetobacco	Number of women	$\begin{gathered} \text { Smokes } \\ \text { tobacco } \\ \text { products daily } \end{gathered}$	Number of women
	Cigarettes	Pipe	Other tobacco				
Age							
15-19	1.4	0.0	0.6	98.1	1,906	(5.7)	36
20-24	3.5	0.3	0.8	96.1	1,786	13.1	70
25-29	4.4	0.3	0.9	95.1	1,489	18.4	73
30-34	4.4	0.6	1.5	94.6	1,260	33.1	68
35-39	5.5	0.2	2.0	93.1	1,110	23.4	77
40-44	7.7	0.9	3.8	89.9	917	33.4	93
45-49	5.6	0.3	3.4	92.6	708	39.9	53
Maternity status							
Pregnant	3.2	0.1	0.9	96.6	600	(23.3)	21
Breastfeeding (not pregnant)	4.6	0.4	1.8	94.4	1,234	25.6	69
Neither	4.2	0.3	1.5	94.8	7,342	24.9	380
Residence							
Urban	5.5	0.3	1.5	93.5	5,190	18.5	336
Rural	2.4	0.4	1.5	96.6	3,986	41.1	134
Region							
Zambezi	1.8	0.0	1.3	97.7	457	*	11
Erongo	7.1	1.1	0.5	92.2	771	14.9	60
Hardap	15.8	0.3	4.7	82.4	304	20.2	53
//Karas	12.2	0.9	3.5	87.0	343	20.5	45
Kavango	3.6	0.4	2.9	95.6	835	(45.4)	37
Khomas	4.6	0.1	1.2	94.4	2,202	12.7	123
Kunene	5.8	0.6	3.0	90.9	258	33.0	24
Ohangwena	0.5	0.3	1.0	98.5	894	*	14
Omaheke	9.1	1.0	7.2	84.3	225	42.8	35
Omusati	0.3	0.0	0.0	99.5	884	*	4
Oshana	1.5	0.0	0.0	98.5	755	*	12
Oshikoto	2.7	0.3	0.7	96.9	707	*	22
Otjozondjupa	4.8	0.3	2.9	94.3	540	(42.8)	31
Education							
No education	10.0	1.6	8.5	83.8	419	49.0	68
Primary	4.9	0.8	3.1	93.4	1,798	44.6	119
Secondary	3.8	0.2	0.8	95.8	6,029	12.2	255
More than secondary	2.6	0.0	0.0	97.0	930	(0.0)	28
Wealth quintile							
Lowest	3.4	0.7	2.6	95.4	1,429	56.9	66
Second	3.0	0.5	1.9	95.7	1,625	43.5	70
Middle	2.6	0.1	1.4	96.5	1,795	29.2	64
Fourth	5.1	0.3	1.3	94.3	2,116	17.2	121
Highest	5.9	0.1	0.9	93.3	2,211	6.6	149
Total 15-49	4.2	0.3	1.5	94.9	9,176	25.0	470

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Table 18.4.2 Use of tobacco: Men
Percentage of men age 15-49 who smoke cigarettes or a pipe or use other tobacco products, the percentage who use tobacco daily among tobacco users, and the percent distribution of cigarette
smokers by number of cigarettes smoked in the preceding 24 hours, according to background characteristics, Namibia 2013

Background characteristic	Uses tobacco			Does not use tobacco	Number of men	Percent distribution of men who smoke cigarettes by number of cigarettes smoked in the past 24 hours						Total	Number of men	Smokes tobacco products daily	Number of men
	Cigarettes	Pipe	Other tobacco			0	1-2	3-5	6-9	10+	Don't know/ missing				
Age															
15-19	5.5	0.5	1.4	93.7	922	10.1	32.4	32.7	14.9	6.0	4.0	100.0	51	24.3	58
20-24	19.7	1.3	4.8	79.2	808	4.3	31.3	33.2	15.6	13.2	2.4	100.0	159	10.4	168
25-29	23.7	1.4	5.4	75.2	658	7.9	27.7	37.1	15.0	9.8	2.5	100.0	156	13.0	163
30-34	24.2	1.0	6.0	73.7	520	5.9	25.5	38.4	15.2	14.3	0.8	100.0	126	9.1	137
35-39	23.8	1.1	5.5	74.6	448	3.5	36.4	25.3	8.9	22.1	3.9	100.0	107	3.9	114
40-44	23.1	2.0	5.9	72.8	376	2.3	12.8	47.8	18.2	13.9	5.1	100.0	87	10.1	102
45-49	22.2	0.6	5.8	74.6	289	5.1	18.8	33.1	20.1	20.1	2.8	100.0	64	8.8	73
Residence															
Urban	20.1	0.7	5.0	78.7	2,282	4.5	28.0	32.7	18.0	14.5	2.4	100.0	460	9.0	487
Rural	16.7	1.5	4.0	81.1	1,739	6.9	25.9	39.6	10.6	13.5	3.5	100.0	290	13.0	329
Region															
Zambezi	32.4	0.4	6.9	67.6	218	7.4	29.7	38.2	10.0	13.9	0.9	100.0	71	1.2	71
Erongo	19.5	1.3	2.4	78.9	372	2.1	32.4	33.1	13.2	19.1	0.0	100.0	72	13.3	78
Hardap	38.6	0.7	13.0	58.6	152	3.9	23.9	42.9	16.4	11.5	1.4	100.0	59	19.4	63
//Karas	29.0	2.2	13.5	64.4	151	6.3	29.6	31.5	13.2	18.3	1.0	100.0	44	13.2	54
Kavango	19.5	0.8	3.1	78.7	316	3.8	26.3	47.3	11.0	10.2	1.4	100.0	62	12.0	67
Khomas	17.1	1.0	5.0	81.7	1,023	4.0	29.6	28.2	22.9	15.4	0.0	100.0	175	2.6	187
Kunene	34.8	1.3	7.5	62.4	104	4.1	14.3	41.2	17.3	17.2	6.0	100.0	36	10.9	39
Ohangwena	7.7	1.4	1.2	90.4	328	*	*	*	*	*	*	100.0	25	*	32
Omaheke	35.9	3.3	11.1	61.6	103	1.9	15.6	51.6	18.6	12.3	0.0	100.0	37	22.4	40
Omusati	7.1	1.3	1.6	92.5	342	*	*	*	.		*	100.0	24	*	26
Oshana	10.9	0.0	0.5	89.1	335	(4.0)	(18.0)	(42.9)	(18.8)	(13.5)	(2.8)	100.0	36	(0.0)	36
Oshikoto	11.7	1.4	3.8	85.6	335	(21.4)	(32.7)	(29.6)	(8.9)	(4.3)	(3.0)	100.0	39	(13.4)	48
Otjozondjupa	28.8	0.9	5.8	69.0	241	0.7	21.6	30.3	13.5	15.6	18.3	100.0	69	12.7	75
Education															
No education	20.4	3.1	7.7	73.5	310	6.6	28.3	43.4	12.1	5.4	4.2	100.0	63	19.4	82
Primary	18.6	1.5	5.4	79.1	944	6.4	25.0	35.6	16.9	12.4	3.8	100.0	176	13.1	197
Secondary	19.3	0.7	4.3	79.7	2,400	4.6	28.1	35.6	15.1	14.3	2.2	100.0	464	9.0	486
More than secondary	12.7	0.8	1.6	86.5	368	(8.4)	(24.3)	(21.1)	(12.0)	(31.0)	(3.3)	100.0	47	(1.4)	50
Wealth quintile															
Lowest	17.5	1.7	5.5	79.1	594	8.2	32.4	36.2	12.5	9.0	1.7	100.0	104	12.4	124
Second	18.2	1.6	4.8	79.2	769	7.2	25.3	38.7	15.7	11.6	1.5	100.0	140	18.4	160
Middle	15.4	0.5	2.9	83.9	886	4.0	26.5	41.0	11.5	12.8	4.2	100.0	137	18.5	143
Fourth	22.4	0.7	6.4	76.8	917	4.7	23.0	35.8	20.1	12.4	4.0	100.0	206	5.2	213
Highest	19.1	1.2	3.4	79.4	855	4.2	31.2	26.7	13.0	22.8	2.0	100.0	163	2.5	176
Total 15-49	18.6	1.1	4.5	79.7	4,021	5.4	27.2	35.4	15.1	14.1	2.8	100.0	750	10.6	815

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Only 4 percent of women age 15-49 smoke cigarettes, less than 1 percent smoke a pipe, and 2 percent smoke other tobacco. Older women are more likely to smoke than younger women; 1 percent of women age 15-19 smoke cigarettes, as compared with 8 percent of women age 40-44. Women in the oldest age group are also more likely to use tobacco other than cigarettes or pipes, and 40 percent of women age 45-49 smoke tobacco products daily. One in six women in Hardap (16 percent) smoke cigarettes, and 5 percent use tobacco in other forms. On the other hand, 1 percent or less of women in Ohangwena and Omusati use either cigarettes or other types of tobacco. Seven percent of women in Omaheke use any type of tobacco, and 43 percent smoke tobacco products daily. Women's level of education and wealth status are related to their propensity to smoke. Women with no education (10 percent) and women in the highest wealth quintile (6 percent) are more likely to smoke cigarettes than other women.

Among women who smoke, 29 percent smoked 3-5 cigarettes in the past 24 hours, 13 percent smoked 6-9 cigarettes, and 23 percent smoked 10 or more cigarettes (data not shown separately). Smoking is more popular among urban than rural women.

Table 18.4.2 shows that smoking is more common among Namibian men than women; 19 percent of men smoke cigarettes or pipe, as compared with 5 percent of women. The likelihood of a man smoking cigarettes or pipe increases with age, from 6 percent among those age 15-19 to 21-24 percent among older men. Across regions, men in Hardap are most likely to smoke cigarettes or pipe (39 percent) and men in Omusati least likely (8 percent). There is little variation in tobacco use among men by residence, level of education, or wealth quintile.

Among men who smoke cigarettes, 27 percent smoked 1-2 cigarettes, 35 percent smoked 3-5 cigarettes, 15 percent smoked 6-9 cigarettes, and 14 percent smoked 10 or more cigarettes within the past 24 hours. Heavy smoking (10 cigarettes or more in the past 24 hours) is more prevalent among men age 35-39 (22 percent) than among men age 15-19 (6 percent). The proportion of men who smoke cigarettes is relatively higher in Hardap than in the other regions (39 percent). However, only 12 percent of smokers in Hardap smoked 10 or more cigarettes in the past 24 hours, with the majority (43 percent) smoking 3-5 cigarettes. Tobacco use among men varies somewhat by wealth status. For example, men in the lowest wealth quintile are least likely to have smoked 10 or more cigarettes in the past 24 hours (9 percent), and men in the highest wealth quintile are most likely to have done so (23 percent).

Average ages at first use among tobacco users are 21 years for men and 34 years for women (data not shown separately).

18.4 Alcohol Consumption

Tables 18.5 .1 and 18.5 .2 show the percentage of respondents age $15-49$ who had ever consumed alcoholic drinks and the percent distribution by the number of days they had consumed alcohol in the last two weeks, according to background characteristics. One in two women (50 percent) and almost three in five men age 15-49 (57 percent) reported drinking alcohol at some point in their lives. Women age 25-39 are more likely to have ever consumed alcohol than women in the other age groups. Two in three women (68 percent) in Oshikoto report that they have ever consumed alcohol. Women with more than a secondary education (63 percent) and those in the highest wealth quintile are more likely than their counterparts in the other categories to report ever having consumed alcohol. The percentage of men who have ever consumed alcoholic drinks is highest among those age 25-29 (66 percent), among men in Oshana (80 percent), those with more than a secondary education (68 percent), and among men in the highest wealth quintile (60 percent).
Table 18.5.1 Use of alcohol: Women
Percentage of women age 15-49 who have ever consumed alcohol, the percent distribution of alcohol users by number of days at least one alcoholic drink was consumed in the preceding two weeks, and the percent
distribution of alcohol users by number of drinks consumed in the preceding two weeks, according to background characteristics and maternity status, Namibia 2013

Background characteristic	Ever consumed alcohol	Number of women	Number of days consumed alcohol in the past two weeks					Total	Number of women	Number of drinks consumed per day				Total	Number of women
			0	1-2	3-4	$5+$	Don't know/ missing			1-2	3-4	5+	Don't know/ missing		
Age															
15-19	36.9	1,906	75.1	15.6	5.6	2.9	0.8	100.0	704	52.7	28.4	14.5	4.5	100.0	170
20-24	52.8	1,786	54.4	30.7	7.2	5.5	2.1	100.0	943	45.2	22.0	24.9	7.9	100.0	410
25-29	54.2	1,489	48.1	30.4	9.7	8.7	3.1	100.0	807	45.1	24.5	24.1	6.3	100.0	394
30-34	53.6	1,260	47.5	28.2	11.3	9.6	3.4	100.0	675	44.6	22.8	18.6	14.1	100.0	331
35-39	54.4	1,110	54.3	24.7	9.6	10.2	1.3	100.0	604	45.7	28.0	20.6	5.8	100.0	268
40-44	50.5	917	47.3	24.1	11.5	13.1	4.1	100.0	463	39.3	21.4	25.0	14.3	100.0	225
45-49	49.4	708	46.8	29.7	9.9	10.0	3.6	100.0	350	46.3	26.1	18.6	9.0	100.0	173
50-54	52.6	797	52.4	23.0	9.7	9.5	5.4	100.0	420	51.7	15.8	19.0	13.5	100.0	177
Residence															
Urban	50.9	5,503	53.2	27.9	8.6	7.0	3.3	100.0	2,802	44.1	25.9	22.9	7.1	100.0	1,219
Rural	48.4	4,470	55.0	23.8	9.5	9.7	2.0	100.0	2,163	47.8	20.6	19.5	12.0	100.0	929
Region															
Zambezi	14.2	494	56.5	21.3	3.3	10.8	8.1	100.0	70	(38.8)	(22.0)	(20.9)	(18.3)	100.0	25
Erongo	47.8	820	47.8	34.6	10.0	5.6	2.0	100.0	392	39.6	30.3	22.6	7.5	100.0	197
Hardap	42.4	341	52.7	21.6	11.0	12.8	1.9	100.0	145	23.4	30.9	36.0	9.7	100.0	66
//Karas	42.7	374	52.1	33.4	8.3	5.2	1.0	100.0	160	41.4	28.6	28.0	2.0	100.0	75
Kavango	36.8	913	52.7	22.3	9.6	14.1	1.3	100.0	336	33.7	15.1	19.1	32.2	100.0	155
Khomas	52.9	2,317	51.3	28.8	8.6	6.7	4.7	100.0	1,225	45.2	24.9	22.1	7.7	100.0	539
Kunene	48.2	286	69.0	17.2	8.0	4.4	1.5	100.0	138	27.9	22.9	37.3	11.9	100.0	41
Ohangwena	54.3	974	52.8	21.6	13.5	7.6	4.5	100.0	529	47.5	20.5	19.8	12.2	100.0	226
Omaheke	46.5	249	55.5	26.4	8.0	8.0	2.1	100.0	116	32.1	23.0	33.7	11.3	100.0	49
Omusati	58.5	1,013	55.1	26.7	7.7	9.4	1.1	100.0	593	56.8	23.7	13.7	5.8	100.0	259
Oshana	61.8	822	58.4	21.4	9.7	8.5	1.9	100.0	508	51.7	26.4	19.8	2.0	100.0	201
Oshikoto	67.9	774	60.0	24.8	6.1	7.9	1.2	100.0	525	63.3	16.1	15.4	5.2	100.0	204
Otjozondjupa	38.4	596	48.8	29.5	9.7	9.9	2.0	100.0	229	33.7	25.1	30.2	11.0	100.0	113
Education															
No education	47.2	572	51.6	17.7	12.0	13.1	5.6	100.0	270	36.4	20.7	16.5	26.4	100.0	116
Primary	46.8	2,168	52.2	22.2	11.4	10.8	3.4	100.0	1,015	41.4	20.0	23.0	15.6	100.0	451
Secondary	49.0	6,238	55.1	26.8	8.3	7.5	2.4	100.0	3,054	45.8	25.4	21.6	7.2	100.0	1,300
More than secondary	62.8	995	52.6	32.9	7.6	4.6	2.3	100.0	625	56.2	22.5	20.1	1.2	100.0	282
Maternity status															
Pregnant	51.1	600	69.8	18.0	5.5	4.9	1.7	100.0	307	54.2	21.5	16.7	7.7	100.0	87
Breastfeeding (not pregnant)	49.4	1,234	55.7	23.5	10.2	9.0	1.6	100.0	610	41.6	20.7	24.7	13.0	100.0	260
Neither	49.7	8,139	52.5	27.1	9.1	8.2	3.0	100.0	4,048	45.9	24.1	21.2	8.8	100.0	1,801
Wealth quintile															
Lowest	46.5	1,614	49.6	21.8	10.0	15.3	3.4	100.0	751	41.0	19.8	18.8	20.5	100.0	354
Second	46.7	1,776	55.1	23.9	10.6	7.5	2.9	100.0	830	46.5	25.0	19.3	9.2	100.0	348
Middle	50.1	1,927	56.4	25.8	9.1	6.7	2.0	100.0	966	48.5	23.3	20.7	7.5	100.0	402
Fourth	48.8	2,285	54.2	25.9	8.9	8.6	2.4	100.0	1,116	40.4	26.4	25.4	7.8	100.0	485
Highest	54.9	2,371	53.9	30.4	7.5	5.1	3.1	100.0	1,301	50.9	22.9	21.6	4.6	100.0	560
Total 15-49	49.5	9,176	54.1	26.4	9.0	8.0	2.5	100.0	4,545	45.2	24.3	21.7	8.8	100.0	1,971
50-64	52.6	797	52.4	23.0	9.7	9.5	5.4	100.0	420	51.7	15.8	19.0	13.5	100.0	177

Table 18.5.2 Use of alcohol: Men
Percentage of men age 15-49 who have ever consumed alcohol, the percent distribution of alcohol users by number of days at least one alcoholic drink was consumed in the preceding two weeks, and the percent distribution of alcohol users by number of drinks consumed in the preceding two weeks, according to background characteristics, Namibia 2013

Background characteristic	Ever consumed alcohol	Number of men	Number of days consumed alcohol in the past two weeks					Total	Number of men	Number of drinks consumed per day				Total	Number of men
			0	1-2	3-4	5+	Don't know/ missing			1-2	3-4	5+	Don't know/ missing		
Age															
15-19	38.5	1,009	54.5	29.7	8.4	6.6	0.8	100.0	388	56.9	24.0	13.4	5.6	100.0	174
20-24	64.1	854	32.4	34.2	19.6	12.1	1.7	100.0	547	36.9	28.2	24.9	10.0	100.0	361
25-29	65.5	709	28.8	32.7	20.1	17.4	1.1	100.0	465	31.1	28.7	31.5	8.7	100.0	326
30-34	64.4	545	30.6	32.9	16.0	19.1	1.4	100.0	351	34.3	30.4	28.0	7.3	100.0	239
35-39	63.3	467	31.2	29.0	21.8	16.8	1.2	100.0	296	37.2	25.1	32.1	5.6	100.0	200
40-44	55.6	394	23.5	34.2	22.7	16.5	3.2	100.0	219	39.1	23.6	30.5	6.8	100.0	161
45-49	58.5	301	32.4	22.6	30.3	13.8	0.9	100.0	176	33.0	35.7	25.6	5.6	100.0	118
Residence															
Urban	58.3	2,386	30.2	35.5	20.3	13.0	1.0	100.0	1,390	35.7	27.9	28.6	7.7	100.0	956
Rural	55.5	1,895	39.0	26.3	16.6	16.1	1.9	100.0	1,053	40.2	27.8	24.5	7.5	100.0	621
Region															
Zambezi	51.5	225	31.6	27.3	17.7	12.6	10.8	100.0	116	16.0	13.7	41.7	28.6	100.0	67
Erongo	41.7	393	30.1	40.1	18.7	11.1	0.0	100.0	164	29.9	23.0	41.3	5.8	100.0	115
Hardap	50.2	165	36.6	37.5	17.5	8.4	0.0	100.0	83	20.4	18.2	58.4	3.0	100.0	52
//Karas	53.6	164	38.5	34.8	18.9	7.2	0.6	100.0	88	28.2	24.5	34.2	13.1	100.0	54
Kavango	42.3	333	57.5	25.6	8.6	5.8	2.5	100.0	141	28.4	30.5	41.1	0.0	100.0	56
Khomas	64.3	1,054	27.1	36.7	22.1	13.7	0.4	100.0	678	35.5	28.7	28.5	7.4	100.0	491
Kunene	38.4	115	41.6	23.4	21.8	11.5	1.7	100.0	44	31.9	37.2	25.9	5.1	100.0	25
Ohangwena	62.6	364	33.8	21.3	21.0	23.5	0.4	100.0	228	46.6	30.8	21.2	1.4	100.0	150
Omaheke	36.9	119	34.7	33.5	13.2	16.5	2.1	100.0	44	23.1	23.7	52.4	0.9	100.0	28
Omusati	52.1	378	20.5	30.6	20.0	25.5	3.4	100.0	197	41.0	37.0	15.7	6.4	100.0	150
Oshana	79.5	354	46.6	24.2	13.9	15.3	0.0	100.0	282	60.4	29.7	8.3	1.5	100.0	150
Oshikoto	72.7	357	37.8	31.6	17.9	11.1	1.6	100.0	260	47.9	28.0	15.4	8.7	100.0	157
Otjozondjupa	46.1	259	30.0	35.5	20.6	12.7	1.3	100.0	119	22.4	21.0	31.4	25.2	100.0	82
Education															
No education	51.7	338	33.6	23.7	18.0	22.8	2.0	100.0	175	30.4	24.5	35.8	9.4	100.0	113
Primary	54.4	1,018	40.6	26.7	15.5	15.6	1.6	100.0	554	39.7	28.8	26.8	4.8	100.0	320
Secondary	57.1	2,544	32.9	34.1	18.1	13.5	1.4	100.0	1,454	36.9	28.6	26.3	8.2	100.0	955
More than secondary	68.4	381	26.8	32.6	29.5	10.6	0.5	100.0	260	40.8	24.9	25.9	8.5	100.0	189
Wealth quintile															
Lowest	55.4	645	39.4	24.6	15.9	18.5	1.6	100.0	357	39.7	26.6	29.4	4.2	100.0	211
Second	55.8	812	41.3	25.2	17.5	14.6	1.5	100.0	453	38.5	33.0	23.2	5.4	100.0	259
Middle	57.1	952	32.6	30.9	20.2	14.3	2.0	100.0	544	45.2	24.2	22.0	8.5	100.0	356
Fourth	56.2	971	33.1	34.7	18.0	13.0	1.2	100.0	546	28.6	31.9	29.0	10.5	100.0	359
Highest	60.3	900	26.8	38.8	20.8	12.8	0.8	100.0	543	36.7	24.8	30.9	7.6	100.0	393
Total 15-49	57.1	4,281	34.0	31.5	18.7	14.3	1.4	100.0	2,443	37.5	27.9	27.0	7.6	100.0	1,577
50-64	54.2	548	35.2	25.7	12.4	25.6	1.2	100.0	297	40.7	29.1	23.7	6.5	100.0	189

Fifty-four percent of women and 34 percent of men age 15-49 reported that they had not consumed alcohol in the past two weeks. Twenty-six percent of women and 32 percent of men reported that they had consumed alcohol on 1-2 days during the last two weeks; 9 percent and 19 percent, respectively, had consumed alcohol on 3-4 days during the last two weeks, and 8 percent and 14 percent, respectively, had consumed alcohol on 5 or more days.

Women and men who reported that they had consumed alcohol on at least one day in the two weeks before the survey were also asked to report on the number of drinks they consumed on average per day. The data show that 45 percent of women and 38 percent of men consumed 1-2 drinks per day, 24 percent of women and 28 percent of men consumed 3-4 drinks per day, and 22 percent of women and 27 percent of men consumed 5 or more drinks per day. Women age 20-24 and 40-44, urban women, women who live in Kunene, those with a primary education, breastfeeding women, and women in the fourth wealth quintile are more likely than their counterparts to have consumed five or more drinks per day. Alcohol consumption is also very high (five or more drinks per day) among men age 25-29, 35-39, and 4044 (about one in three men), urban men, men in Hardap, men with no education and those in the highest wealth quintile.

18.5 Use of Seatbelts

Seatbelt use is of high priority in Namibia, which has the highest per capita motor vehicle mortality rate in the world (WHO, 2013). ${ }^{2}$ In the 2013 NDHS, women and men age 15-64 were asked whether they had used a seatbelt in the last 30 days while they were seated in a vehicle as either a driver or a passenger and how often they had used a seatbelt.

Table 18.6 shows that 44 percent of women and 62 percent of men age $15-49$ always used seatbelts. Among women who had been in a vehicle in the last 30 days, the proportion who always used seatbelts ranged from a high of 53 percent in the 40-44 age group to a low of 30 percent in the 15-19 age group. Use among men was higher, ranging from a high of 72 percent in the 35-39 age group to a low of 43 percent in the 15-19 age group. The lowest seatbelt usage by far among men and women is in the youngest age group 15-19. Seatbelt usage is much higher in urban areas than rural areas. Fifty-six percent of women in urban areas always used seatbelts in the past 30 days, as compared with 29 percent of women in rural areas.; Among men, 76 percent of those in urban areas always used seatbelts in the past 30 days, compared with 43 percent of in rural areas.

[^21]Table 18.6 Use of seatbelts
Percent distribution of women and men age 15-49 by whether they used a seatbelt in the last 30 days, according to background characteristics, Namibia 2013

Background characteristic	Used seatbelt in the last 30 days						Total	Number of respondents		
	All of the time	Sometimes	Never	Have not been in vehicle in last 30 days	No seatbelt in car	Don't know/ not sure/ missing				
WOMEN										
Age										
15-19	30.4	39.6	20.3	7.9	1.7	0.1	100.0	1,906		
20-24	43.4	37.8	12.2	5.0	1.5	0.2	100.0	1,786		
25-29	44.2	38.4	10.9	5.0	1.3	0.2	100.0	1,489		
30-34	50.9	31.5	10.0	5.9	1.4	0.3	100.0	1,260		
35-39	47.1	34.8	9.3	7.1	1.8	0.0	100.0	1,110		
40-44	52.9	29.5	9.1	5.2	2.8	0.5	100.0	917		
45-49	52.5	27.5	11.7	6.1	2.1	0.2	100.0	708		
50-54	42.8	28.5	14.4	11.3	2.9	0.1	100.0	797		
Residence										
Urban	55.6	34.3	7.4	2.2	0.3	0.2	100.0	5,503		
Rural	29.4	35.6	19.5	11.8	3.6	0.1	100.0	4,470		
Region										
Erongo	54.2	37.2	6.2	1.8	0.4	0.1	100.0	820		
Hardap	51.9	30.9	5.7	10.9	0.4	0.3	100.0	341		
//Karas	58.7	26.6	9.4	3.4	1.7	0.3	100.0	374		
Kavango	14.8	32.2	39.0	10.4	3.3	0.3	100.0	913		
Khomas	59.0	34.7	5.2	0.7	0.2	0.3	100.0	2,317		
Kunene	36.5	29.9	12.0	20.0	1.5	0.1	100.0	286		
Ohangwena	39.2	25.7	16.9	15.0	3.2	0.0	100.0	974		
Omaheke	38.9	30.9	10.1	17.3	2.0	0.7	100.0	249		
Omusati	27.3	55.8	8.4	5.4	3.0	0.0	100.0	1,013		
Oshana	43.7	42.0	11.6	1.5	1.3	0.0	100.0	822		
Oshikoto	44.6	22.4	15.5	13.5	4.0	0.0	100.0	774		
Otjozondjupa	54.1	29.4	9.0	6.9	0.3	0.4	100.0	596		
Education										
No education	21.3	25.3	24.0	23.7	4.5	1.3	100.0	572		
Primary	27.1	35.5	21.5	12.3	3.2	0.3	100.0	2,168		
Secondary	47.5	36.7	10.6	3.8	1.3	0.0	100.0	6,238		
More than secondary	70.4	27.0	1.6	0.6	0.3	0.0	100.0	995		
Wealth quintile										
Lowest	17.2	31.6	28.1	17.8	4.9	0.3	100.0	1,614		
Second	28.7	40.0	17.6	10.6	2.7	0.4	100.0	1,776		
Middle	37.7	41.8	13.1	5.5	1.9	0.0	100.0	1,927		
Fourth	53.2	36.0	7.9	2.2	0.5	0.2	100.0	2,285		
Highest	69.4	26.4	3.4	0.6	0.1	0.0	100.0	2,371		
Total 15-49	44.0	35.4	12.7	6.1	1.7	0.2	100.0	9,176		
50-64	42.8	28.5	14.4	11.3	2.9	0.1	100.0	797		
MEN										
Age										
15-19	42.9	29.0	13.4	10.6	3.5	0.5	100.0	922		
20-24	59.6	24.2	8.4	5.1	2.4	0.3	100.0	808		
25-29	68.7	18.6	3.3	5.3	3.6	0.4	100.0	658		
30-34	71.4	17.2	2.5	6.4	2.2	0.3	100.0	520		
35-39	71.5	16.1	3.9	6.3	2.0	0.2	100.0	448		
40-44	70.2	18.5	3.3	6.5	1.3	0.2	100.0	376		
45-49	71.4	16.1	4.9	5.2	1.5	0.8	100.0	289		
Residence										
Urban	76.1	17.9	3.0	2.0	0.8	0.2	100.0	2,282		
Rural	43.4	26.2	11.5	13.3	5.0	0.6	100.0	1,739		
Region										
Zambezi	55.2	23.6	14.5	6.0	0.7	0.0	100.0	218		
Erongo	73.1	18.6	0.6	6.5	1.0	0.2	100.0	372		
Hardap	70.2	19.1	1.3	9.5	0.0	0.0	100.0	152		
//Karas	68.7	17.2	5.3	7.0	0.7	1.1	100.0	151		
Kavango	41.9	32.1	14.0	7.9	3.2	0.8	100.0	316		
Khomas	74.7	20.1	3.5	0.9	0.8	0.0	100.0	1,023		
Kunene	73.7	6.0	1.7	13.8	2.6	2.3	100.0	104		
Ohangwena	38.5	25.9	14.5	11.9	8.8	0.4	100.0	328		
Omaheke	48.7	22.1	3.2	24.7	0.0	1.3	100.0	103		
Omusati	38.2	31.3	15.4	12.9	1.4	0.8	100.0	342		
Oshana	76.7	15.5	4.0	1.8	1.5	0.5	100.0	335		
Oshikoto	50.0	21.7	6.3	11.1	10.9	0.0	100.0	335		
Otjozondjupa	75.9	14.3	2.9	5.3	0.9	0.7	100.0	241		
Education										
No education	50.2	20.3	9.0	17.4	2.4	0.7	100.0	310		
Primary	47.4	22.9	12.0	12.0	4.9	0.8	100.0	944		
Secondary	66.4	21.7	5.2	4.4	2.0	0.2	100.0	2,400		
More than secondary	80.0	17.3	1.0	0.7	1.0	0.0	100.0	368		
Wealth quintile 24.0										
Lowest	34.0	23.9	17.9	15.4	8.2	0.7	100.0	594		
Second	51.4	24.4	7.8	12.0	3.7	0.7	100.0	769		
Middle	62.2	23.4	5.4	6.8	1.7	0.6	100.0	886		
Fourth	73.4	19.3	3.7	2.4	1.2	0.0	100.0	917		
Highest	78.5	17.4	2.7	1.1	0.2	0.1	100.0	855		
Total 15-49	62.0	21.5	6.7	6.9	2.6	0.4	100.0	4,021		
50-64	71.7	11.3	5.0	9.6	1.3	1.2	100.0	460		

Among the regions, women in Khomas and //Karas (59 percent) and men in Oshana (77 percent) were most likely to always use seatbelts. In general, seatbelt use increases with increasing education. Twenty-one percent of women with no education reported always using a seatbelt, as compared with 70 percent of women with more than a secondary education; the corresponding percentages among men were 50 percent and 80 percent. Likewise, seatbelt use increases with increasing household wealth among both women and men.

18.6 Physical Activity

The World Health Organization defines physical activity as any bodily movement produced by skeletal muscles that requires energy expenditure, including activities undertaken while working, playing, carrying out household chores, travelling, and engaging in recreational pursuits. ${ }^{3}$ The term "physical activity" should not be confused with "exercise," which is a subcategory of physical activity that is planned, structured, and repetitive and aims to improve or maintain one or more components of physical fitness. In order to be beneficial for cardiorespiratory health, all activity should be performed in bouts of at least 10 minutes in duration. WHO recommends regular and adequate levels of physical activity to reduce the risk of hypertension, coronary heart disease, stroke, diabetes, breast and colon cancer, and depression. Physical activity also aids in weight control and increases people's chances of living longer.

In the 2013 NDHS, women and men age 15-64 were asked about their physical activity and, among those who engaged in non-work-related physical activities, the number of days they engaged in such activities for at least 10 minutes continuously per day. Tables 18.7.1 and 18.7.2 show data on physical activity.

[^22]Table 18.7.1 Physical activity: Women
Percent distribution of women age $15-49$ by whether they are physically active, and among women who did non-work-related physical activity, the percent distribution of women by the number of days they did non-work-related physical activity for at least 10 minutes continuously per day, according to background characteristics, Namibia 2013

Background characteristic	Physical activity ${ }^{1}$					Number of women	Number of days in the last week non-work-related physical activity done for at least 10 minutes per day continuously					Total $\begin{gathered}\text { Number of } \\ \text { women }\end{gathered}$	
	Physically active at work	Did non-workrelated physical activity	No	Missing	Total		0	1-2	3-4	5-7	Don't know/ unsure/ missing		
Age													
15-19	2.4	19.6	78.0	0.0	100.0	1,906	6.2	52.0	18.0	20.6	3.3	100.0	374
20-24	3.7	16.1	80.1	0.1	100.0	1,786	8.3	50.0	17.8	17.4	6.5	100.0	291
25-29	5.6	14.1	80.3	0.0	100.0	1,489	3.4	38.8	23.3	30.6	3.9	100.0	210
30-34	7.2	11.7	81.1	0.1	100.0	1,260	6.9	39.9	24.8	22.9	5.4	100.0	148
35-39	6.4	13.7	79.5	0.4	100.0	1,110	8.7	34.2	18.9	32.1	6.1	100.0	156
40-44	6.1	14.3	79.5	0.1	100.0	917	9.8	29.6	20.7	32.1	7.8	100.0	133
45-49	5.6	16.9	77.6	0.0	100.0	708	11.0	26.9	21.4	37.3	3.3	100.0	119
50-54	5.7	18.7	75.6	0.0	100.0	797	9.0	26.5	20.4	38.0	6.1	100.0	149
Residence													
Urban	5.9	15.8	78.1	0.1	100.0	5,503	8.2	41.7	19.5	25.0	5.6	100.0	878
Rural	3.8	15.7	80.5	0.0	100.0	4,470	6.5	39.7	20.8	28.5	4.4	100.0	702
Region													
Zambezi	3.8	29.7	66.5	0.0	100.0	494	1.7	58.8	19.3	15.1	5.1	100.0	147
Erongo	4.4	16.9	78.6	0.1	100.0	820	2.0	41.1	19.4	30.0	7.5	100.0	139
Hardap	1.4	14.4	84.1	0.0	100.0	341	4.2	32.0	21.3	41.5	1.1	100.0	49
//Karas	7.2	13.7	79.1	0.0	100.0	374	6.4	40.6	24.6	27.3	1.2	100.0	51
Kavango	2.1	17.2	80.7	0.0	100.0	913	3.7	62.7	16.6	16.9	0.0	100.0	157
Khomas	7.6	16.1	76.2	0.2	100.0	2,317	8.5	39.0	19.1	27.1	6.3	100.0	376
Kunene	11.9	9.2	78.9	0.0	100.0	286	3.3	43.7	29.9	21.0	2.1	100.0	26
Ohangwena	2.1	17.2	80.7	0.0	100.0	974	18.1	28.7	16.7	32.9	3.7	100.0	167
Omaheke	10.6	16.7	72.7	0.0	100.0	249	5.6	18.7	22.9	40.1	12.7	100.0	42
Omusati	1.8	15.8	82.3	0.1	100.0	1,013	1.4	30.7	28.3	34.8	4.7	100.0	161
Oshana	3.1	9.7	87.3	0.0	100.0	822	19.0	49.0	14.1	16.8	1.2	100.0	79
Oshikoto	8.9	10.0	81.0	0.1	100.0	774	11.8	36.0	14.3	32.0	5.8	100.0	78
Otjozondjupa	3.5	17.5	78.6	0.4	100.0	596	9.0	33.9	25.9	19.6	11.6	100.0	107
Education													
No education	5.1	11.5	83.1	0.2	100.0	572	10.8	25.5	17.7	35.9	10.0	100.0	67
Primary	2.9	13.3	83.7	0.1	100.0	2,168	8.8	39.8	20.3	25.5	5.6	100.0	291
Secondary	5.2	16.0	78.7	0.0	100.0	6,238	6.9	43.5	19.4	26.1	4.1	100.0	1,001
More than secondary	8.0	21.8	69.8	0.4	100.0	995	7.2	34.8	23.6	26.9	7.4	100.0	221
Wealth quintile													
Lowest	3.2	15.2	81.6	0.0	100.0	1,614	7.1	37.0	23.5	29.5	3.0	100.0	245
Second	3.9	16.1	79.9	0.1	100.0	1,776	8.8	42.4	19.1	26.1	3.5	100.0	288
Middle	5.0	13.9	81.0	0.1	100.0	1,927	6.2	43.1	19.0	27.0	4.8	100.0	270
Fourth	4.7	13.2	82.0	0.1	100.0	2,285	7.8	42.1	16.2	28.6	5.3	100.0	304
Highest	7.2	19.8	72.8	0.2	100.0	2,371	7.3	39.7	22.1	23.8	7.1	100.0	474
Total 15-49	4.9	15.5	79.5	0.1	100.0	9,176	7.3	42.3	20.1	25.4	5.0	100.0	1,431
50-64	5.7	18.7	75.6	0.0	100.0	797	9.0	26.5	20.4	38.0	6.1	100.0	149

${ }^{1}$ Physical activity is defined as exercise that causes an increase in heart rate for at least 10 minutes continuously.

Percent distribution of men age 15-49 by whether they are physically active, and among men who did non-work-related physical activity, the percent distribution of men by the number of days they did non-work-related physical activity for at least 10 minutes continuously per day, according to background characteristics, Namibia 2013

Background characteristic	Physical activity ${ }^{1}$				TotalNumber of respon- dents		Number of days in the last week non-work-related physical activity done for at least 10 minutes per day continuously					Total	Number of men
	Physically active at work	Did non-workrelated physical activity	No	Missing			0	1-2	3-4	5-7	Don't know/ unsure/ missing		
Age													
15-19	2.3	42.5	55.1	0.0	100.0	922	6.5	26.0	24.0	42.5	1.0	100.0	392
20-24	10.3	36.2	53.5	0.0	100.0	808	9.9	25.6	26.1	36.2	2.1	100.0	293
25-29	16.7	31.1	52.0	0.2	100.0	658	10.1	29.6	28.2	28.0	4.1	100.0	206
30-34	12.0	28.7	59.3	0.0	100.0	520	6.9	31.5	24.5	34.4	2.7	100.0	149
35-39	17.2	22.1	60.7	0.0	100.0	448	10.8	29.8	36.3	20.0	3.2	100.0	99
40-44	17.3	19.1	63.5	0.0	100.0	376	2.3	32.0	24.5	39.0	2.2	100.0	72
45-49	14.6	22.5	62.6	0.3	100.0	289	16.2	28.5	30.7	24.0	0.7	100.0	66
Residence													
Urban	12.7	31.7	55.5	0.0	100.0	2,282	4.6	31.9	27.6	33.3	2.6	100.0	724
Rural	9.8	31.7	58.4	0.1	100.0	1,739	13.6	22.6	25.2	37.0	1.6	100.0	553
Region													
Zambezi	2.6	75.1	22.3	0.0	100.0	218	0.5	32.1	28.0	36.9	2.5	100.0	163
Erongo	9.1	31.0	59.9	0.0	100.0	372	3.3	26.8	35.5	33.0	1.4	100.0	115
Hardap	12.0	25.2	62.8	0.0	100.0	152	0.0	23.7	48.7	26.5	1.1	100.0	38
//Karas	16.2	46.9	36.9	0.0	100.0	151	1.6	31.5	28.7	35.2	3.1	100.0	71
Kavango	4.4	33.1	62.5	0.0	100.0	316	15.3	23.2	23.4	38.0	0.0	100.0	105
Khomas	16.0	33.3	50.8	0.0	100.0	1,023	3.9	39.9	22.9	30.0	3.3	100.0	340
Kunene	21.0	23.0	56.0	0.0	100.0	104	7.6	20.0	29.2	41.4	1.8	100.0	24
Ohangwena	5.3	51.7	42.7	0.4	100.0	328	22.1	19.3	17.6	40.2	0.7	100.0	171
Omaheke	15.0	22.7	62.3	0.0	100.0	103	2.4	25.1	52.0	18.2	2.3	100.0	23
Omusati	8.1	13.4	78.5	0.0	100.0	342	21.3	11.1	28.5	36.5	2.6	100.0	46
Oshana	13.9	7.3	78.8	0.0	100.0	335	19.4	0.0	28.8	46.6	5.2	100.0	24
Oshikoto	13.2	28.4	58.4	0.0	100.0	335	16.9	21.7	28.1	32.4	0.9	100.0	95
Otjozondjupa	11.9	24.7	63.2	0.3	100.0	241	4.4	19.6	24.3	47.2	4.6	100.0	60
Education													
No education	23.6	17.2	59.2	0.0	100.0	310	33.9	10.7	20.2	34.4	0.8	100.0	53
Primary	10.3	24.1	65.5	0.1	100.0	944	9.9	26.7	27.9	34.3	1.2	100.0	228
Secondary	10.7	35.5	53.7	0.1	100.0	2,400	7.5	28.0	25.6	36.2	2.7	100.0	854
More than secondary	9.2	38.6	52.2	0.0	100.0	368	2.6	35.5	32.3	28.3	1.4	100.0	142
Wealth quintile													
Lowest	10.1	35.0	54.7	0.2	100.0	594	19.1	27.8	21.3	30.5	1.2	100.0	209
Second	10.9	28.9	60.2	0.0	100.0	769	9.3	22.3	26.5	40.5	1.4	100.0	222
Middle	13.7	24.9	61.4	0.0	100.0	886	5.7	30.4	28.7	31.9	3.3	100.0	220
Fourth	13.2	32.3	54.5	0.1	100.0	917	6.6	24.4	27.5	38.1	3.4	100.0	297
Highest	8.8	38.5	52.8	0.0	100.0	855	4.8	33.1	27.6	33.0	1.5	100.0	329
Total 15-49	11.5	31.7	56.8	0.0	100.0	4,021	8.5	27.9	26.5	34.9	2.2	100.0	1,277
50-64	11.9	20.2	67.9	0.0	100.0	460	16.3	32.1	23.8	24.2	3.7	100.0	93

${ }^{1}$ Physical activity is defined as exercise that causes an increase in heart rate for at least 10 minutes continuously.

Five percent of women and 12 percent of men age 15-49 were physically active at work, while 16 percent of women and 32 percent of men engaged in non-work-related physical activity. The vast majority of women (80 percent) and men (57 percent) neither were physically active at work nor engaged in non-work-related physical activity. Non-work-related physical activity is highest among women and men age 15-19, those in Zambezi, women and men with a secondary education or higher, and those in the highest wealth quintile.

Among women who engaged in non-work-related physical activity, 42 percent were physically active on 1-2 days in the week prior to the survey, 20 percent were physically active on 3-4 days, and 25 percent were physically active on 5-7 days. Seven percent reported that they had not exercised in the last week. Among men, 28 percent engaged in physical activity on 1-2 days, 27 percent on 3-4 days, and 35 percent on 5-7 days. Nine percent did not engage in any physical activity in the week prior to the survey. Continuous non-work-related physical activity (5-7 days per week) is highest among women older than age 40, women in Hardap and Omaheke, women with no education, and those in the lowest wealth quintile. Among men, continuous physical activity is highest among those age $15-19$, men in rural areas, those in

Oshana and Otjozondjupa, men with a secondary education or lower, and those in the second and fourth wealth quintiles.

18.7 Consumption of Water, Fruits, and Vegetables

Water is a human body's principal chemical component and makes up about 60 percent of body weight. Every system in a human body depends on water. Each day a person loses water through breathing, perspiration, and urine and bowel movements. If their body is to function properly, people must replenish its water supply by consuming beverages and foods that contain water. Lack of water can lead to dehydration, a condition that occurs when the body does not have enough water to carry out normal functions. Even mild dehydration can drain people's energy and make them tired. Eating enough fruits and vegetables has its own health benefits as well. According to WHO, at least 400 grams of fruits and vegetables (about five 80-gram portions) are needed to meet people's daily nutritional requirements and protect them from diseases. In fact, five portions each day is the minimum. Nevertheless, it appears that the more fruits and vegetables we eat, the greater our protection from diet-related diseases (World Health Report, 2002). A diet rich in vegetables and fruits can lower blood pressure, reduce the risk of heart disease and stroke, prevent some types of cancer, lower the risk of eye and digestive problems, and have a positive effect on blood sugar, which can help people keep their appetite in check.

In the 2013 NHDS, women and men age 15-64 were asked about their consumption of water, fruits, and vegetables, including the number of glasses of water they consumed per day, the average number of days each week they ate fruits and vegetables, and the average number of times per day they ate fruits and vegetables (Tables 18.8.1 and 18.8.2).

Women age 15-49 consume an average of four glasses of water per day. Women age 50-64 consume slightly more glasses of water on average per day than women age 15-49. The average number of days each week that women age 15-49 consume fruits and vegetables is two and three, respectively, and they do so on average only once per day. Men age 15-49 and 50-64 consume, on average, one glass of water more per day than women in the same age groups (about five glasses). Similar to women, men consume fruits and vegetables on two and three days per week, respectively, and do so once a day on average.

Overall, consumption of water increases with age among both women and men. The prevalence of fruit and vegetable consumption is higher among urban women than among rural women. Water consumption among women is highest in Kunene, among those with more than a secondary education, and among women in the highest wealth quintile. Older women (age 45-64) are more likely to consume water than younger women.

Number of glasses of water consumed per day among women and men does not vary extensively by residence, level of education, or wealth quintile. However, while women and men in urban areas eat fruit and vegetables three days a week on average, their counterparts in rural areas eat fruit only one day a week and vegetables two days a week.

Table 18.8.1 Consumption of water, fruits, and vegetables: Women
Among women age 15-49, the average number of glasses of water consumed per day, the average number of days per week fruits are consumed, the average number of times per day fruits are consumed, the average number of days per week vegetables are consumed, and the average number of times per day vegetables are consumed, according to background characteristics, Namibia 2013

Background characteristic	Average number of glasses of water consumed per day	Average number of days per week fruits consumed	Average number of times per day fruits consumed	Average number of days per week vegetables consumed	Average number of times per day vegetables consumed	Number of women
Age						
15-19	3.4	2.0	1.1	3.2	1.4	1,906
20-24	3.6	2.3	1.2	3.3	1.3	1,786
25-29	4.0	2.4	1.1	3.3	1.3	1,489
30-34	4.3	2.4	1.1	3.2	1.3	1,260
35-39	4.4	2.1	1.0	3.0	1.2	1,110
40-44	4.4	2.2	1.0	3.4	1.3	917
45-49	4.7	2.2	1.1	3.2	1.2	708
Residence						
Urban	4.2	3.0	1.4	3.9	1.4	5,190
Rural	3.7	1.2	0.7	2.4	1.2	3,986
Region						
Zambezi	4.0	1.6	0.9	4.3	1.5	457
Erongo	4.0	3.0	1.3	3.6	1.3	771
Hardap	5.3	3.1	1.1	4.2	1.2	304
//Karas	4.0	2.7	1.3	4.0	1.4	343
Kavango	2.9	1.0	0.7	2.7	1.2	835
Khomas	4.3	3.5	1.5	4.0	1.4	2,202
Kunene	5.3	1.5	1.4	2.4	1.0	258
Ohangwena	3.4	1.2	0.6	1.8	0.9	894
Omaheke	4.2	1.7	0.8	2.0	0.8	225
Omusati	3.4	1.2	0.7	2.6	1.8	884
Oshana	4.3	2.1	0.9	3.1	1.1	755
Oshikoto	3.8	2.0	1.1	3.5	1.4	707
Otjozondjupa	4.3	2.0	1.1	2.8	1.1	540
Education						
No education	3.5	0.8	0.5	1.8	0.9	419
Primary	3.8	1.2	0.7	2.4	1.2	1,798
Secondary	4.0	2.4	1.2	3.4	1.3	6,029
More than secondary	4.2	3.7	1.5	4.5	1.5	930
Wealth quintile						
Lowest	3.5	0.6	0.5	2.0	1.1	1,429
Second	3.8	1.3	0.8	2.4	1.1	1,625
Middle	4.0	1.9	1.0	3.0	1.3	1,795
Fourth	4.2	2.8	1.3	3.6	1.4	2,116
Highest	4.3	3.7	1.6	4.6	1.5	2,211
Total 15-49	4.0	2.2	1.1	3.2	1.3	9,176
50-64	4.5	1.7	0.8	2.9	1.3	797

Among men age 15-49, the average number of glasses of water consumed per day, the average number of days per week fruits are consumed, the average number of times per day fruits are consumed, the average number of days per week vegetables are consumed, and the average number of times per day vegetables are consumed, according to background characteristics, Namibia 2013

Background characteristic	Average number of glasses of water consumed per day	Average number of days per week fruits consumed	Average number of times per day fruits consumed	Average number of days per week vegetables consumed	Average number of times per day vegetables consumed	Number of men
Age						
15-19	4.5	2.0	1.2	2.9	1.2	922
20-24	4.5	2.0	1.1	2.9	1.2	808
25-29	5.0	2.0	1.1	2.9	1.2	658
30-34	5.0	2.1	1.2	2.9	1.2	520
35-39	5.3	2.3	1.2	2.9	1.2	448
40-44	5.1	2.1	1.1	2.7	1.2	376
45-49	5.1	2.4	1.2	3.0	1.3	289
Residence						
Urban	4.9	2.8	1.5	3.4	1.4	2,282
Rural	4.7	1.2	0.8	2.3	1.0	1,739
Region						
Zambezi	5.0	1.6	0.6	4.3	1.2	218
Erongo	5.2	2.9	1.3	3.5	1.3	372
Hardap	4.9	1.8	1.0	2.5	1.1	152
//Karas	5.3	2.4	1.3	3.1	1.7	151
Kavango	4.2	1.3	1.0	2.4	1.1	316
Khomas	4.8	3.0	1.6	3.4	1.4	1,023
Kunene	6.9	1.1	1.0	1.4	0.9	104
Ohangwena	5.5	1.3	0.9	3.1	1.2	328
Omaheke	5.3	1.1	0.9	1.1	0.8	103
Omusati	3.2	1.4	0.7	1.7	0.9	342
Oshana	5.1	2.1	1.1	3.1	1.2	335
Oshikoto	4.1	1.3	1.0	2.6	1.2	335
Otjozondjupa	5.5	2.1	1.2	2.0	1.2	241
Education						
No education	5.3	1.1	0.7	2.0	0.8	310
Primary	4.6	1.4	0.8	2.3	1.0	944
Secondary	4.8	2.3	1.3	3.1	1.3	2,400
More than secondary	5.3	3.1	1.5	3.9	1.4	368
Wealth quintile						
Lowest	4.6	0.9	0.6	2.1	0.9	594
Second	4.6	1.5	0.9	2.3	1.0	769
Middle	4.7	1.8	1.1	2.8	1.1	886
Fourth	4.9	2.6	1.3	3.4	1.4	917
Highest	5.2	3.2	1.6	3.6	1.5	855
Total 15-49	4.8	2.1	1.2	2.9	1.2	4,021
50-64	5.4	2.1	1.1	3.1	1.3	460

Women in Hardap and Kunene consume five glasses of water per day on average, whereas women in the other regions consume three to four glasses per day. Among men, water consumption is highest in Kunene, Ohangwena, and Otjozondjupa. Women in Khomas eat fruit four days a week on average, as compared with one to three days a week among women in the other regions. Women in Ohangwena and Omaheke are less likely to eat vegetables (only two days per week on average) than women in the other regions.

Consumption of fruits and vegetables is higher among women with more than a secondary education than among women with no education.

18.8 Mental Health

Mental health refers to a broad array of activities directly or indirectly related to the mental wellbeing component included in the WHO definition of health ${ }^{4}$: "a state of complete physical, mental and social well-being, and not merely the absence of disease." It is related to the promotion of well-being, the prevention of mental disorders, and the treatment and rehabilitation of people affected by mental disorders.

[^23]Mental disorders comprise a broad range of problems, with different symptoms. They are generally characterised by some combination of abnormal thoughts, emotions, behaviours, and relationships with others. Mental illness, on the other hand, is characterised by alterations in thinking, mood, or behaviour (or some combination thereof) associated with distress and/or impaired functioning. Most of these disorders can be successfully treated.

In the health care and public health arena, increased emphasis and resources are being devoted to screening, diagnosis, and treatment of mental illness.

The 2013 NDHS collected information from women and men age 15-49 on whether they have ever seen or heard things that are actually not there, whether they felt worthless or hopeless or wished they were dead during the past 12 months, the average number of days in the past two weeks they had little interest or pleasure in doing things; and the average number of days in the past two weeks they had felt low in energy, been in a bad mood, or been sad. Tables 18.9.1 and 18.9.2 present the results of the data collected on mental health.

Table 18.9.1 Mental health: Women
Percentage of women age 15-49 who have ever seen or heard things that are actually not there; the percentage who, in the past 12 months, felt seriously worthless, hopeless, or wished to be dead; the average number of days in the past two weeks women felt little interest or pleasure in doing things; the average number of days in the past two weeks women felt low in energy, had been in a bad mood, or had been sad all of the time; and among women who had experienced any mental health issue, ${ }^{1}$ the percentage who sought medical care, according to background characteristics, Namibia 2013

| | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

[^24]Table 18.9.2 Mental health: Men
Percentage of men age $15-49$ who have ever seen or heard things that are actually not there; the percentage who, in the past 12 months, felt seriously worthless, hopeless, or wished to be dead; the average number of days in the past two weeks men felt little interest or pleasure in doing things; the average number of days in the past two weeks men felt low in energy, had been in a bad mood, or had been sad all of the time; and among men who had experienced any mental health issue, ${ }^{1}$ the percentage who sought medical care, according to background characteristics, Namibia 2013

Background characteristic	Ever seen or heard things that are actually not there	Felt seriously worthless, hopeless, or wished to be dead in the past 12 months	Average number of days felt little interest or pleasure in doing things in the past 2 weeks	Average number of days felt low in energy, been in a bad mood, or been sad all of the time in the past 2 weeks	Number of men	Sought medical care	Number of men
Age							
15-19	11.5	7.0	0.5	0.4	922	7.6	297
20-24	15.7	9.2	0.5	0.5	808	9.5	279
25-29	11.6	8.5	0.4	0.5	658	8.8	194
30-34	11.2	8.1	0.5	0.4	520	10.5	136
35-39	9.6	5.6	0.3	0.3	448	8.9	96
40-44	11.7	6.3	0.3	0.4	376	5.2	76
45-49	16.8	11.7	0.3	0.5	289	6.6	86
Residence							
Urban	10.2	9.4	0.4	0.4	2,282	8.3	608
Rural	15.6	6.1	0.4	0.4	1,739	8.7	556
Region							
Zambezi	16.6	17.0	0.7	0.4	218	9.6	79
Erongo	4.7	3.1	0.2	0.1	372	11.2	46
Hardap	6.0	5.1	0.1	0.1	152	(4.6)	19
//Karas	11.6	14.5	0.7	0.8	151	9.7	60
Kavango	13.8	12.4	0.5	0.7	316	9.8	100
Khomas	13.8	10.1	0.4	0.5	1,023	7.6	318
Kunene	3.7	3.5	0.0	0.1	104	*	7
Ohangwena	14.4	7.1	0.7	0.6	328	6.6	157
Omaheke	4.8	3.8	0.2	0.3	103	(7.5)	12
Omusati	14.7	3.5	0.4	0.2	342	8.0	100
Oshana	19.9	4.3	0.5	0.4	335	11.5	120
Oshikoto	14.1	5.8	0.5	0.4	335	9.4	114
Otjozondjupa	7.2	9.4	0.2	0.2	241	(5.3)	32
Education							
No education	11.5	3.6	0.2	0.4	310	2.1	75
Primary	15.4	7.6	0.5	0.4	944	6.6	293
Secondary	11.8	8.5	0.4	0.4	2,400	9.4	691
More than secondary	10.7	8.9	0.4	0.6	368	12.2	104
Wealth quintile							
Lowest	14.5	7.6	0.5	0.5	594	8.6	213
Second	12.7	6.0	0.4	0.4	769	9.4	215
Middle	14.7	7.7	0.4	0.4	886	9.4	266
Fourth	13.8	8.6	0.4	0.4	917	3.8	250
Highest	7.2	9.5	0.4	0.4	855	11.6	219
Total 15-49	12.5	8.0	0.4	0.4	4,021	8.5	1,164
50-64	10.4	4.2	0.2	0.3	460	7.2	96

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Refers to men who had ever seen or heard things that are actually not there; who, in the past 12 months, had ever felt seriously worthless, hopeless, or wished to be dead; who, in the past 2 weeks, felt that they had little interest or pleasure in doing things; or who, in the past 2 weeks, felt low in energy, had been in a bad mood, or had been sad all of the time

Fourteen percent of women age 15-49 reported that they had seen or heard things that were actually not there in the two weeks prior to the survey. Thirteen percent of women reported that they felt worthless or hopeless or wished that they were dead in the 12 months prior to the survey. The average number of days that women felt little interest or pleasure in doing things in the past two weeks was less than one, as was the average number of days women felt low in energy, had been in a bad mood, or had been sad. Among women who reported experiencing at least one of these four mental health issues, 18 percent sought medical care. Nearly twice as many women age 50-64 as women age 15-49 sought medical help for their symptoms (33 percent versus 18 percent).

Women age 45-49, rural women and those living in Oshikoto, women with a primary education, and those in the lowest wealth quintile were most likely to report that they had seen or heard things that were actually not there in the two weeks before the survey. Women age 20-24, urban women, women in //Karas, women with more than a secondary education, and women in the highest wealth quintile were
more likely than their counterparts to report that they had felt worthless or hopeless or wished that they were dead in the past 12 months. There were minimal differences by background characteristics in the average number of days women felt little interest or pleasure in doing things in the past two weeks and the average number of days women felt low in energy, had been in a bad mood, or had been sad.

Thirteen percent of men age 15-49 reported that they had seen or heard things that were actually not there in the two weeks prior to the survey. Eight percent of men reported that they felt worthless or hopeless or that they wished they were dead in the 12 months prior to the survey. Similar to women, the average number of days that men felt little interest or pleasure in doing things in the past two weeks was less than one, as was the average number of days they felt low in energy, had been in a bad mood, or had been sad. Among men who reported experiencing at least one of these four issues, 9 percent sought medical care.

Men age 45-49, rural men, men in Oshana, men with a primary education, and men in the fourth and middle wealth quintiles were most likely to report that they had seen or heard things that were actually not there in the two weeks before the survey. Men age 45-49, urban men, men in Zambezi, men with more than a secondary education, and men in the highest wealth quintile were more likely than their counterparts to report that they had felt worthless or hopeless or wished that they were dead in the past 12 months. As with women, there were minimal differences by background characteristics in the average number of days men felt little interest or pleasure in doing things in the past two weeks and the average number of days they felt low in energy, had been in a bad mood, or had been sad.

18.9 Health Insurance

Namibia does not have a national health insurance scheme. The vast majority of the population (85 percent) is uninsured and relies on the public sector to provide health coverage (Brockmeyer and Stiftung, 2012). Public health services generally charge a flat user fee that is highly subsidised and therefore affordable. Health care is also provided through the private sector from private medical aid funds; this type of coverage is unaffordable for the majority of the country's residents. In the 2013 NDHS, respondents were asked whether they are covered under any health insurance scheme. Those who answered in the affirmative were asked about the type of health insurance coverage they have. Tables 18.10.1 and 18.10 .2 show the percentage of women and men age $15-49$ by the specific health insurance coverage they carry, according to background characteristics.

The vast majority of women (82 percent) and men age 15-49 (80 percent) do not have any health insurance. Eleven percent of women and 9 percent of men have some type of employer-based health insurance. Men are twice as likely as women (8 percent and 4 percent, respectively) to have social security. In addition, 3 percent of women and 5 percent of men have privately purchased commercial health insurance, while 2 percent and 3 percent of women and men, respectively, carry some other type of health insurance.

In general, health insurance coverage increases with age among both women and men. Coverage is higher in urban than rural areas and is higher in Khomas than in the other regions. Among both women and men, health insurance coverage increases with increasing education and wealth. Women and men in the highest wealth quintile are more than twice as likely to have health insurance coverage as women and men in the lowest wealth quintile.

Table 18.10.1 Health insurance coverage: Women
Percentage of women age $15-49$ with specific types of health insurance coverage, according to background characteristics Namibia 2013

Background characteristic	Social security	Employer-based insurance	Privately purchased commercial insurance	Other	None	Number of women
Age						
15-19	0.2	6.3	2.2	3.4	88.2	1,906
20-24	1.7	7.5	2.1	1.2	87.8	1,786
25-29	3.8	9.7	2.2	1.1	85.7	1,489
30-34	6.7	11.3	4.8	2.0	79.2	1,260
35-39	4.1	15.3	2.3	1.2	79.2	1,110
40-44	6.3	17.4	5.5	2.0	73.4	917
45-49	6.6	19.7	5.8	2.9	69.1	708
Residence						
Urban	4.8	16.2	4.3	2.7	75.0	5,190
Rural	1.8	4.3	1.7	1.0	92.1	3,986
Region						
Zambezi	5.1	4.4	1.0	0.1	90.9	457
Erongo	4.6	11.9	8.0	1.0	76.6	771
Hardap	0.5	12.7	1.4	2.8	83.2	304
//Karas	3.7	15.1	2.0	3.0	78.9	343
Kavango	3.5	3.0	1.3	0.7	93.1	835
Khomas	4.5	20.5	5.1	4.3	69.1	2,202
Kunene	3.0	7.1	0.8	0.2	91.4	258
Ohangwena	1.8	4.1	0.6	0.5	93.7	894
Omaheke	2.9	5.6	5.4	1.8	85.4	225
Omusati	3.8	7.0	1.5	0.4	89.1	884
Oshana	6.3	11.3	2.4	0.6	84.0	755
Oshikoto	1.1	8.0	4.1	3.2	84.3	707
Otjozondjupa	0.9	11.1	1.9	2.5	83.7	540
Education						
No education	0.3	0.9	1.1	0.0	97.7	419
Primary	0.8	1.6	0.3	0.3	97.0	1,798
Secondary	3.2	10.0	2.8	1.8	83.8	6,029
More than secondary	12.2	40.5	12.1	7.4	38.7	930
Wealth quintile						
Lowest	0.4	0.9	0.5	0.2	98.3	1,429
Second	1.7	1.3	0.6	0.1	96.6	1,625
Middle	3.1	4.9	1.1	1.1	91.1	1,795
Fourth	4.4	12.4	2.1	1.4	82.1	2,116
Highest	6.4	28.3	9.4	5.7	55.1	2,211
Total 15-49	3.5	11.0	3.2	2.0	82.4	9,176

Table 18.10.2 Health insurance coverage: Men
Percentage of men age 15-49 with specific types of health insurance coverage, according to background characteristics, Namibia 2013

Background characteristic	Social security	Employer-based insurance	Privately purchased commercial insurance	Other	None	Number of men
Age						
15-19	1.2	4.1	4.1	2.9	87.8	922
20-24	5.4	6.6	2.4	2.0	86.1	808
25-29	8.2	8.5	3.6	1.6	82.4	658
30-34	7.6	10.1	5.4	2.0	78.5	520
35-39	12.1	12.5	5.3	2.0	75.7	448
40-44	14.2	13.1	7.5	4.0	68.0	376
45-49	15.6	15.3	10.9	4.9	61.8	289
Residence						
Urban	9.9	13.2	6.8	3.9	71.2	2,282
Rural	4.3	2.8	2.2	0.8	92.2	1,739
Region						
Zambezi	5.9	5.7	1.3	0.0	89.2	218
Erongo	10.5	15.4	3.0	6.1	72.9	372
Hardap	11.4	8.6	6.0	4.2	74.1	152
//Karas	18.5	10.8	9.3	0.5	67.8	151
Kavango	0.8	2.5	0.2	0.8	96.5	316
Khomas	7.2	15.5	9.4	4.3	67.4	1,023
Kunene	3.3	6.6	1.4	1.0	90.7	104
Ohangwena	1.9	2.0	4.9	0.0	92.8	328
Omaheke	10.7	9.0	2.0	0.0	83.2	103
Omusati	7.9	5.1	4.5	0.0	89.1	342
Oshana	10.5	2.4	2.1	4.7	85.4	335
Oshikoto	1.0	5.0	4.3	0.7	89.3	335
Otjozondjupa	16.9	7.6	0.9	2.8	74.3	241
Education						
No education	2.8	2.3	0.9	0.2	94.5	310
Primary	3.7	2.1	1.5	0.3	93.4	944
Secondary	7.9	7.9	5.1	3.0	79.4	2,400
More than secondary	17.9	36.3	14.6	7.3	40.7	368
Wealth quintile						
Lowest	0.7	0.7	0.0	0.0	98.8	594
Second	3.2	1.7	0.7	0.1	94.9	769
Middle	6.6	3.5	3.9	0.6	88.2	886
Fourth	10.6	9.7	4.0	2.3	77.8	917
Highest	13.5	24.9	13.6	8.7	48.8	855
Total 15-49	7.5	8.7	4.8	2.6	80.3	4,021

WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES

Key Findings

- Fifty-four percent of currently married women and 84 percent of currently married men were employed in the 12 months preceding the survey.
- Forty percent of married women and 28 percent of married men say they decide on their own how to use their earnings.
- The majority of Namibian women and men do not own a house or land.
- Forty-six percent of women indicate that they have sole decision-making power with respect to their own health care.
- Twenty-eight percent of women and 22 percent of men believe that a husband is justified in beating his wife for any of five specified reasons.
- There is a positive relationship between women's empowerment and contraceptive use. Also, empowered women are more likely to have their contraceptive needs met than women who are not empowered.
- Empowered women are more likely to seek out and use health services, enabling them to better meet their reproductive health goals, including safe motherhood.

TThis chapter discusses women's empowerment in terms of earnings, control over earnings, and magnitude of earnings relative to those of their partners. In addition, responses to specific questions are used to define two different indicators of women's empowerment: women's participation in household decision making and women's attitudes toward wife beating. The extent to which women's empowerment influences maternal health and contraceptive use is also examined.

19.1 Women's and Men's Employment

In the 2013 NDHS, respondents were asked a number of questions about their employment status at the time of the survey and the continuity of their employment in the 12 months prior to the survey. Measurement of women's employment is sometimes difficult, because some of the activities that women do, especially work on family farms, in family businesses, or in the informal sector, are often not perceived by women themselves as employment and hence are not reported as such.

To avoid underestimating women's employment, women were asked several questions to ascertain their employment status. First, women were asked: "Aside from your own housework, have you done any work in the last seven days?" Women who answered no to this question were then asked: "As you know, some women take up jobs for which they are paid in cash or in-kind. Others sell things, have a small business, or work on the family farm or in the family business. In the last seven days, have you done any of these things or any other work?" Women who answered no to this question were asked: "Although you did not work in the last seven days, do you have any job or business from which you were absent for leave, illness, vacation, maternity leave, or any other such reason?" Women are considered currently employed if they answered yes to either of the first two questions. Women who answered yes to the third question are considered not to be currently employed but to have worked in the past 12 months. Table 19.1 presents data on employment of women and men in the past 12 months and type of earnings (cash only, cash and in-kind, in-kind only, no earnings).

Percentage of currently married women and men age 15-49 who were employed at any time in the past 12 months and the percent distribution of currently married women and men employed in the past 12 months by type of earnings, according to age, Namibia 2013									
Age	Among currently married respondents:		Percent distribution of currently married respondents employed in the past 12 months, by type of earnings					Total	Number of women
	Percentage employed in past 12 months	Number of respondents	Cash only	Cash and inkind	In-kind only	Not paid	Missing/ don't know		
WOMEN									
15-19	19.3	103	*	*	*	*	*	*	20
20-24	37.3	349	86.9	1.6	0.8	10.7	0.0	100.0	130
25-29	50.9	558	91.0	2.7	0.2	5.9	0.2	100.0	284
30-34	61.6	634	89.6	3.7	0.1	6.6	0.1	100.0	390
35-39	55.9	593	87.8	4.1	0.3	7.8	0.0	100.0	331
40-44	60.7	497	85.9	4.3	0.2	9.1	0.5	100.0	302
45-49	57.8	386	89.6	1.0	1.6	7.6	0.2	100.0	223
Total 15-49	53.9	3,121	88.5	3.1	0.4	7.8	0.2	100.0	1,681
MEN									
15-19	77.2	7	*	*	*	*	*	*	5
20-24	80.1	76	91.5	3.4	1.5	3.6	0.0	100.0	61
25-29	83.6	165	96.6	2.6	0.0	0.8	0.0	100.0	138
30-34	86.9	225	94.3	3.8	0.0	1.9	0.0	100.0	195
35-39	86.6	245	93.6	4.2	0.8	1.3	0.2	100.0	212
40-44	81.8	238	93.3	4.9	0.0	1.7	0.1	100.0	195
45-49	79.2	205	96.2	3.1	0.0	0.7	0.0	100.0	163
Total 15-49	83.5	1,160	94.4	3.8	0.3	1.5	0.1	100.0	968

Note: An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.

Fifty-four percent of currently married women reported being employed in the 12 months preceding the survey, a decline since the 2006-07 NDHS, when 61 percent of married women were employed in the preceding 12 months. Among employed women, 89 percent received cash earnings, as compared with 71 percent in the 2006-07 NDHS. There was a marked decline from the 2006-07 NDHS in the proportion of employed women who did not receive any payment from 24 percent to 8 percent. The percentage of women who are employed increases with age, from 19 percent among those age 15-19 to a peak of 62 percent among those age 30-34.

Table 19.1 further indicates that 84 percent of currently married men reported being employed in the 12 months preceding the survey, also a decrease from the 2006-07 NDHS (90 percent). The proportion of men receiving cash as payment has increased since 2006-07, from 83 percent to 94 percent. It is also worth noting that the proportion of men not receiving any payment has decreased markedly, from 13 percent in 2006-07 to 2 percent in 2013. The percentage of currently married men who are employed increases from 77 percent among those age 15-19 to a peak of 87 percent among those age 30-39 before decreasing in the older age groups.

19.2 Women's Control over Their Own Earnings and Relative Magnitude of Women's EARNINGS

To assess women's autonomy, currently married women who had earned cash for their work in the 12 months preceding the survey were asked who the main decision maker is with regard to the use of their earnings. This information allows an assessment of women's control over their own earnings. Women who earned cash for their work were also asked the relative magnitude of their earnings compared with those of their husband. It is expected that employment and earnings are more likely to empower women if women themselves control their own earnings and perceive them as significant relative to those of their husband.

Table 19.2.1 shows the degree of control women have over the use of their earnings and their perception of the magnitude of their earnings relative to those of their husband, by background characteristics. Forty percent of women indicated that they decide how their cash earnings are used, while

8 percent indicated that their husband decides how their earnings are used. Fifty-one percent of women decide jointly with their husbands on how their cash earnings are spent.

Table 19.2.1 Control over women's cash earnings and relative magnitude of women's cash earnings													
Percent distribution of currently married women age 15-49 who received cash earnings for employment in the 12 months preceding the survey by person who decides how wife's cash earnings are used and by whether she earned more or less than her husband, according to background characteristics, Namibia 2013													
Background characteristic	Person who decides how the wife's cash earnings are used:						Wife's cash earnings compared with husband's cash earnings:					Total	Number of women
	Mainly wife	Wife and husband jointly	Mainly husband	Other	Missing	Total	More	Less	About the same	Husband has no earnings	Don't know/ Missing		
Age													
15-19	*	*	*	*	*	*	*	*	*	*	*	100.0	16
20-24	39.2	50.9	9.2	0.0	0.8	100.0	6.6	73.4	9.0	9.5	1.6	100.0	115
25-29	38.2	50.1	10.4	0.0	1.2	100.0	9.5	73.5	5.6	6.3	5.1	100.0	266
30-34	38.9	51.2	7.5	0.1	2.2	100.0	10.6	65.9	13.5	5.1	5.0	100.0	364
35-39	45.2	47.6	6.5	0.0	0.8	100.0	14.1	68.0	11.1	4.4	2.5	100.0	305
40-44	35.6	55.1	8.1	0.5	0.7	100.0	12.9	65.5	9.7	7.9	4.0	100.0	272
45-49	38.2	51.6	10.2	0.0	0.1	100.0	16.1	62.2	10.7	10.9	0.1	100.0	202
Number of living children													
0	34.3	58.9	6.1	0.0	0.7	100.0	13.8	60.1	14.6	8.0	3.4	100.0	136
1-2	38.7	52.1	8.1	0.0	1.0	100.0	12.9	67.0	11.1	4.9	4.1	100.0	740
3-4	39.1	49.9	9.3	0.1	1.6	100.0	10.8	71.9	8.5	5.9	2.8	100.0	490
5+	48.4	41.9	8.8	0.6	0.2	100.0	10.3	64.5	7.1	15.7	2.4	100.0	175
Residence													
Urban	39.2	52.8	7.0	0.1	0.9	100.0	11.7	68.5	10.7	5.6	3.5	100.0	1,164
Rural	40.6	45.0	12.6	0.1	1.7	100.0	13.0	65.0	8.3	10.4	3.3	100.0	376
Region													
Zambezi	44.3	41.9	12.7	0.0	1.1	100.0	12.9	65.2	11.6	9.2	1.1	100.0	58
Erongo	39.0	56.3	4.7	0.0	0.0	100.0	10.0	69.8	10.8	6.1	3.2	100.0	204
Hardap	25.8	59.0	14.4	0.0	0.8	100.0	14.2	71.8	8.8	3.5	1.6	100.0	68
//Karas	30.4	59.4	7.4	0.8	1.9	100.0	13.6	70.2	8.3	3.9	4.0	100.0	88
Kavango	50.1	36.1	11.5	0.0	2.3	100.0	13.5	61.7	5.7	15.5	3.6	100.0	91
Khomas	38.1	55.9	5.1	0.0	0.8	100.0	14.4	64.3	11.0	5.0	5.3	100.0	493
Kunene	34.6	53.4	10.6	0.0	1.3	100.0	9.7	51.9	25.7	11.3	1.3	100.0	35
Ohangwena	42.7	48.0	7.9	0.0	1.3	100.0	5.7	78.9	2.6	9.9	2.8	100.0	79
Omaheke	41.4	45.9	11.7	0.0	1.0	100.0	16.3	57.3	14.2	7.3	4.9	100.0	45
Omusati	47.3	44.2	6.8	0.0	1.7	100.0	21.5	49.6	22.1	5.2	1.7	100.0	55
Oshana	32.8	50.6	14.5	0.0	2.1	100.0	10.5	72.4	10.2	4.7	2.2	100.0	97
Oshikoto	54.6	38.2	6.2	0.0	1.1	100.0	6.7	76.6	5.0	9.7	1.9	100.0	121
Otjozondjupa	35.2	43.9	18.7	1.0	1.3	100.0	6.3	77.1	8.6	6.6	1.5	100.0	107
Education													
No education	42.9	39.3	16.7	0.0	1.2	100.0	5.8	68.1	6.1	16.5	3.5	100.0	59
Primary	46.4	39.1	13.1	0.5	0.9	100.0	9.1	65.8	9.4	11.0	4.6	100.0	200
Secondary	39.9	50.6	8.2	0.1	1.2	100.0	11.2	72.1	7.6	5.6	3.5	100.0	969
More than secondary	33.2	61.5	4.3	0.0	0.9	100.0	17.4	55.1	19.4	5.5	2.6	100.0	312
Wealth quintile													
Lowest	45.6	33.1	17.6	1.2	2.5	100.0	7.2	67.4	1.9	17.9	5.7	100.0	87
Second	50.9	32.9	14.7	0.2	1.4	100.0	8.3	67.6	9.2	10.7	4.2	100.0	164
Middle	46.5	42.7	9.1	0.0	1.7	100.0	11.4	69.1	6.4	9.5	3.7	100.0	294
Fourth	43.4	48.4	7.5	0.1	0.6	100.0	12.6	69.4	10.4	6.5	1.1	100.0	381
Highest	29.9	63.7	5.6	0.0	0.8	100.0	13.6	66.0	13.2	3.0	4.3	100.0	614
Total	39.5	50.9	8.4	0.1	1.1	100.0	12.0	67.7	10.1	6.7	3.4	100.0	1,540

Note: An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed

Women age 35-39 (45 percent) are more likely than women in the other age groups to report that they mainly decide themselves how to spend their cash earnings. Women age 25-29 and 45-49 are most likely to say that their husbands mainly decide how their cash earnings are spent (10 percent each). Women with five or more children have more independent decision-making power (48 percent) over how they spend their cash earnings than women with less than five children. Nine percent of women having three or more children indicated that their husbands mainly decide on how their cash is spent.

Women age 45-49 are most likely to earn more cash than their husbands, while women age 20-24 are least likely to earn more than their husbands. Women with more than five children are most likely to report that their husband has no cash earnings (16 percent).

Rural women are more likely than urban women to report that their husbands take the lead role in making decisions about their cash earnings (13 percent and 7 percent, respectively). Fifty-three percent of women in urban areas make joint decisions with their husbands on how their cash earnings are spent, as compared with 45 percent in rural areas.

The percentage of women who make independent decisions on their earnings varies across regions, ranging from 26 percent in Hardap to 55 percent in Oshikoto. Nineteen percent of women in Otjozondjupa report that their husbands mainly decide how their earnings are spent. Women in Omusati are most likely to earn more cash than their husbands (22 percent).

Women with a primary education are most likely to make independent decisions on the use of their earnings (46 percent), while husbands of women with no education are most likely to decide how their wives' earnings are spent (17 percent). It is also worth noting that women with no education (17 percent) are most likely to report that their husbands have no cash earnings.

Table 19.2.2 shows who decides how a husband's cash earnings are used, as reported by currently married men and women age 15-49. Ten percent of men indicated that their wife mainly decides how their earnings are used. This is a decrease from 2006-07, when 16 percent of men reported that their wife mainly decides how their earnings are used. Sixty-one percent of men indicated that they decide jointly with their wife on how their earnings are spent.

Men age 25-29 are most likely to report that their wife decides how to spend their earnings (14 percent). In contrast, men age 20-24 are most likely to solely decide on how they spend their earnings (39 percent.

There has been a marked increase in the proportion of men with five or more children who jointly decide with their wife on how their earnings should be spent, from 51 percent in the 2006-07 NDHS to 71 percent in the 2013 NDHS. Forty-two percent of men with no children solely decide how to spend their earnings, as compared with 32 percent in 2006-07. Men in rural areas are more likely to decide how their husband's earnings are spent than men in urban areas (12 percent and 9 percent, respectively).

Men with no education and men with more than a secondary education are more likely to decide jointly with their wife on how to spend their earnings (64 percent and 72 percent, respectively) than men with a primary or secondary education (57 percent and 59 percent, respectively). Men with a primary education are most likely to decide on their own how their earnings are spent (34 percent). Sole decision making is highest among men in the second wealth quintile (34 percent). At the same time, men in the second wealth quintile are most likely to report that their wife independently decides how to spend their earnings (13 percent). Men in the lowest and highest wealth quintiles are more likely than their counterparts to decide jointly with their wives on how their earnings are spent (69 percent and 70 percent, respectively).

Table 19.2.2 Control over men's cash earnings
Percent distributions of currently married men age 15-49 who receive cash earnings and of currently married women age 15-49 whose husbands receive cash earnings, by person who decides how husband's cash earnings are used, according to background characteristics, Namibia 2013

Background characteristic	Men						Women						
	Mainly wife	Husband and wife jointly	Mainly husband	Missing	Total	Number	Mainly wife	Husband and wife jointly	Mainly husband	Other	Missing	Total	Number
Age													
15-19	*	*	*	*	100.0	5	35.2	36.8	22.4	1.3	4.3	100.0	91
20-24	8.2	53.0	38.8	0.0	100.0	58	20.2	59.4	19.4	0.1	0.9	100.0	314
25-29	13.7	58.0	25.0	3.3	100.0	136	18.0	54.0	26.2	0.0	1.8	100.0	520
30-34	11.6	59.8	27.5	1.2	100.0	191	15.4	55.4	27.2	0.2	1.7	100.0	591
35-39	7.2	64.0	27.8	0.9	100.0	207	13.6	55.1	31.2	0.0	0.1	100.0	549
40-44	9.8	63.4	26.8	0.0	100.0	191	11.9	61.5	25.3	0.0	1.3	100.0	455
45-49	9.3	63.3	27.4	0.0	100.0	161	15.5	49.7	34.1	0.3	0.4	100.0	343
Number of living children													
0	6.0	49.1	41.9	3.0	100.0	92	13.8	58.9	26.7	0.1	0.5	100.0	232
1-2	11.3	57.9	29.6	1.2	100.0	373	16.1	56.9	24.8	0.1	2.0	100.0	1,257
3-4	11.5	62.6	25.4	0.5	100.0	300	15.5	54.7	28.9	0.1	0.7	100.0	928
5+	6.5	70.5	23.0	0.0	100.0	186	18.6	49.6	31.4	0.2	0.2	100.0	445
Residence													
Urban	9.2	60.4	29.2	1.2	100.0	668	12.5	58.9	27.3	0.1	1.3	100.0	1,718
Rural	11.7	62.4	25.8	0.2	100.0	283	21.6	49.8	27.4	0.2	1.0	100.0	1,144
Region													
Zambezi	21.9	54.2	22.2	1.6	100.0	64	18.6	61.8	19.1	0.0	0.6	100.0	144
Erongo	3.5	69.6	25.5	1.4	100.0	126	9.2	63.3	26.7	0.3	0.5	100.0	287
Hardap	9.1	55.1	35.9	0.0	100.0	59	18.8	58.6	21.5	0.0	1.1	100.0	126
//Karas	19.1	53.8	25.3	1.9	100.0	49	15.1	65.3	17.1	0.4	2.2	100.0	127
Kavango	5.2	89.9	5.0	0.0	100.0	67	52.3	36.4	9.6	0.3	1.4	100.0	394
Khomas	12.3	48.7	37.2	1.7	100.0	285	7.2	60.9	30.7	0.0	1.2	100.0	694
Kunene	11.1	43.4	45.5	0.0	100.0	29	9.0	67.0	23.0	0.3	0.8	100.0	98
Ohangwena	*	*	*	*	100.0	26	4.2	50.0	45.1	0.0	0.7	100.0	159
Omaheke	22.5	55.3	22.2	0.0	100.0	30	18.1	56.9	24.7	0.0	0.3	100.0	99
Omusati	*	*	*	*	100.0	27	9.7	54.7	34.2	0.0	1.4	100.0	181
Oshana	(0.0)	(73.8)	(26.2)	(0.0)	100.0	49	7.5	53.3	37.4	0.0	1.9	100.0	151
Oshikoto	(11.0)	(72.9)	(16.1)	(0.0)	100.0	54	11.0	55.5	31.7	0.5	1.2	100.0	190
Otjozondjupa	6.8	64.5	28.6	0.0	100.0	87	12.6	47.7	38.0	0.0	1.7	100.0	211
Education													
No education	10.0	63.8	26.1	0.0	100.0	83	19.7	46.2	32.1	0.1	2.0	100.0	199
Primary	9.1	56.5	34.4	0.0	100.0	192	24.5	42.2	32.2	0.5	0.5	100.0	646
Secondary	11.1	59.3	28.4	1.2	100.0	532	14.3	59.1	25.1	0.0	1.4	100.0	1,676
More than secondary	6.6	71.7	20.1	1.6	100.0	145	6.9	66.3	25.9	0.0	0.8	100.0	341
Wealth quintile													
Lowest	9.8	69.2	21.0	0.0	100.0	98	30.7	41.9	25.8	0.5	1.2	100.0	461
Second	13.4	52.6	34.0	0.0	100.0	149	14.8	49.4	34.8	0.0	1.1	100.0	481
Middle	11.5	57.1	29.2	2.2	100.0	189	17.2	52.1	29.2	0.2	1.3	100.0	555
Fourth	11.4	56.4	31.1	1.1	100.0	250	16.6	58.8	23.5	0.1	1.1	100.0	587
Highest	5.5	69.8	24.0	0.7	100.0	266	7.3	66.3	25.1	0.0	1.3	100.0	779
Total 15-49	9.9	61.0	28.2	0.9	100.0	951	16.1	55.2	27.3	0.1	1.2	100.0	2,862

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed.

Among currently married women who earned cash in the past 12 months, Table 19.3 presents information on the person who decides how their cash earnings are used, according to the relative magnitude of the earnings of women and their husbands. The table also shows who decides how the husband's cash earnings are used. Fifty-one percent of women decide jointly with their husband on how their cash earnings are spent, and 40 percent decide on their own. Eight percent of women report that their husband decides mainly how their cash earnings are spent. Women whose husbands have no earnings are most likely to solely decide on how their earnings are used (49 percent), while women who earn as much as their husbands are most likely to decide jointly with their husbands on how their cash earnings are spent (65 percent). Among women who earn less than their husband, the husband is more likely to decide how their cash earnings are spent (9 percent).

More than half of currently married women (55 percent) indicate that they decide jointly with their husband on how their husband's cash earnings are spent, while 27 percent of women report that their husband mainly decides on how his own earnings are spent; 16 percent of women report that they mainly decide how their husband's cash earnings are spent. Women who earn less than their husband are most
likely to report that their husband mainly decides how his cash earnings are spent. Women with the same income as their husband are mostly likely to decide together with their husband on use of the husband's cash earnings.

Table 19.3 Women's control over their own earnings and over those of their husbands
Percent distribution of currently married women age 15-49 with cash earnings in the last 12 months by person who decides how the wife's cash earnings are used and percent distribution of currently married women age 15-49 whose husbands have cash earnings by person who decides how the husband's cash earnings are used, according to the relation between wife's and husband's cash earnings, Namibia 2013

	Person who decides how the wife's cash earnings are used:					Person who decides how the husband's cash earnings are used:								
Women's earnings relative to husband's earnings	Mainly wife	Wife and husband jointly	Mainly husband	Other	Missing	Total	Number	Mainly wife	Wife and husband jointly	Mainly husband	Other	Missing	Total	Number of women
More than husband	40.9	52.2	6.4	0.0	0.5	100.0	185	15.5	59.1	25.4	0.0	0.0	100.0	185
Less than husband	40.3	50.2	9.3	0.2	0.1	100.0	1,042	12.5	56.9	30.4	0.1	0.0	100.0	1,042
Same as husband	28.9	65.2	5.9	0.0	0.0	100.0	156	11.9	71.4	16.7	0.0	0.0	100.0	156
Husband has no cash earnings or did not work	49.3	41.9	8.8	0.0	0.0	100.0	104	na	na	na	na	na	na	0
Woman worked but has no cash earnings	na	na	na	na	na	na	0	20.6	57.3	19.9	0.0	2.1	100.0	136
Woman did not work	na	na	na	na	na	na	0	19.5	51.7	27.1	0.2	1.5	100.0	1,290
Total ${ }^{1}$	39.5	50.9	8.4	0.1	1.1	100.0	1,540	16.1	55.2	27.3	0.1	1.2	100.0	2,862

na $=$ Not applicable
${ }^{1}$ Includes cases where a woman does not know whether she earned more or less than her husband

19.3 Women's Ownership of Assets

The 2013 NDHS included questions on ownership of houses and land. Asset ownership, particularly of housing and land, has beneficial effects for households. Among women, asset ownership is a source of financial empowerment.

Table 19.4.1 shows the percent distribution of women age 15-49 by ownership of housing and land, according to background characteristics. The vast majority of women do not own a house or land (69 percent and 79 percent, respectively). The proportion of women who own a house and land alone, as well as jointly, increases with age. Only 3 percent of women age 15-19 own a house, as compared with 36 percent of women age 45-49; 2 percent and 24 percent of women age 15-19 and age 45-49 own land, respectively.

Women in rural areas are more likely than those in urban areas to not own a house (71 percent and 68 percent, respectively), while women in urban areas are more likely than their rural counterparts to not own land (81 percent versus 76 percent). Omusati has the highest proportion of women who do not own a house (80 percent). Home and land ownership is highest in Zambezi, with only 46 percent and 54 percent of women, respectively, not owning either asset. Land ownership is lowest in Hardap and Khomas, where about 85 percent of women each do not own land.

Women with a secondary education and women in the fourth wealth quintile are most likely not to own a house or land. Surprisingly, women with no education and those in the lowest wealth quintile are more likely to solely own a house than their counterparts in the other categories.

Table 19.4.2 shows ownership of housing and land by men age 15-49, according to background characteristics. Seventy-three percent of men do not own a house and 80 percent do not own land, figures that are comparable with the proportion of women who do not own a house or land. As with women, sole ownership of a house increases with age, ranging from 1 percent among men age 15-19 to 36 percent among men age 40 and above. Sole ownership of land also increases with age, reaching a peak among men age 35-39.

Men in Omusati are most likely to not own a house (86 percent), while men in Kunene are most likely to not own land (93 percent).

As with women, men with a secondary education are most likely not to own a house (76 percent). Men with more than a secondary education are most likely to own a house or land, as are men in the lowest wealth quintile.

Table 19.4.2 Ownership of assets: Men
Percent distribution of men age 15-49 by ownership of housing and land, according to background characteristics, Namibia 2013

Background characteristic	Percentage who own a house:					Total	Percentage who own land:					Total	Number
	Alone	Jointly	Alone and jointly	Percentage who do not own a house	Missing		Alone	Jointly	Alone and jointly	Percentage who do not own land	Missing		
Age													
15-19	1.0	1.0	0.1	97.9	0.0	100.0	0.6	0.9	0.4	98.1	0.0	100.0	922
20-24	5.9	3.4	0.4	90.2	0.0	100.0	4.6	2.5	0.3	92.6	0.0	100.0	808
25-29	17.9	6.2	1.2	74.6	0.3	100.0	15.4	4.5	0.9	79.0	0.3	100.0	658
30-34	22.7	10.4	3.6	63.3	0.0	100.0	15.4	5.5	2.5	76.6	0.0	100.0	520
35-39	34.8	11.6	5.0	48.6	0.0	100.0	27.2	7.9	2.9	61.8	0.2	100.0	448
40-44	36.1	16.2	8.2	39.5	0.0	100.0	21.7	12.3	6.4	59.5	0.1	100.0	376
45-49	36.1	20.5	5.0	38.4	0.0	100.0	26.2	14.1	4.6	55.1	0.0	100.0	289
Residence													
Urban	20.1	8.9	2.3	68.7	0.0	100.0	14.4	6.6	1.5	77.5	0.0	100.0	2,282
Rural	13.2	5.7	2.7	78.3	0.1	100.0	10.1	3.3	2.4	84.1	0.1	100.0	1,739
Region													
Zambezi	39.9	12.4	4.0	43.7	0.0	100.0	16.6	12.9	0.0	70.4	0.0	100.0	218
Erongo	17.4	5.2	4.1	73.3	0.0	100.0	12.1	2.9	3.7	81.3	0.0	100.0	372
Hardap	9.0	21.7	1.0	68.3	0.0	100.0	6.5	9.0	0.5	84.0	0.0	100.0	152
//Karas	12.4	8.4	5.5	73.4	0.3	100.0	8.7	6.9	2.5	81.1	0.8	100.0	151
Kavango	20.4	4.0	3.2	72.5	0.0	100.0	12.6	1.9	5.0	80.5	0.0	100.0	316
Khomas	23.5	11.2	1.3	64.0	0.0	100.0	16.4	8.0	1.1	74.5	0.0	100.0	1,023
Kunene	12.6	1.2	0.9	85.2	0.0	100.0	6.2	0.7	0.2	92.5	0.4	100.0	104
Ohangwena	11.7	3.8	0.0	84.1	0.4	100.0	14.0	1.4	0.0	84.2	0.4	100.0	328
Omaheke	12.9	9.2	0.2	77.6	0.0	100.0	7.6	6.7	0.4	85.3	0.0	100.0	103
Omusati	4.3	3.1	6.9	85.8	0.0	100.0	6.3	2.6	5.1	86.0	0.0	100.0	342
Oshana	17.0	3.2	0.0	79.8	0.0	100.0	16.7	4.1	0.0	79.2	0.0	100.0	335
Oshikoto	6.3	7.4	4.3	82.0	0.0	100.0	7.4	3.3	2.8	86.5	0.0	100.0	335
Otjozondjupa	17.6	5.9	1.1	75.3	0.0	100.0	11.8	4.8	1.3	82.2	0.0	100.0	241
Education													
No education	18.9	6.1	3.4	71.6	0.0	100.0	13.1	2.4	1.7	82.7	0.0	100.0	310
Primary	18.9	6.4	3.1	71.6	0.0	100.0	15.6	3.2	2.3	78.8	0.0	100.0	944
Secondary	15.2	7.2	1.8	75.7	0.1	100.0	10.7	5.2	1.5	82.5	0.1	100.0	2,400
More than secondary	23.5	13.8	4.6	58.1	0.0	100.0	15.7	12.4	3.5	68.3	0.2	100.0	368
Wealth quintile													
Lowest	18.3	9.0	3.6	68.9	0.2	100.0	13.6	4.4	3.9	78.0	0.2	100.0	594
Second	18.4	4.7	1.9	75.0	0.0	100.0	13.8	2.4	0.9	82.8	0.1	100.0	769
Middle	20.5	6.1	2.1	71.3	0.0	100.0	12.8	6.2	1.0	79.9	0.0	100.0	886
Fourth	14.1	8.5	2.3	75.1	0.0	100.0	12.1	5.6	1.7	80.5	0.1	100.0	917
Highest	14.9	9.6	2.8	72.7	0.1	100.0	10.8	6.6	2.5	80.1	0.1	100.0	855
Total 15-49	17.1	7.5	2.5	72.8	0.0	100.0	12.5	5.2	1.9	80.3	0.1	100.0	4,021

19.4 Women’s and Men’s Participation in Decision Making

Decision making can be a complex process, and the ability of women and men to make decisions that affect their personal circumstances is essential to their status in their household and in society. The number of decisions in which a woman either alone or jointly with her husband has the final say is assumed to be directly related to women's empowerment and reflects the degree of decision-making control the woman is able to exercise in areas that affect her life and environment.

To assess women's decision-making autonomy, the 2013 NDHS collected information on women's participation in three types of household decisions: their own health care, making major household purchases, and visits to family or relatives. Similarly, men were asked about their participation in two types of household decisions: their own health care and making major household purchases. Table 19.5 shows the percent distribution of currently married women and men age 15-49 according to the person in the household who usually makes decisions concerning these matters. Women and men are considered to participate in decision making if they make decisions alone or jointly with their spouse.

Table 19.5 Participation in decision making
Percent distribution of currently married women and currently married men age 15-49 by person who usually makes decisions about various issues, Namibia 2013

Decision	Mainly wife	Wife and husband jointly	Mainly husband	Someone else	Other	Missing	Total	Number of women
WOMEN								
Own health care	46.3	41.5	10.8	0.5	0.1	0.8	100.0	3,121
Major household purchases	26.1	56.2	16.0	0.6	0.3	0.9	100.0	3,121
Visits to her family or relatives	32.0	55.4	11.3	0.3	0.1	0.8	100.0	3,121
MEN								
Own health care	10.3	55.6	32.9	0.1	0.1	0.9	100.0	1,160
Major household purchases	17.7	60.7	20.6	0.0	0.2	0.9	100.0	1,160

In Namibia, the majority of currently married women report that they make joint decisions with their husband on major household purchases and visits to family or relatives (56 percent and 55 percent, respectively). The majority of women make independent decisions about their own health care (46 percent). Nevertheless, in the case of 11 percent of women, decisions on their health care are made solely by their husband. It is also important to point out that, among one in ten men (10 percent), decisions on their health care are made solely by their wife.

Table 19.6.1 shows married women's participation in decision making either by themselves or jointly with their husbands, according to background characteristics. The majority (75 percent) of currently married women are involved in all three decisions. The proportion of women who are involved in all three decisions increases with age, from 54 percent in the youngest age group to 78 percent in the oldest age group.

Women who work for cash are more likely to be involved in all three decisions (81 percent) than women who are not employed or employed but not for cash (69 percent each). Women living in urban areas (78 percent) are more likely to be involved in all three decisions than women in rural areas (70 percent). A high percentage of women in Hardap (82 percent), Kunene and Erongo (81 percent each), and Khomas and Oshikoto (80 percent each) are involved in all three decisions, while Otjozondjupa has the lowest percentage of women involved in all three decisions (59 percent).

The proportion of women involved in all three decisions increases with increasing education, from 56 percent among those with no education to 88 percent among those with more than a secondary education. The percentage of women involved in all three decisions also increases with increasing wealth, from 66-68 percent in the lowest two wealth quintiles to 86 percent in the highest quintile.

Table 19.6.1 Women's participation in decision making by background characteristics
Percentage of currently married women age 15-49 who usually make specific decisions either by themselves or jointly with their husband, by background characteristics, Namibia 2013

Background characteristic	Specific decisions			All three decisions	None of the three decisions	Number of women
	Woman's own health care	Making major household purchases	Visits to her family or relatives			
Age						
15-19	68.7	64.8	78.8	54.1	13.2	103
20-24	84.2	83.0	83.7	71.3	7.3	349
25-29	87.5	81.2	85.9	73.2	6.1	558
30-34	87.5	81.4	87.8	74.4	7.3	634
35-39	89.3	84.8	90.9	77.6	3.5	593
40-44	91.8	82.9	89.1	76.5	4.9	497
45-49	89.1	84.3	87.2	78.4	7.5	386
Employment (past 12 months)						
Not employed	83.4	76.7	84.7	68.6	8.3	1,437
Employed for cash	92.1	88.2	90.2	80.9	4.0	1,540
Employed not for cash	85.9	76.2	86.1	68.7	6.9	138
Number of living children						
0	86.3	80.2	86.4	73.7	7.1	255
1-2	87.4	84.1	86.8	75.6	6.6	1,347
3-4	88.3	81.3	88.2	73.7	5.5	999
5+	88.3	80.0	88.1	74.2	6.3	520
Residence						
Urban	89.9	85.9	88.7	78.1	5.2	1,819
Rural	84.8	77.2	85.7	69.8	7.7	1,301
Region						
Zambezi	88.0	93.4	80.2	74.4	4.1	204
Erongo	91.1	89.5	91.8	80.6	1.3	305
Hardap	89.8	88.9	89.6	82.4	5.1	131
//Karas	87.1	88.7	90.7	78.6	4.2	133
Kavango	79.4	77.6	83.3	67.8	9.1	429
Khomas	93.4	86.7	91.5	80.1	3.0	727
Kunene	87.0	85.7	88.8	80.9	6.5	108
Ohangwena	94.0	71.3	95.4	69.2	1.2	184
Omaheke	88.6	84.6	88.6	76.3	4.5	110
Omusati	87.9	72.5	89.0	68.6	7.7	187
Oshana	85.1	71.2	87.9	69.4	9.8	164
Oshikoto	95.4	88.7	88.4	80.4	2.6	208
Otjozondjupa	69.6	65.4	69.3	59.2	25.4	231
Education						
No education	75.3	67.8	73.7	56.4	15.9	233
Primary	82.5	76.7	84.5	67.5	8.3	718
Secondary	89.8	84.5	88.9	77.1	4.8	1,808
More than secondary	95.6	91.4	94.6	88.3	2.8	362
Wealth quintile						
Lowest	82.2	75.9	84.1	68.2	8.3	558
Second	82.9	74.7	85.7	66.0	7.5	539
Middle	86.5	80.4	84.8	70.7	7.6	598
Fourth	90.1	84.9	88.8	76.8	5.2	623
Highest	94.0	91.0	91.7	86.1	3.6	802
Total	87.7	82.2	87.4	74.6	6.2	3,121

Note: Total includes 6 women with missing information on employment.

The total number of decisions in which a woman participates is one simple measure of her empowerment. Figure 19.1 shows the distribution of currently married women age 15-49 according to the number of decisions in which they participate either alone or jointly with their husband. Seventy-five percent of women participate in all three household decisions, 14 percent participate in two decisions, 5 percent participate in one decision, and 6 percent do not participate in any decisions.

Figure 19.1 Number of decisions in which currently married women participate, Namibia 2013

Table 19.6.2 shows the percentage of currently married men age 15-49 who report that they participate in specific household decisions, according to background characteristics. The vast majority of men make decisions either by themselves or jointly with their wives on matters pertaining to their own health care (89 percent) and making major household purchases (81 percent). Seventy-eight percent of men make both types of decisions, while 9 percent do not participate in either type of decision. Men who are not employed (92 percent) tend to be more involved in both decisions than men who are employed for cash (76 percent). Table 19.6.2 further indicates that men with no children are more likely to be involved in both decisions (87 percent).

Men in rural areas are slightly more likely than men in urban areas to be involved in both decisions (81 percent and 77 percent, respectively). It is worth noting that men with no education and men in the lowest wealth quintile are most likely to be involved in both decisions (83 percent and 84 percent, respectively).

Table 19.6.2 Men's participation in decision making by background characteristics
Percentage of currently married men age 15-49 who usually make specific decisions either alone or jointly with their wife, by background characteristics, Namibia 2013

Background characteristic	Specific decisions		Both decisions	Neither of the two decisions	Number of men
	Man's own health	Making major household purchases			
Age					
15-19	*	*	*	*	7
20-24	89.0	80.6	80.4	10.9	76
25-29	85.6	80.8	77.9	11.5	165
30-34	86.8	77.9	74.5	9.9	225
35-39	89.2	84.2	78.5	5.1	245
40-44	91.1	81.2	79.3	7.0	238
45-49	88.8	81.3	79.8	9.8	205
Employment (past 12 months)					
Not employed	94.5	93.6	91.7	3.6	191
Employed for cash	87.5	79.2	76.0	9.3	951
Employed not for cash	*	*	*	*	17
Number of living children					
0	91.3	87.2	87.0	8.5	109
1-2	86.2	76.8	74.3	11.4	440
3-4	88.0	82.2	77.2	7.0	360
5+	92.4	85.1	83.1	5.6	251
Residence					
Urban	86.5	80.6	76.9	9.9	745
Rural	92.3	82.5	80.8	6.0	415
Region					
Zambezi	95.7	68.1	66.6	2.9	78
Erongo	94.3	94.4	91.3	2.5	137
Hardap	74.9	61.6	60.0	23.6	63
//Karas	77.1	71.8	63.0	14.1	53
Kavango	97.4	84.1	82.5	1.1	126
Khomas	81.9	73.2	69.8	14.8	307
Kunene	87.7	86.9	85.3	10.8	39
Ohangwena	(89.4)	(92.4)	(84.2)	(2.3)	42
Omaheke	79.5	77.8	75.7	18.4	37
Omusati	(100.0)	(85.9)	(85.9)	(0.0)	45
Oshana	(97.5)	(100.0)	(97.5)	(0.0)	50
Oshikoto	94.9	87.6	87.6	5.1	66
Otjozondjupa	89.1	89.3	85.5	7.1	117
Education					
No education	91.5	86.2	82.8	5.1	122
Primary	92.4	82.1	78.7	4.1	252
Secondary	85.8	79.9	77.1	11.3	635
More than secondary	91.3	81.4	79.2	6.5	151
Wealth quintile					
Lowest	96.6	85.1	83.9	2.3	175
Second	92.4	79.0	77.2	5.9	196
Middle	86.6	84.2	79.6	8.7	226
Fourth	83.0	77.9	74.1	13.1	285
Highest	88.1	81.4	78.9	9.3	277
Total 15-49	88.6	81.2	78.3	8.5	1,160

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that an estimate is based on fewer than 25 unweighted cases and has been suppressed. Total includes 1 man with missing information on employment.

19.5 Attitudes toward Wife Beating

The critical problems that women face are many and diverse. One of these problems, and among the most serious, is the issue of violence against women. Domestic violence is described by the Namibia National Plan of Action on Gender-Based Violence as a range of violent conduct that takes place within a domestic relationship, such as between spouses, intimate partners, or family members. It further indicates that although both men and women can suffer domestic violence, in practice the victims and survivors are overwhelmingly women, which has implications for sexual and reproductive health (Ministry of Gender Equality and Child Welfare, 2012).

To assess women's and men's attitudes toward wife beating, respondents were asked whether a husband is justified in hitting or beating his wife in each of the following five situations: if she burns the
food, if she argues with him, if she goes out without telling him, if she neglects the children, and if she refuses to have sexual intercourse with him.

Table 19.7.1 shows the percentage of women age $15-49$ who agree that a husband is justified in hitting or beating his wife for specific reasons, according to background characteristics. More than one in four women (28 percent) agree that a husband is justified in beating his wife for at least one specified reason. Ten percent of women agree that a husband is justified in hitting or beating his wife if she burns the food, 12 percent if she argues with him, 13 percent if she goes out without telling him, 20 percent if she neglects the children, and 8 percent if she refuses to have sexual intercourse with him. There has been an improvement in women's attitudes toward wife beating since the 2006-07 NDHS, when 35 percent of women agreed that wife beating is justified for at least one of the specified reasons.

Percentage of all women age 15-49 who agree that a husband is justified in hitting or beating his wife for specific reasons, by background characteristics, Namibia 2013							
Background characteristic	Husband is justified in hitting or beating his wife if she:					Percentage who agree with at least one specified reason	Number
	Burns the food	Argues with him	Goes out without telling him	Neglects the children	Refuses to have sexual intercourse with him		
Age							
15-19	9.7	9.5	12.9	18.7	6.2	28.3	1,906
20-24	8.8	10.4	10.6	19.5	6.1	27.1	1,786
25-29	11.2	13.2	12.5	19.4	9.5	27.8	1,489
30-34	10.7	13.4	14.0	22.2	9.1	30.6	1,260
35-39	11.0	13.9	15.6	22.9	9.4	29.4	1,110
40-44	10.3	11.0	12.6	19.8	7.4	28.2	917
45-49	8.5	10.2	14.1	15.9	8.8	25.8	708
Employment (past 12 months)							
Not employed	12.1	14.0	15.0	21.5	8.9	31.2	4,982
Employed for cash	6.5	8.1	9.9	17.1	5.9	23.5	3,826
Employed not for cash	18.9	14.2	17.8	28.1	13.3	38.5	351
Number of living children							
0	7.9	8.3	9.8	16.5	4.8	24.0	3,034
1-2	9.6	11.5	12.7	20.2	8.2	28.3	3,606
3-4	11.6	14.2	15.7	22.4	9.0	30.9	1,750
5+	16.4	18.6	20.2	25.7	15.3	38.7	785
Marital status							
Never married	8.6	9.0	10.5	18.4	5.6	26.3	5,458
Married or living together	12.0	14.9	15.6	21.2	10.7	30.1	3,121
Divorced/separated/widowed	12.7	16.8	21.1	26.5	13.2	36.5	597
Residence							
Urban	5.6	8.4	8.6	15.1	4.9	21.5	5,190
Rural	15.8	15.7	18.6	26.1	11.6	37.0	3,986
Region							
Zambezi	19.7	20.1	28.4	32.4	12.9	46.1	457
Erongo	3.0	4.6	4.1	11.0	3.0	14.5	771
Hardap	3.6	13.7	8.7	12.5	4.9	24.0	304
//Karas	5.5	7.2	8.6	16.8	3.5	23.2	343
Kavango	34.4	40.9	34.7	37.1	36.9	56.7	835
Khomas	3.3	5.9	6.3	13.7	3.1	19.0	2,202
Kunene	5.2	16.9	21.1	22.7	9.1	30.0	258
Ohangwena	15.2	11.6	17.5	26.0	6.7	35.6	894
Omaheke	5.0	10.1	11.0	14.0	4.5	24.0	225
Omusati	7.7	4.0	6.5	13.4	2.1	18.7	884
Oshana	9.5	9.7	12.5	20.3	6.2	29.2	755
Oshikoto	13.0	9.5	15.7	30.8	7.5	40.1	707
Otjozondjupa	4.3	8.9	7.9	13.3	3.8	19.7	540
Education							
No education	20.3	23.2	23.3	29.6	17.4	43.5	419
Primary	16.6	19.9	20.4	27.8	14.4	40.2	1,798
Secondary	8.7	9.6	11.6	19.0	6.1	26.4	6,029
More than secondary	1.4	2.9	2.6	6.1	1.8	9.8	930
Wealth quintile							
Lowest	21.0	22.8	24.8	32.2	18.1	46.2	1,429
Second	15.3	14.4	18.2	26.3	10.4	36.8	1,625
Middle	12.1	12.5	15.5	23.9	8.5	32.9	1,795
Fourth	4.8	8.1	8.5	15.4	4.3	22.2	2,116
Highest	2.4	4.7	3.6	8.2	2.1	12.2	2,211
Total	10.0	11.5	12.9	19.9	7.8	28.2	9,176

Note: Total includes 17 women with missing information on employment.

Women who are employed but not for cash, women with five or more children, those who are divorced, separated, or widowed, rural women and those living in Kavango are more likely than their counterparts in the other categories to agree that wife beating is justified for at least one specified reason. The proportion of women who agree that wife beating is justified for at least one specified reason decreases with increasing education and wealth.

Table 19.7.2 shows the percentage of men age 15-49 who agree that a husband is justified in hitting or beating his wife for each of the specified reasons, according to background characteristics. Twenty-two percent of men agree that a man is justified in beating his wife for at least one specified reason. Five percent agree that he is justified in hitting or beating his wife if she burns the food, 9 percent if she argues with him, 10 percent if she goes out without telling him, 14 percent if she neglects the children, and 3 percent if she refuses to have sexual intercourse with him. Similar to women, there has been a marked improvement in men's attitudes toward wife beating since the 2006-07 NDHS, when 41 percent of men agreed that wife beating is justified for at least one specified reason.

Table 19.7.2 Attitude toward wife beating: Men
Percentage of all men age $15-49$ who agree that a husband is justified in hitting or beating his wife for specific reasons, by background characteristics, Namibia 2013

Background characteristic	Husband is justified in hitting or beating his wife if she:					Percentage who agree with at least one specified reason	Number
	Burns the food	Argues with him	Goes out without telling him	Neglects the children	Refuses to have sexual intercourse with him		
Age							
15-19	6.6	13.3	12.6	19.1	4.3	29.5	922
20-24	5.5	9.9	11.0	12.9	2.9	23.6	808
25-29	3.9	7.1	7.1	11.3	3.1	17.2	658
30-34	3.3	9.6	7.9	13.0	3.1	20.3	520
35-39	4.1	9.5	10.6	14.9	2.3	20.3	448
40-44	1.8	6.7	7.7	15.4	1.1	18.4	376
45-49	4.3	3.1	6.9	10.6	0.9	14.1	289
Employment (past 12 months)							
Not employed	5.1	11.0	9.8	14.1	3.3	23.8	1,547
Employed for cash	4.1	8.0	9.5	14.2	2.5	20.3	2,397
Employed not for cash	10.2	16.9	15.7	24.6	7.1	35.9	74
Number of living children							
0	5.6	11.2	11.0	15.8	3.9	25.6	2,094
1-2	4.0	8.2	9.7	14.3	2.1	19.0	1,077
3-4	2.8	5.4	7.0	9.6	2.0	15.5	544
5+	3.1	7.1	5.1	13.2	0.4	18.5	305
Marital status							
Never married	5.5	11.1	11.2	16.1	3.6	25.0	2,745
Married or living together	2.1	5.0	6.5	10.0	1.2	14.5	1,160
Divorced/separated/widowed	7.0	10.0	5.7	15.0	3.0	23.0	116
Residence							
Urban	2.7	7.7	7.4	11.8	1.8	17.1	2,282
Rural	7.2	11.5	12.7	17.7	4.4	28.3	1,739
Region							
Zambezi	7.5	11.2	14.6	11.4	2.9	24.1	218
Erongo	1.4	7.7	12.4	22.1	3.1	24.1	372
Hardap	0.6	2.9	2.7	6.6	1.1	7.8	152
//Karas	4.0	6.9	6.2	7.2	0.6	14.4	151
Kavango	6.7	9.0	10.9	13.3	3.2	24.7	316
Khomas	2.4	9.3	6.8	11.1	2.1	17.5	1,023
Kunene	1.0	3.1	2.9	4.8	1.1	6.9	104
Ohangwena	11.3	20.6	15.4	25.3	4.4	38.6	328
Omaheke	2.6	4.9	4.1	9.1	0.4	10.6	103
Omusati	10.2	9.9	8.5	20.3	6.2	31.2	342
Oshana	3.5	9.7	16.7	18.5	2.8	26.3	335
Oshikoto	5.6	9.7	12.9	16.1	4.4	27.2	335
Otjozondjupa	1.9	3.3	3.0	4.2	1.4	7.2	241
Education							
No education	7.4	11.0	11.9	14.9	1.1	21.6	310
Primary	7.7	11.7	13.9	19.6	5.4	29.5	944
Secondary	3.6	9.2	8.4	13.2	2.1	20.4	2,400
More than secondary	1.0	3.0	5.3	8.1	3.0	12.8	368
Wealth quintile							
Lowest	8.8	12.8	13.8	23.4	4.5	33.1	594
Second	6.5	11.8	12.6	15.8	4.4	26.3	769
Middle	5.3	7.6	9.3	13.3	2.3	20.5	886
Fourth	2.7	8.9	8.7	11.7	2.6	18.7	917
Highest	1.4	6.9	5.7	10.6	1.4	15.1	855
Total 15-49	4.6	9.3	9.7	14.3	2.9	21.9	4,021

[^25]Men age 15-19, men employed but not for cash, men with no living children, never-married men, rural men, men from Ohangwena, men with a primary education, and men in the lowest wealth quintile are more likely to agree that wife beating is justified for at least one specified reason than their counterparts in the other categories.

19.6 Women's Empowerment Indicators

The two sets of empowerment indicators, namely women's participation in decision making and their attitude toward wife beating, can be summarised in two indices.

The first index shows the number of decisions (see Table 19.6.1 for the list of decisions) in which women participate either alone or jointly with their husbands. This index ranges from 0 to 3 and reflects the degree of decision-making control that women are able to exercise in areas that affect their own lives and their level of empowerment.

The second index, which ranges from 0 to 5 , is the number of reasons (see Table 19.7.1 for a list of reasons) for which a woman thinks that a husband is justified in beating his wife. A low score on this indicator is interpreted as reflecting higher status for women both in their household and in society.

Table 19.8 shows how the two indices relate to each other. Women who participate in all three decisions are most likely to agree that wife beating is not justified for any reason (73 percent). On the other hand, women who do not participate in any household decisions are more likely to disagree with all of the reasons justifying wife beating (67 percent) than women who participate in 1-2 household decisions (59 percent).

The relationship between women's attitude toward wife beating and their participation in decisions is more consistent. The data indicate that the proportion of women who participate in all decision making decreases as the number of reasons for which wife beating is justified increases, from 78 percent to 61 percent.

Table 19.8 Indicators of women's empowerment			
Percentage of currently married women age 15-49 who participate in all decision making and the percentage who disagree with all of the reasons justifying wife beating, by value on each of the indicators of women's empowerment, Namibia 2013			
Empowerment indicator	Percentage who participate in all decision making	Percentage who disagree with all the reasons justifying wifebeating	Number of women
Number of decisions in which women participate ${ }^{1}$			
1-2	na	58.5	598
3	na	73.1	2,328
Number of reasons for which wife beating is justified ${ }^{2}$			
0	78.0	na	2,183
1-2	70.7	na	547
3-4	61.3	na	254
5	60.6	na	138

na = Not applicable
${ }^{1}$ See Table 19.6.1 for the list of decisions.
${ }^{2}$ See Table 19.7.1 for the list of reasons.

19.7 Current Use of Contraception by Women’s Empowerment

A woman's desire and ability to control her fertility and her choice of contraceptive methods are in part affected by her status in the household and her own sense of empowerment. A woman who feels that she is unable to control her life may be less likely to feel she can make and carry out decisions about
her fertility. Table 19.9 shows the percent distribution of currently married women by the contraceptive method used, according to the two empowerment indicators.

There is a positive relationship between women's empowerment and use of contraception. Use of any method and any modern method increases as the number of decisions in which women participate increases. Likewise, use of any method and any modern method decreases with increases in the number of reasons women agree that wife beating is justified. In terms of specific methods, the data show that as women's empowerment increases, so does the use of female sterilisation (and male sterilisation to a smaller degree). The data also show that empowered women are less likely to use traditional methods. To some degree, empowerment has a positive impact on the use of male condoms. For example, 13 percent of women who participate in all decisions use male condoms, as compared with 9 percent of women who do not participate in any decision making. Similarly, 13 percent of women who agree that wife beating is not justified for any reason use male condoms, in contrast to 7 percent of women who agree that wife beating is justified for any reason. The relationship between women's empowerment and use of temporary modern methods, however, is less straightforward.

Table 19.9 Current use of contraception by women's empowerment
Percent distribution of currently married women age 15-49 by current contraceptive method, according to selected indicators of women's status, Namibia 2013

Empowerment indicator	Any method	Any modern method	Modern methods				Any traditional method	Notcurrentlyusing	Total	Number of women
			Female sterilisation	Male sterilisation	Temporary modern female methods ${ }^{1}$	Male condom				
Number of decisions in which women participate ${ }^{2}$										
0	41.7	40.1	3.2	0.0	27.6	9.3	1.6	58.3	100.0	194
1-2	54.5	52.8	4.6	0.1	36.7	11.3	1.7	45.5	100.0	598
3	57.7	57.2	7.1	0.3	37.3	12.5	0.6	42.3	100.0	2,328
Number of reasons for which wife beating is justified ${ }^{3}$										
0	58.2	57.6	7.4	0.4	37.2	12.6	0.7	41.8	100.0	2,183
1-2	53.6	52.7	4.6	0.0	34.1	14.0	0.9	46.4	100.0	547
3-4	49.1	48.7	4.2	0.0	38.5	6.0	0.4	50.9	100.0	254
5	45.4	41.1	2.7	0.0	31.9	6.6	4.3	54.6	100.0	138
Total	56.3	55.3	6.4	0.3	36.6	12.0	0.8	43.9	100.0	3,121

Note: If more than one method is used, only the most effective method is considered in this tabulation.
${ }^{1}$ Pill, IUD, injectables, implants, female condom, diaphragm, foam/jelly, and lactational amenorrhoea method
${ }^{2}$ See Table 19.6.1 for the list of decisions.
${ }^{3}$ See Table 19.7.1 for the list of reasons.

19.8 Ideal Family Size and Unmet Need by Women’s Empowerment

A woman's fertility preferences-for example, her preference with respect to ideal number of children—are typically lower than those of her husband (see Chapter 6, Table 6.3). As a woman becomes more empowered to negotiate fertility decision making, she has more control over her ability to access and use contraceptives to space and limit her family size. Women who have a desire to space or limit their births but who are not using family planning are defined as having an unmet need for family planning. Table 19.10 shows how women's ideal family size and their unmet need for family planning vary by the two empowerment indicators.

Women's mean ideal number of children increases with the number of reasons they justify for wife beating. However, the relationship between mean ideal number of children and decision making is not consistent. The data also show that empowered women are more likely to have their contraceptive needs met than women who are not empowered. Unmet need for family planning decreases as women's participation in decision making increases. Likewise, unmet need for family planning generally increases as the number of reasons women agree with wife beating increases.

Table 19.10 Ideal number of children and unmet need for family planning by women's empowerment
Mean ideal number of children for women 15-49 and the percentage of currently married women age 15-49 with an unmet need for family planning, by indicators of women's empowerment, Namibia 2013

Empowerment indicator	Mean ideal number of children ${ }^{1}$	Number of women	Percentage of currently married women with an unmet need for family planning ${ }^{2}$			Number of women
			For spacing	For limiting	Total	
Number of decisions in which women participate ${ }^{3}$						
0	3.5	190	12.0	12.6	24.5	194
1-2	4.0	595	12.8	9.1	21.9	598
3	3.6	2,304	8.0	7.9	15.8	2,328
Number of reasons for which wife beating is justified ${ }^{4}$						
	3.1	6,501	8.2	7.5	15.7	2,183
1-2	3.3	1,696	10.9	11.0	21.9	547
3-4	3.5	605	13.2	7.4	20.5	254
5	3.9	248	9.5	13.5	23.0	138
Total	3.2	9,050	9.1	8.4	17.5	3,121

${ }^{1}$ Mean excludes respondents who gave non-numeric responses.
${ }^{2}$ See Table 7.8 for the definition of unmet need for family planning.
${ }^{3}$ Restricted to currently married women. See Table 15.6.1 for the list of decisions.
${ }^{4}$ See Table 15.7.1 for the list of reasons.

19.9 Women’s Empowerment and Reproductive Health Care

Table 19.11 shows women's use of antenatal, delivery, and postnatal care services by level of empowerment, as measured by the two empowerment indicators. The data indicate that empowered women are more likely to seek out and use health services, enabling them to better meet their reproductive health goals, including safe motherhood. This relationship is more obvious with respect to care from skilled providers at delivery and during the postpartum period. For example, the percentage of women receiving delivery care from skilled birth attendants increases from 79 percent among those who do not participate in any decision making to 89 percent among those who participate in all three decisions. Similarly, the percentage of women receiving skilled delivery care decreases from 93 percent among those who believe that wife beating is not justified for any reason to 73 percent among women who agree that wife beating is justified for any of the five reasons. Because the vast majority of Namibian women receive antenatal care from a skilled provider, the relationship between women's empowerment and skilled antenatal care is less pronounced. The percentage of women with a postnatal checkup in the first two days after birth is lowest for women who do not participate in any decision. In addition, postnatal checkup in the first two days is highest for women who believe that wife beating is not justified for any reason.
Table 19.11 Reproductive health care by women's empowerment
Percentage of women age 15-49 with a live birth in the five years preceding the survey who received
antenatal care, delivery assistance, and postnatal care from health personnel for the most recent birth, by
indicators of women's empowerment, Namibia 2013

[^26]${ }^{2}$ Includes women who received a postnatal checkup from a doctor, nurse, midwife, community health worker or traditional birth attendant (TBA) in the first two days after the birth. Includes women who gave birth in a health facility and those who did not give birth in a health facility.
${ }^{3}$ Restricted to currently married women. See Table 15.6.1 for the list of decisions.
${ }^{4}$ See Table 15.7.1 for the list of reasons.

Key Findings

- Thirty-two percent of ever-married women age 15-49 have experienced physical violence at least once since age 15 , and 14 percent experienced physical violence within the 12 months prior to the survey.
- Overall, 33 percent of ever-married women age 15-49 report ever having experienced physical, sexual, and/or emotional violence from their spouse, and 28 percent report having experienced such violence in the past 12 months.
- Among ever-married women who had experienced spousal physical violence in the past 12 months, 36 percent reported experiencing physical injuries.
- Six percent of women reported experiencing violence during pregnancy.
- Fifteen percent of Namibian women who have experienced violence have never sought help and never told anyone about the violence.

Domestic violence, also known as domestic abuse, spousal violence, family violence, and intimate partner violence, is broadly defined as a pattern of abusive behaviours by one or both partners in an intimate relationship. Domestic violence, so defined, has many forms, including physical aggression (hitting, kicking, biting, shoving, restraining, slapping, or throwing objects) as well as threats, sexual and emotional abuse, controlling or domineering behaviours, intimidation, stalking, and passive or covert abuse (e.g., neglect or economic deprivation).

Domestic violence is an endemic problem in Namibia and may be the most underreported form of violence against both women and men and girls and boys residing in the country. As a result of the escalating numbers of domestic violence cases in the country, the government has enacted several laws to protect survivors and punish perpetrators of domestic violence. These laws include, among others, the Married Persons Equality Act (No. 1 of 1996), the Combating of Rape Act (No. 8 of 2000), the Combating of Domestic Violence Act (No. 4 of 2003), the Maintenance Act (No. 9 of 2003), and the Children Status Act (No. 6 of 2006) (Ministry of Gender Equality and Child Welfare [MGECW], 2012).

20.1 Valid Measures of Domestic Violence

The domestic violence module was included for the first time in the 2013 NDHS. Collecting accurate domestic violence data is an issue in most countries, and Namibia is no exception. Collection of valid, reliable, and ethical data on domestic violence involves particular challenges because what constitutes violence or abuse varies across cultures and individuals, and a culture of silence usually affects reporting of violence. Moreover, the sensitivity of the topic must be addressed. Responses to these challenges in the 2013 NDHS are described below.

20.1.1 Use of Valid Measures of Violence

In the 2013 NDHS, information was obtained from never-married women, ever-married women, as well as divorced, separated, or widowed women age 15-49 on violence committed by their current and former spouses and by others. Since international research shows that intimate partner violence is one of the most common forms of violence against women, spousal violence was measured in more detail than violence committed by other perpetrators. These detailed measurements were made using a shortened and modified version of the Conflict Tactics Scale (Straus, 1990). Specifically, spousal physical violence by
the husband for currently married women and the most recent husband for formerly married women was measured by asking all ever-married women the following set of questions.

Does (did) your (last) husband ever:
(a) Push you, shake you, or throw something at you?
(b) Slap you?
(c) Twist your arm or pull your hair?
(d) Punch you with his fist or with something that could hurt you?
(e) Kick you, drag you, or beat you up?
(f) Try to choke you or burn you on purpose?
(g) Threaten or attack you with a knife, gun, or any other weapon?

For every question that a woman answered "yes," she was asked about the frequency of the act in the 12 months preceding the survey. A yes answer to one or more of items (a) to (g) above constitutes evidence of physical violence.

Similarly, emotional violence among ever-married women was measured with the following questions.

Does (did) your (last) husband ever:
(a) Say or do something to humiliate you in front of others?
(b) Threaten to hurt or harm you or someone close to you?
(c) Insult you or make you feel bad about yourself?

This approach of asking about specific acts to measure different forms of violence has the advantage of not being affected by different understandings of what constitutes a summary term such as violence. By including a wide range of acts, the approach has the additional advantage of giving the respondent multiple opportunities to disclose any experience of violence.

In addition to these questions, women were asked about physical violence from persons other than the current or most recent spouse. Respondents who answered this question in the affirmative were asked who committed the violence against them and the frequency of such violence during the 12 months preceding the survey. Although this approach to questioning is generally considered to be optimal, the possibility of underreporting of violence cannot be entirely ruled out in any survey, and this survey is no exception.

20.1.2 Ethical Considerations for the Domestic Violence Module in the 2013 NDHS

In recognition of the challenges in collecting data on violence, the interviewers in the 2013 NDHS were given special training. The training focused on how to ask sensitive questions, ensure privacy, and build rapport between interviewer and respondent. Rapport with the interviewer, confidentiality, and privacy are all keys to building respondents' confidence so that they can safely share their experiences with the interviewer. Also, placement of the violence questions at the end of the questionnaire provided time for the interviewer to develop a certain degree of intimacy that should have further encouraged respondents to share their experiences of violence, if any. In addition, the following protections were built into the survey in keeping with the World Health Organization’s ethical and safety recommendations for research on domestic violence (WHO, 2001):

1. Only one woman per household was administered the questions on violence to maintain confidentiality. One in every three households was preselected for an interview on violence, and in the selected household one female respondent was randomly selected to be administered questions on domestic violence. The random selection of one woman was done
through a simple selection procedure based on the Kish grid, which was built into the Household Questionnaire (Kish, 1965).
2. As a means of obtaining additional consent beyond the initial consent provided at the start of the interview, the respondent was informed that the questions could be sensitive and was reassured regarding the confidentiality of her responses.
3. The violence module was implemented only if privacy could be obtained. The interviewers were instructed to skip the module, thank the respondent, and end the interview if they could not maintain privacy.

20.1.3 Subsample for the Violence Module

The domestic violence module was implemented only in the subsample of households selected for the men's survey. Furthermore (as mentioned above), in keeping with ethical requirements, only one woman per household was selected for the module. A total of 2,226 women were successfully interviewed. Specially constructed weights were used to adjust for the selection of only one woman per household and to ensure that the domestic violence subsample was nationally representative.

20.2 Experience of Physical Violence

Table 20.1 shows that about one in three (32 percent) women age 15-49 have experienced physical violence since age 15 and that 14 percent experienced physical violence in the 12 months prior to the survey. Overall, 3 percent of women reported that they had experienced physical violence often in the past 12 months, and 11 percent said they had experienced physical violence sometimes during that period.

Experience of physical violence varies substantially by background characteristics. Women age 20-24 are slightly more likely than other women to have experienced physical violence since age 15 (35 percent).

Rural women (32 percent) are slightly more likely to have ever experienced physical violence than urban women (31 percent). Fourteen percent of both rural and urban women experienced physical violence in the 12 months prior to the survey. Kavango has the highest percentage of women who have ever experienced physical violence (49 percent), followed by Omaheke (42 percent). The reported prevalence of violence is also relatively high in //Karas and Kunene (41 percent and 36 percent, respectively) but is lowest in Omusati (19 percent). The regional pattern of women's experience of physical violence in the 12 months prior to the survey is generally similar to the pattern among women who have ever experienced physical violence.

Fifty percent of women who are divorced, separated, or widowed and 37 percent of women who are currently married or living together with a partner have experienced physical violence since age 15. Currently married women are less likely to have experienced physical violence in the past 12 months (21 percent) than formerly married women (23 percent).

Experiences of physical violence among women increase with the number of living children. While 29 percent of women with no children report having ever experienced physical violence, this percentage increases to 37 percent among those with five or more children. Experiences of physical violence in the past 12 months follow a similar pattern, ranging from 13 percent among women with no children to 19 percent among women with five or more children.

Women who are employed not for cash are more likely than other women to have experienced physical violence since age 15 (34 percent), but they are less likely to have experienced violence during the 12 months preceding the survey (9 percent).

Table 20.1 Experience of physical violence
Percentage of women age 15-49 who have ever experienced physical violence since age 15 and percentage who have experienced violence during the 12 months preceding the survey, by background characteristics, Namibia 2013
$\left.\begin{array}{lccccc}\hline & \begin{array}{c}\text { Percentage who } \\ \text { have ever } \\ \text { experienced }\end{array} & \text { Percentage who have experienced physical violence in the } \\ \text { past 12 months }\end{array}\right)$

Note: Total includes 1 woman with missing information on employment.
ELCIN = Evangelical Lutheran Church in Namibia
${ }^{1}$ Includes violence in the past 12 months. For women who were married before age 15 and who reported physical violence by a spouse, the violence could have occurred before age 15.
${ }^{2}$ Includes women for whom frequency in the past 12 months is not known

Women with no education are more likely than women with at least some education to have experienced physical violence since age 15 (43 percent) and to have experienced physical violence in the 12 months preceding the survey (25 percent).

In general, the percentage of women who have experienced physical violence since age 15 decreases with increasing wealth. There is no clear pattern in the relationship between wealth and experiences of physical violence in the past 12 months

20.3 Perpetrators of Physical Violence

Table 20.2 shows the percentage of ever-married women reporting any physical violence since age 15 by the person or persons who committed the acts of violence against them. The most commonly reported perpetrator of physical violence among ever-married women is their current husband (50 percent), indicating a high level of spousal violence. Twenty percent of women reported their former husband or partner as the perpetrator, and 10 percent reported others. Women were more likely to report mothers or stepmothers (9 percent) than fathers or stepfathers as perpetrators.

Among women age 15-49 who have experienced physical violence since age 15, percentage who report specific persons who committed the violence, according to the respondent's current marital status, Namibia 2013			
	Marital status		
Person	Ever married	Never married	Total
Current husband/partner	49.9	na	26.3
Former husband/partner	19.5	na	10.2
Current boyfriend	0.4	3.0	1.6
Former boyfriend	6.9	5.3	6.1
Father/stepfather	5.0	15.9	10.2
Mother/stepmother	9.4	22.6	15.7
Sister/brother	6.8	15.9	11.1
Daughter/ son	0.0	0.0	0.0
Other relative	9.1	15.9	12.3
Mother-in-law	0.0	na	0.2
Father-in-law	0.0	na	0.1
Other in-law	0.1	na	0.0
Teacher	4.1	11.8	7.7
Employer/someone at work	3.8	10.5	7.0
Police/soldier	0.2	0.0	0.1
Other	10.4	19.0	14.5
Number of women who have experienced physical violence since age 15	369	333	701
na $=$ Not applicable			

20.4 Experience of Sexual Violence

Table 20.3 shows that 7 percent of women age 15-49 have experienced sexual violence since age 15, and 4 percent experienced sexual violence in the 12 months prior to the survey. Experience of sexual violence varies substantially by background characteristics. Women age 20-24 (5 percent) are the least likely to have ever experienced sexual violence and those age $30-39$ are the most likely (9 percent). Experience of sexual violence is lowest among women who practice ELCIN religion (5 percent) and highest among those with no religion (12 percent). Urban women (8 percent) are slightly more likely to have ever experienced sexual violence than rural women (7 percent). Four percent of both rural and urban women experienced sexual violence in the 12 months prior to the survey. Omaheke has the highest percentage of women who have ever experienced sexual violence (13 percent), followed by Hardap and Kavango (12 percent each). The prevalence of sexual violence is also relatively high in //Karas, Otjozondjupa, and Khomas (8-9 percent) but is lower in Oshana, Omusati, and Ohangwena (4 percent each). The regional pattern of women's experience of sexual violence in the 12 months prior to the survey is generally similar to the pattern among women who have ever experienced sexual violence.

Nineteen percent of women who are divorced, separated, or widowed and 11 percent of women who are currently married or living together with a partner have experienced sexual violence since age 15.

Currently married women are less likely to have experienced sexual violence in the past 12 months (6 percent) than formerly married women (12 percent).

Experience of sexual violence increases with the number of living children. While 6 percent of women with no children report having ever experienced sexual violence, this percentage increases to 10 percent among women with five or more children. Experience of sexual violence in the past 12 months follows a similar pattern, ranging from 2 percent among women with no children to 5 percent among women with five or more children.

Women who are not employed are more likely than other women to have experienced sexual violence since age 15 and during the 12 months preceding the survey (8 percent and 4 percent, respectively). Experience of sexual violence since age 15 generally shows a decrease with increasing education, from 11 percent among women with no education to 8 percent among women with more than a secondary education. Similarly, the percentage of women who experienced sexual violence in the 12 months preceding the survey decreases with increasing education.

There is no clear pattern in the relationship between wealth and experience of sexual violence since age 15. Percentage of women who experienced sexual violence in the past 12 months is lowest among women in the highest wealth quintile.

Table 20.3 Experience of sexual violence

Percentage of women age 15-49 who have ever experienced sexual violence and percentage who have experienced sexual violence in the 12 months preceding the survey, by background characteristics, Namibia 2013

Background characteristic	Percentage who have experienced sexual violence:		Number of women
	Ever ${ }^{1}$	In the past 12 months	

Ag

Age			
$15-19$	7.5	4.5	426
$20-24$	4.8	1.9	401
$25-29$	6.4	3.7	365
$30-39$	8.7	4.0	605
$40-49$	7.5	4.2	

Religion Roman Catholic
Protestant/Anglican ELCIN Seventh-Day Adventist No religion Other
Residence Urban Rural
Region
Zambezi

Zambezi	7.9	4.0	146
Erongo	7.4	4.4	266
Hardap	12.4	7.2	62
/lKaras	9.0	5.6	80
Kavango	11.8	10.0	174
Khomas	8.1	3.5	450
Kunene	6.0	1.4	64
Ohangwena	4.3	1.5	207
Omaheke	12.8	7.8	50
Omusati	3.9	1.5	228
Oshana	4.4	1.4	187
Oshinoto	5.6	3.1	178
\quad Otjozondjupa	7.5	2.3	134
Marital status			
\quad Never married	3.3	1.2	1,263
\quad Married/living together	11.3	6.3	841
\quad Divorced/separated/			
\quad widowed	18.6	11.9	122
Employment			
\quad Employed for cash	7.0	3.3	982
Employed not for cash	3.9	1.8	81
Not employed	7.5	4.2	1,161

Number of living children

0	5.5	2.4	653
1-2	7.0	3.6	930
3-4	8.9	5.1	455
5+	9.5	5.1	188
\quad			
\quad Education	11.2	8.1	92
\quad No education	9.2	5.7	456
\quad Primary	6.2	3.3	1,458
Secondary	7.7	0.6	220
\quad More than secondary			
\quad Wealth quintile	6.9	4.3	380
\quad Lowest	6.5	3.3	404
Second	8.2	4.9	451
Middle	8.2	4.0	461
Fourth	6.1	2.3	530
\quad Highest	7.2	3.7	2,226
Total 15-49			

Note: Total includes 2 women with missing information on religion and 1 woman with missing information on employment.
ELCIN = Evangelical Lutheran Church in Namibia
${ }^{1}$ Includes violence in the past 12 months

20.5 Perpetrators of Sexual Violence

Table 20.4 shows the percentage of ever-married women reporting any sexual violence since age 15 by the person or persons who committed the acts of violence against them. The most commonly reported perpetrator of sexual violence among ever-married women is their current husband (46 percent), again indicating a high level of spousal violence. Twenty-four percent of women reported their former husband or partner as the perpetrator, and 12 percent reported strangers. Seven percent of women reported experiencing violence from others and 6 percent from other relatives. Nevermarried women most often reported strangers and others (27 percent and 21 percent, respectively) as perpetrators of sexual violence.

Among women age 15-49 who have experienced sexual violence, percentage who report specific persons who committed the violence according to the respondent's current marital status, Namibia 2013			
	Marital status		
Person	Ever married	Never married	Total
Current husband/partner	46.0	na	34.1
Former husband/partner	24.3	na	18.0
Current/former boyfriend	2.7	10.3	4.7
Father/stepfather	1.6	4.4	2.3
Brother/stepbrother	1.9	0.9	1.6
Other relative	6.4	19.8	9.9
In-law	0.0	na	0.9
Own friend/acquaintance	2.4	12.5	5.0
Family friend	2.3	0.0	1.7
Teacher	0.3	1.0	0.5
Stranger	11.6	27.0	15.6
Other	7.0	20.6	10.5
Number of women who have experienced sexual violence	118	41	159
na $=$ Not applicable			

20.6 Experience of Different Forms of Violence

Table 20.5 presents information on the experience of various forms of violence among women age 15-49. Thirty-three percent of women had experienced physical or sexual violence, with 26 percent having experienced only physical violence and 2 percent having experienced only sexual violence. The percentages of women who have experienced physical or sexual violence are high in all age groups, ranging from 30 to 36 percent.

Table 20.5 Experience of different forms of violence
Percentage of women age 15-49 who have ever experienced different forms of violence by current age, Namibia 2013

	Physical violence only	Sexual violence only	Physical and sexual violence	Physical or sexual violence	Number of women
$15-19$	26.9	3.0	4.5	34.4	426
$15-17$	25.6	3.6	4.8	34.1	254
$18-19$	28.8	2.0	4.1	34.9	173
$20-24$	31.3	0.8	4.0	36.1	401
$25-29$	23.5	1.5	5.0	30.0	365
$30-39$	25.4	2.3	6.4	34.1	605
$40-49$	24.3	1.6	5.8	31.7	429
Total	26.2	1.9	5.3	33.4	2,226

20.7 Violence during Pregnancy

Respondents who had ever been pregnant were asked specifically whether they had ever experienced physical violence while pregnant and, if so, who the perpetrators of the violence were. Table 20.6 shows that 6 percent of women experienced physical violence during a pregnancy. Although there is no clear pattern between age and violence during pregnancy, younger women (age 15-24) are more likely than older women to report having experienced such violence.

The proportion of women experiencing violence during pregnancy is higher in rural areas (7 percent) than in urban areas (5 percent). Among regions, the percentage is highest in Otjozondjupa (10 percent), followed by //Karas and Zambezi (9 percent each). Erongo, Omusati, Oshana, Oshikoto, and Kunene have the lowest percentage of women who have experienced physical violence during pregnancy (4 percent each).

Women who are divorced, separated, or widowed are slightly more likely to report experiencing violence during pregnancy (7 percent) than women who are currently married (6 percent). The proportion of physical violence during pregnancy is higher among women with five or more living children (8 percent) than among women with two or fewer children living children (5 percent).

Violence during pregnancy decreases with increasing education. Twelve percent of women with no education reported experiencing physical violence during pregnancy, as compared with only 1 percent of women with more than a secondary education. Women in the lowest wealth quintile are more likely than those in the highest wealth quintile to have experienced violence during pregnancy.

Table 20.6 Experience of violence during pregnancy
Among women age 15-49 who have ever been pregnant, percentage who have ever experienced physical violence during pregnancy, by background characteristics, Namibia 2013

	Percentage who experienced violence during pregnancy	Number of women who have ever been pregnant
Background characteristic		

Age		
$15-19$	7.7	84
$20-24$	8.0	275
$25-29$	4.1	321
$30-39$	5.2	578
$40-49$	4.7	396

Religion
Roman Catholic

7.3	353
5.4	

No religion Other
Residence
Urban $4.5 \quad 904$

Rural
$6.7 \quad 748$

Region

 ZambeziErongo
Hardap
//Karas
Kavango
Khomas
Kunene Ohangwena
Omaheke
Omusati
Oshana
Oshikoto
Otjozondjupa
Marital status

Never married Married/living together Divorced/separated/ widowed	4.2	731
Number of living children	6.4	802
0	7.0	119
1-2		
3-4	4.6	79
5+	4.5	930
Education	6.8	455
\quad No education	7.6	188
Primary		
Secondary	11.9	85
More than secondary	8.0	373
Wealth quintile	4.7	1,055
$\quad 0.8$	139	
Lowest		
Second	9.9	301
Middle	5.6	316
Fourth	5.5	353
Highest	4.4	345
Total 15-49	2.6	338

Note: Total includes 2 women with missing information on religion.
ELCIN = Evangelical Lutheran Church in Namibia

20.8 Marital Control by Husband

Attempts by husbands to closely control and monitor their wives’ behaviour are known to be an important warning sign and precursor of violence in a relationship. A series of questions were included in the 2013 NDHS to elicit the degree of marital control exercised by husbands over wives. Controlling behaviours most often manifest themselves in terms of extreme possessiveness, jealousy, and attempts to isolate the wife from her family and friends. To determine the degree of marital control husbands exercise over their wives, ever-married women age 15-49 were asked whether their current or former husband exhibited each of the following controlling behaviours: (1) he is jealous or gets angry if she talks to other men, (2) he frequently accuses her of being unfaithful, (3) he does not permit her to meet her female friends, (4) he tries to limit contact with her family, (5) he insists on knowing where she is at all times, and (6) he does not trust her with money. Because the concentration of such behaviours is more significant than the display of any single behaviour, the proportion of women whose husbands display at least three of the specified behaviours is highlighted.

Table 20.7 presents the percentage of ever-married women whose husbands display each of the listed behaviours, by selected background characteristics. The main controlling behaviours women experienced from their husbands were insisting on knowing where they are at all times (40 percent) and jealousy or anger if they talked to other men (38 percent). Other common behaviours were frequently accusing her of being unfaithful (25 percent), trying to limit her contact with female friends (19 percent), not trusting her with money (16 percent), and trying to limit her contact with her family (11 percent).

Twenty-seven percent of ever-married women indicated that their husbands display three or more of these controlling behaviours, and 45 percent reported that their husbands display none of the behaviours. Twenty-six percent of currently married women reported that their husbands display at least three controlling behaviours, as compared with 34 percent of women who are divorced, separated, or widowed. The percentage of women whose husband displays at least three controlling behaviours tends to decrease with increasing wealth and educational attainment. Women who are afraid of their husbands most of the time are more likely to report controlling behaviour than women who are never afraid of their husbands.

Table 20.7 Marital control exercised by husbands
Percentage of ever-married women age 15-49 whose husbands/partners have ever demonstrated specific types of controlling behaviours, by background characteristics, Namibia 2013

Background characteristic	Percentage of women whose husband/partner:								
	Is jealous or angry if she talks to other men	Frequently accuses her of being unfaithful	Does not permit her to meet her female friends	Tries to limit her contact with her family	Insists on knowing where she is at all times	Does not trust her with money	Displays 3 or more of the specific behaviours	Displays none of the specific behaviours	Number of evermarried women
Age									
15-19	(65.6)	(40.2)	(53.3)	(23.0)	(58.5)	(48.5)	(59.9)	(25.3)	23
20-24	39.5	28.2	17.4	14.2	38.8	12.4	27.3	47.1	108
25-29	38.6	26.4	23.7	8.7	48.2	14.3	31.5	41.1	169
30-39	38.1	24.4	18.4	10.6	38.5	19.3	26.4	43.1	371
40-49	34.1	22.2	13.8	9.1	35.1	12.3	21.7	51.2	292
Religion									
Roman Catholic	45.7	32.6	26.1	12.6	51.4	19.1	34.8	32.6	212
Protestant/Anglican	32.6	20.8	17.2	10.9	34.3	12.6	22.2	51.5	208
ELCIN	35.2	22.4	16.6	9.6	36.8	16.2	24.3	48.0	359
Seventh-Day Adventist	51.4	36.5	15.9	12.9	44.3	21.6	35.7	35.0	64
No religion	(27.8)	(23.5)	(17.6)	(12.8)	(6.6)	(2.7)	(17.6)	(68.1)	13
Other	33.2	18.3	14.2	5.8	37.4	15.2	23.0	52.7	104
Residence									
Urban	36.8	23.8	18.1	10.3	40.3	16.1	27.0	45.9	564
Rural	39.2	26.4	19.4	10.9	38.8	16.5	26.5	44.3	398
Region									
Zambezi	55.6	28.1	22.2	6.0	45.2	13.8	29.4	31.6	73
Erongo	31.2	23.5	16.3	7.3	36.8	8.2	23.5	54.2	122
Hardap	23.8	23.5	15.1	11.7	26.7	14.9	20.7	63.6	39
//Karas	36.1	18.0	11.8	12.4	34.3	6.8	21.4	51.3	38
Kavango	60.9	50.8	35.9	22.8	67.4	15.6	49.2	19.7	121
Khomas	33.1	21.8	16.2	9.3	36.7	24.1	27.0	47.2	199
Kunene	23.1	17.6	12.1	6.2	19.9	18.1	13.5	60.8	34
Ohangwena	34.5	10.4	16.5	1.6	24.2	7.4	13.3	58.2	56
Omaheke	34.7	29.3	22.0	11.8	33.7	13.2	29.4	49.2	33
Omusati	17.9	5.6	13.5	12.1	22.6	24.9	12.8	59.1	56
Oshana	31.5	20.8	15.4	10.2	36.4	4.7	21.8	52.2	66
Oshikoto	49.3	21.2	14.7	7.9	59.4	19.6	27.2	24.4	60
Otjozondjupa	36.4	28.4	15.7	11.3	34.7	26.0	28.6	49.2	67
Marital status									
Married/living together	37.1	23.7	18.2	10.3	38.9	15.2	25.8	46.0	841
Divorced/separated/widowed	42.8	33.1	21.9	12.0	45.6	23.5	34.0	40.0	122
Number of living children									
0	36.0	19.5	22.1	10.8	39.9	18.0	28.7	43.4	67
1-2	34.8	24.5	16.8	9.7	36.0	16.6	25.4	49.4	440
3-4	40.4	26.2	21.7	12.9	47.1	16.7	29.3	39.5	313
5+	42.2	25.7	16.0	7.5	34.7	13.3	24.8	45.7	143
Employment									
Employed for cash	33.3	22.4	15.7	9.3	39.7	14.2	24.2	47.3	481
Employed not for cash	(44.1)	(13.4)	(17.4)	(5.1)	(47.8)	(13.3)	(24.3)	(36.0)	39
Not employed	42.3	28.7	22.0	12.4	39.1	18.8	29.9	43.6	442
Education									
No education	45.4	32.2	32.6	21.2	43.7	13.6	36.1	35.2	62
Primary	43.7	30.9	20.6	7.7	43.5	15.0	30.8	43.1	216
Secondary	38.4	24.0	19.1	10.9	40.3	17.2	27.1	44.0	574
More than secondary	18.9	13.7	4.9	8.0	26.8	14.9	12.4	61.1	111
Wealth quintile									
Lowest	48.3	32.9	23.5	13.6	46.0	17.6	32.7	36.3	171
Second	45.2	27.6	22.6	9.9	42.2	18.8	32.0	42.1	167
Middle	38.2	24.8	19.3	10.5	34.9	17.7	27.0	46.0	199
Fourth	40.7	28.7	23.4	14.3	50.6	13.0	32.0	38.9	183
Highest	22.8	14.5	8.4	5.9	29.2	14.7	14.9	57.7	242
Woman afraid of husband/ partner									
Afraid most of the time	74.1	64.8	38.5	31.6	72.7	22.5	63.2	15.5	100
Sometimes afraid	54.1	40.3	27.5	13.6	54.0	29.2	40.9	24.0	210
Never afraid	26.8	13.9	12.7	6.0	29.9	11.1	16.4	56.7	648
Total	37.8	24.9	18.6	10.5	39.7	16.2	26.8	45.2	963

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women. Total includes 2 women with missing information on religion, 1 woman with missing information on employment, and 4 women with missing information on whether they are afraid of their husband/partner. Figures in parentheses are based on 25-49 unweighted cases.
ELCIN = Evangelical Lutheran Church in Namibia

20.9 Forms of Spousal Violence

Different types of violence are not mutually exclusive, and women may report multiple forms of violence. Research suggests that physical violence in intimate relationships is often accompanied by psychological abuse (Krug et al., 2002). Table 20.8 shows the percentage of ever-married women age 1549 who have experienced various forms of violence by their husbands over the course of the marriage and in the 12 months preceding the survey. Women who are currently married reported on violence committed by their current husband, and women who are widowed, divorced, or separated reported on violence committed by their most recent husband.

Table 20.8 Forms of spousal violence
Percentage of ever-married women age 15-49 who have experienced various forms of violence ever or in the 12 months preceding the survey committed by their husband/partner, Namibia 2013

Type of violence	Ever	In the past 12 months		
		Often	Sometimes	Often or sometimes
SPOUSAL VIOLENCE COMMITTED BY CURRENT OR MOST RECENT HUSBAND/PARTNER				
Physical violence				
Any physical violence	23.4	5.0	13.7	18.7
Pushed her, shook her, or threw something at her	14.0	2.7	7.9	10.7
Slapped her	18.4	3.5	10.9	14.5
Twisted her arm or pulled her hair	9.3	2.1	5.3	7.3
Punched her with his fist or with something that could hurt her	12.7	2.8	7.3	10.1
Kicked her, dragged her, or beat her up	11.4	2.7	6.0	8.8
Tried to choke her or burn her on purpose	3.7	1.3	1.6	3.0
Threatened her or attacked her with a knife, gun, or other weapon	4.5	1.5	2.0	3.4
Sexual violence				
Any sexual violence	7.6	2.9	3.7	6.6
Physically forced her to have sexual intercourse with him when she did not want to	7.0	2.4	3.7	6.0
Physically forced her to perform any other sexual acts she did not want to	4.2	1.9	1.6	3.4
Forced her with threats or in any other way to perform sexual acts she did not want to	3.8	1.6	1.4	3.0
Emotional violence				
Any emotional violence	25.0	6.1	14.9	21.0
Said or did something to humiliate her in front of others	12.8	3.1	7.0	10.1
Threatened to hurt or harm her or someone she cared about	12.2	3.2	6.6	9.7
Insulted her or made her feel bad about herself	19.7	3.9	12.1	16.1
Any form of physical and/or sexual violence	25.0	6.3	13.9	20.2
Any form of emotional and/or physical and/or sexual violence	33.3	8.5	19.3	27.8
SPOUSAL VIOLENCE COMMITTED BY ANY HUSBAND/PARTNER				
Physical violence	24.9	na	na	18.7
Sexual violence	8.5	na	na	6.6
Physical and/or sexual violence	26.7	na	na	20.2
Number of ever- married women	963	963	963	963

na $=$ Not applicable

Twenty-three percent of ever-married women reported ever experiencing physical violence from their husband, 8 percent reported ever experiencing sexual violence, and 25 percent reported experiencing emotional violence. Overall, 33 percent of women experienced physical, emotional, or sexual violence from their husband. Slapping is the most common form of spousal violence, experienced by 18 percent of women. Fourteen percent of women reported having been pushed, shaken, or something thrown at them. The most common form of emotional violence reported by women were their husband insulting them or making them feel bad about themselves (20 percent). The majority of women who had ever experienced each of these forms of violence had also experienced the same type of violence in the past 12 months. Twenty-five percent of women reported having experienced physical violence from any husband (current or former).

Twenty-eight percent of ever-married women reported experiencing spousal physical, sexual, and/or emotional violence in the past 12 months, with 19 percent having experienced violence sometimes and 9 percent having experienced it often.

20.10 Spousal Violence by Background Characteristics

Table 20.9 shows the percentage of ever-married women age $15-49$ who have experienced spousal emotional, physical, or sexual violence by selected background characteristics. Women's experience of each type of spousal violence by age or number of children does not follow a consistent pattern. Women who are not employed are more likely than other women to have ever experienced physical, sexual or emotional violence. Formerly married women are more likely to have experienced physical, sexual, or emotional spousal violence (50 percent) than currently married women (31 percent). Women's experience of emotional, physical, or sexual violence differs only slightly by urban-rural residence (33 percent and 34 percent, respectively). At the regional level, women in Kavango are most likely to have experienced physical, sexual, or emotional violence (51 percent) while the lowest proportion is reported in Oshana (12 percent).

Women's experience of most forms of violence decreases sharply with increasing education. For example, 47 percent of women with no education have experienced spousal physical, sexual, or emotional violence, as compared with 26 percent of women who have more than a secondary education.

Table 20.9 Spousal violence by background characteristics
Percentage of ever-married women age 15-49 who have ever experienced emotional, physical, or sexual violence committed by their husband/partner, by background characteristics, Namibia 2013

Background characteristic	Emotional violence	Physical violence	Sexual violence	Physical and sexual	Physical, sexual, and emotional	Physical or sexual	Physical, sexual, or emotional	Number of ever-married women
Age								
15-19	(37.4)	(52.0)	(31.8)	(29.6)	(25.1)	(54.2)	(60.8)	23
20-24	23.4	26.3	4.9	2.6	2.4	28.6	33.4	108
25-29	23.4	23.3	8.4	6.4	5.4	25.3	31.5	169
30-39	24.1	21.3	6.7	5.2	3.9	22.8	33.2	371
40-49	26.5	22.8	7.4	6.1	6.1	24.2	32.1	292
Religion								
Roman Catholic	28.6	30.0	10.5	7.9	6.5	32.7	42.1	212
Protestant/Anglican	21.8	18.2	6.3	4.2	3.1	20.3	30.2	208
ELCIN	25.3	22.1	7.6	6.3	5.7	23.4	31.3	359
Seventh-Day Adventist	26.6	33.1	10.2	9.6	9.6	33.7	37.5	64
No religion	(16.7)	(20.0)	(0.0)	(0.0)	(0.0)	(20.0)	(23.1)	13
Other	23.3	19.8	3.9	3.1	3.0	20.6	27.6	104
Residence								
Urban	24.5	22.7	8.1	6.2	5.4	24.6	32.8	564
Rural	25.6	24.5	6.9	5.6	4.8	25.7	33.9	398
Region								
Zambezi	23.2	30.9	7.4	6.1	5.4	32.3	35.9	73
Erongo	22.6	20.2	7.6	6.5	6.5	21.3	27.9	122
Hardap	22.2	23.5	10.0	7.7	7.7	25.8	31.8	39
//Karas	25.1	34.1	7.1	7.1	5.6	34.1	37.9	38
Kavango	31.8	36.7	14.3	9.0	6.5	42.0	50.6	121
Khomas	27.1	20.1	8.8	6.9	6.1	22.0	34.4	199
Kunene	21.3	17.6	3.7	2.8	2.6	18.5	24.8	34
Ohangwena	19.5	18.2	2.8	2.8	2.8	18.2	19.5	56
Omaheke	28.0	27.8	8.3	7.4	7.4	28.6	38.3	33
Omusati	14.2	8.3	5.9	4.3	2.9	9.9	17.1	56
Oshana	11.5	10.6	2.8	2.8	2.8	10.6	11.5	66
Oshikoto	35.7	24.7	5.0	4.3	4.3	25.4	43.2	60
Otjozondjupa	31.4	29.9	5.2	4.5	2.9	30.7	42.9	67
Marital status								
Married/living together	22.6	21.7	6.5	4.7	3.8	23.5	30.9	841
Divorced/separated/widowed	41.5	35.0	15.5	14.8	14.8	35.7	49.9	122
Number of living children								
0	14.4	17.8	3.6	2.6	2.6	18.7	25.9	67
1-2	24.8	23.1	7.6	6.0	4.7	24.8	32.2	440
3-4	29.0	23.1	8.6	7.6	6.9	24.1	35.3	313
5+	21.6	27.6	7.3	4.1	4.1	30.8	35.5	143
Employment								
Employed for cash	25.0	20.7	5.3	4.1	3.7	22.0	31.7	481
Employed not for cash	(24.0)	(24.7)	(4.4)	(2.1)	(1.4)	(27.0)	(35.3)	39
Not employed	25.1	26.3	10.4	8.4	7.2	28.3	34.9	442
Education								
No education	32.1	36.2	10.2	9.8	8.4	36.6	47.1	62
Primary	26.5	27.0	11.0	7.7	6.0	30.3	37.5	216
Secondary	23.8	22.7	6.6	5.2	4.6	24.2	31.6	574
More than secondary	24.0	12.8	4.5	4.5	4.5	12.8	26.1	111
Wealth quintile								
Lowest	27.7	27.1	9.2	7.7	5.4	28.6	37.2	171
Second	21.2	26.9	7.4	5.5	5.3	28.8	31.8	167
Middle	23.9	20.2	8.9	6.5	5.9	22.6	30.0	199
Fourth	28.6	28.7	8.6	6.8	6.5	30.5	40.1	183
Highest	23.9	17.0	4.8	4.0	3.3	17.8	29.0	242
Total 15-49	25.0	23.4	7.6	6.0	5.2	25.0	33.3	963

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women. Total includes 2 women with missing information on religion and 1 woman with missing information on employment. Figures in parentheses are based on 2549 unweighted cases.
ELCIN $=$ Evangelical Lutheran Church in Namibia

20.11 Violence by Spousal Characteristics and Women’s Empowerment Indicators

Table 20.10 presents information on ever-married women's experience of spousal emotional, physical, and sexual violence according to husbands' characteristics and women's empowerment indicators. The table shows that spousal violence decreases with increasing in husbands' educational attainment. For example, 36 percent of women whose spouses have no education have experienced emotional, physical, or sexual violence, as compared with 20 percent of women whose spouses have more than a secondary education. Spousal violence is much higher (36 percent) among couples in which the husband is better educated than among couples in which both partners have the same level of education (28 percent).

There is a very strong relationship between women's experience of emotional, physical, and sexual violence and their husband's alcohol use. Women whose husbands get drunk often are much more likely to experience physical, sexual, or emotional spousal violence (71 percent) than women whose husbands drink but never gets drunk (10 percent) or whose husbands do not drink at all (22 percent). Women who are the same age as their spouse are least likely to experience any type of violence (20 percent) than women who are older than their spouse or 5-9 years younger (33 percent).

Spousal violence increases linearly with the number of controlling behaviours displayed by the husband. Among women whose husbands exhibit five or six types of controlling behaviours, 78 percent have experienced one or more forms of violence. In contrast, 11 percent of women whose husbands display none of the six controlling behaviours have experienced some form of spousal violence. There is an inconsistent relationship between women's participation in household decisions and their experience of violence. Women who participate in one or two decisions (42 percent) are more likely to experience violence than those with no participation in decision making (31 percent) and those who participate in three decisions (28 percent).

Women who justify wife beating for any of the six reasons have a higher prevalence of emotional, physical, or sexual violence. Women who reject all of the reasons experience less violence (29 percent) than women who agree with one to two reasons (37 percent), three to four reasons (52 percent), or five reasons (59 percent).

It is often stated that violence perpetuates violence. Table 12.10 shows that a family history of domestic violence is associated with a respondent's own experience of domestic violence. Among women whose fathers beat their mothers, 45 percent have experienced emotional, physical, or sexual violence, as compared with 29 percent of women whose fathers did not beat their mothers.

Women who report being afraid of their husbands most of the time are more likely to suffer spousal violence (72 percent) than women who are afraid only sometimes (55 percent) and those who are never afraid (20 percent).

Table 20.10 Spousal violence by husband's characteristics and empowerment indicators
Percentage of ever-married women age15-49 who have ever experienced emotional, physical, or sexual violence committed by their husband/partner, by husband's characteristics and empowerment indicators, Namibia 2013
$\left.\begin{array}{llllllll}\hline \text { Background } & \begin{array}{c}\text { Emotional } \\ \text { violence }\end{array} & \begin{array}{c}\text { Physical } \\ \text { violence }\end{array} & \begin{array}{c}\text { Sexual } \\ \text { violence }\end{array} & \begin{array}{c}\text { Physical and } \\ \text { sexual }\end{array} & \begin{array}{c}\text { Physical, } \\ \text { sexual, and } \\ \text { emotional }\end{array} & \begin{array}{c}\text { Physical, } \\ \text { Physical or } \\ \text { sexual }\end{array} & \begin{array}{c}\text { Number of } \\ \text { ever-married } \\ \text { emotional }\end{array} \\ \text { women }\end{array}\right]$

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women. Total includes 42 women with missing information on husband's/partner's education, 51 women with missing information on spousal education difference, 17 women with missing information on spousal age difference, and 4 women with missing information on whether they are afraid of their husband/partner.
${ }^{1}$ Includes only women who have been married only once
${ }^{2}$ According to the wife's report. See Table 20.7 for list of behaviours.
${ }^{3}$ According to the wife's report. See Table 19.6.1 for list of decisions.
${ }^{4}$ According to the wife's report. See Table 19.7.1 for list of reasons.

20.12 Recent Spousal Violence

Recent experience of spousal violence is an indicator of the extent to which domestic violence is a current problem. Table 20.11 shows that, overall, 20 percent of ever-married women experienced physical or sexual violence perpetrated by their current or most recent husband in the 12 months preceding the survey.

Women's likelihood of experiencing physical or sexual violence in the past 12 months decreases with age and, in general, increases with number of children. Women who are not employed are more likely than women in the other employment categories to have experienced physical or sexual violence in the past 12 months. Urban women (19 percent) are less likely than rural women (22 percent) to have experienced physical or sexual violence in the past 12 months. By region, women in Kavango (40 percent) are most likely than other regions to have experienced violence in the past 12 months, while women in Omusati (8 percent) and in Oshana (10 percent) are the least likely. The prevalence of recent spousal physical or sexual violence decreases with increasing education and, in general, increasing wealth. Women who are divorced, separated, or widowed are more likely to have experienced recent spousal physical violence than currently married women. Women who are never afraid of their husbands are least likely to report experiencing recent spousal physical violence.

20.13 Onset of Spousal Violence

To obtain information on the onset of marital violence, currently married women were asked when the first episode of violence took place, if ever. Table 20.12 shows the interval between marriage and the first episode of sexual or physical violence by the current husband. Seventyeight percent of women have never experienced spousal sexual or physical violence from their current husband. One in five women (20 percent) first experienced spousal sexual or physical violence at 10 years of marriage, 18 percent at five years of marriage, and 12 percent at two years of marriage. In addition, 4 percent of currently married women experienced violence from their spouse even before marriage. Women who have been married for 10 years or more are most likely to have never faced violence from their husbands (80 percent).

Twelve percent of women who had been married for two to four years or five to nine years first experienced spousal physical or sexual violence during their second year of marriage. Among women who had been married for more than 10 years, 7 percent first experienced violence during their second year of marriage, 12 percent first experienced it during their fifth year of marriage, and 16 percent first experienced it during their tenth year of marriage.

Table 20.11 Physical or sexual violence in the past 12 months by any husband/partner

Percentage of ever-married women who have experienced physical or sexual violence by any husband/partner in the past 12 months, by background characteristics, Namibia 2013

	Percentage of	
	women who have	
	experienced	
	physical or sexual	
	violence in the past	
Background	12 months from	Number of
characteristic	any husband/	ever-married
	partner	women

Age		
15-19	(52.0)	23
20-24	25.5	108
25-29	20.5	169
30-39	18.5	371
40-49	17.9	292
Religion		
Roman Catholic	27.5	212
Protestant/Anglican	16.8	208
ELCIN	20.1	359
Seventh-Day Adventist	20.1	64
No religion	(17.0)	13
Other	13.5	104
Residence		
Urban	19.3	564
Rural	21.5	398
Region		
Zambezi	26.5	73
Erongo	17.7	122
Hardap	20.3	39
//Karas	24.9	38
Kavango	39.6	121
Khomas	16.0	199
Kunene	11.9	34
Ohangwena	16.5	56
Omaheke	26.4	33
Omusati	8.4	56
Oshana	9.5	66
Oshikoto	16.1	60
Otjozondjupa	21.5	67
Marital status		
Married/living together	19.8	841
Divorced/separated/ widowed	23.2	122
Number of living children		
0	16.6	67
1-2	19.9	440
3-4	18.5	313
5+	26.8	143
Employment		
Employed for cash	17.3	481
Employed not for cash	(15.9)	39
Not employed	23.8	442
Education		
No education	32.5	62
Primary	25.4	216
Secondary	19.6	574
More than secondary	6.8	111
Wealth quintile		
Lowest	24.8	171
Second	24.7	167
Middle	19.0	199
Fourth	25.1	183
Highest	11.3	242
Woman afraid of husband/partner		
Afraid most of the time	54.1	100
Sometimes afraid	32.6	210
Never afraid	10.8	648
Total 15-49	20.2	963

Age		
15-19	(52.0)	23
20-24	25.5	108
25-29	20.5	169
30-39	18.5	371
40-49	17.9	292
Religion		
Roman Catholic	27.5	212
Protestant/Anglican	16.8	208
ELCIN	20.1	359
Seventh-Day Adventist	20.1	64
No religion	(17.0)	13
Other	13.5	104
Residence		
Urban	19.3	564
Rural	21.5	398
Region		
Zambezi	26.5	73
Erongo	17.7	122
Hardap	20.3	39
//Karas	24.9	38
Kavango	39.6	121
Khomas	16.0	199
Kunene	11.9	34
Ohangwena	16.5	56
Omaheke	26.4	33
Omusati	8.4	56
Oshana	9.5	66
Oshikoto	16.1	60
Otjozondjupa	21.5	67
Marital status		
Married/living together	19.8	841
Divorced/separated/ widowed	23.2	122
Number of living children		
0	16.6	67
1-2	19.9	440
3-4	18.5	313
5+	26.8	143
Employment		
Employed for cash	17.3	481
Employed not for cash	(15.9)	39
Not employed	23.8	442
Education		
No education	32.5	62
Primary	25.4	216
Secondary	19.6	574
More than secondary	6.8	111
Wealth quintile		
Lowest	24.8	171
Second	24.7	167
Middle	19.0	199
Fourth	25.1	183
Highest	11.3	242
Woman afraid of husband/partner		
Afraid most of the time	54.1	100
Sometimes afraid	32.6	210
Never afraid	10.8	648
Total 15-49	20.2	963

Note: Any husband/partner includes all current, most recent, and former husbands/partners. Figures in parentheses are based on 25-49 unweighted cases. Total includes 2 women with missing information on religion, 1 woman with missing information on employment, and 4 women with missing information on whether they are afraid of their husband/partner.
ELCIN = Evangelical Lutheran Church in Namibia

Table 20.12 Experience of spousal violence by duration of marriage
Among currently married women age 15-49 who have been married only once, the percentage who first experienced physical or sexual violence committed by their current husband/partner by specific exact years since marriage, according to marital duration, Namibia 2013

Duration of marriage	Percentage who first experienced spousal physical or sexualviolence by exact marital duration:				Percentage who have not experienced spousal sexual or physical violence	Number of currently married women who have been married only once
	Before marriage	2 years	5 years	10 years		
Years since marriage						
<2	8.0	na	na	na	73.1	108
2-4	2.5	11.8	na	na	78.0	147
5-9	4.7	11.6	19.6	na	77.0	184
10+	1.9	7.0	11.5	15.8	80.0	300
Total	3.6	11.9	17.8	20.3	77.8	740
na $=$ Not applicable						

20.14 Physical Consequences of Spousal Violence

In the 2013 NDHS, ever-married women age 15-49 were asked whether they had sustained some form of injury as a result of physical violence inflicted by their husband. Among women who had experienced any physical violence from their spouse, 24 percent reported that they suffered cuts, bruises, or aches; 19 percent had eye injuries, sprains, dislocations, or burns; and 13 percent had deep wounds, broken bones, broken teeth, or other serious injuries (Table 20.13). Overall, 33 percent of women who had ever experienced spousal physical violence suffered one or more of these injuries. Women who had experienced violence in the past 12 months were more likely than women who had ever experienced spousal violence to have suffered one or more of these injuries.

Table 20.13 Injuries to women due to spousal violence
Percentage of ever-married women age 15-49 who have experienced specific types of spousal violence by types of injuries resulting from the violence, according to the type of violence and whether they experienced the violence ever and in the 12 months preceding the survey, Namibia 2013
$\left.\begin{array}{lllll}\hline & & & \begin{array}{c}\text { Number of ever- } \\ \text { married women who } \\ \text { have ever }\end{array} \\ \text { experienced any } \\ \text { physical or sexual } \\ \text { violence }\end{array}\right]$

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women.
${ }^{1}$ Excludes women who reported violence only in response to a direct question on violence during pregnancy
${ }^{2}$ Includes violence in the past 12 months

Women were also asked whether they had sustained some form of injury as a result of sexual violence inflicted by their husband. Among women who had experienced sexual violence from their spouse, 27 percent reported that they suffered cuts, bruises, or aches or sustained eye injuries, sprains, dislocations, or burns; and 24 percent reported that they had deep wounds, broken bones, broken teeth, or other serious injuries (Table 20.13). Overall, 41 percent of women who had ever experienced spousal sexual violence suffered one or more of these injuries. Women who had experienced sexual violence in the past 12 months were more likely than women who had ever experienced sexual violence to have suffered one or more of these injuries (44 percent and 41 percent, respectively).

In addition, women were asked whether they had sustained some form of injury as a result of either physical or sexual violence inflicted by their husband. Table 20.13 shows that among women who had experienced any physical or sexual violence from their spouse, 23 percent reported that they suffered cuts, bruises, or aches; 18 percent had eye injuries, sprains, dislocations, or burns; and 13 percent had deep wounds, broken bones, broken teeth, or other serious injuries. Overall, 32 percent of women who had ever experienced spousal physical or sexual violence suffered one or more of these injuries. Again, women who had experienced spousal violence in the past 12 months were more likely than women who had ever experienced spousal violence to have suffered one or more of these injuries (35 percent and 32 percent, respectively).

20.15 Women's Violence Against Their Husbands

In cases of domestic violence, either person (husband or wife) can be the perpetrator of violence. In the 2013 NDHS, ever-married women were asked about instances when they were the instigator of spousal violence. Specifically, they were asked whether they had initiated physical violence against their husband or partner when he was not already hitting or beating them.

Table 20.14 shows the percentage of ever-married women age $15-49$ who reported initiating physical violence against their spouse ever and in the 12 months prior to the survey. Overall, 6 percent of women reported that they had initiated physical violence against their husbands, and 5 percent had done so in the past 12 months. Women who have been physically abused by their husband ever and in the past 12 months, urban women, women in Hardap, women who are married or living together, women who are not employed, those with no formal education, and women in the highest wealth quintile are more likely to commit physical violence against their husbands or partners than their counterparts in the other categories.

Table 20.14 Women's violence against their spouse
Percentage of ever-married women age 15-49 who have committed physical violence against their current or most recent husband/partner when he was not already beating or physically hurting her, ever and in the past 12 months, according to women's own experience of spousal violence and background characteristics, Namibia 2013

	Percentage who have committed physical violence against their husband/partner			
	In the past 12			
months			\quad	Number of ever-
:---:				
married women				

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women. Figures in parentheses are based on 25-49 unweighted cases. Total includes 2 women with missing information on religion and 1 woman with missing information on employment.
ELCIN = Evangelical Lutheran Church in Namibia
${ }^{1}$ Includes violence in the past 12 months

Table 20.15 shows that women's violence against their spouse ever or in the past 12 months is substantially higher when their spouse gets drunk very often (13 percent and 11 percent, respectively), among those whose husbands display five or more controlling behaviours (14 percent and 10 percent, respectively) and when she is afraid of her spouse most of the time (12 percent and 9 percent, respectively).

Table 20.15 Women's violence against their spouse by husband's characteristics and empowerment indicators

Percentage of ever-married women age 15-49 who have committed physical violence against their current or most recent husband/partner when he was not already beating or physically hurting her, ever and in the past 12 months, according to their husband's characteristics and empowerment indicators, Namibia 2013

Background characteristic	Percentage who have committed physical violence against their husband/partner		Number of evermarried women
	Ever ${ }^{1}$	In the past 12 months	
Husband's/partner's education			
No education	5.1	4.5	112
Primary	6.2	5.3	177
Secondary	7.3	5.5	517
More than secondary	4.0	0.9	115
Husband's/partner's alcohol consumption			
Does not drink	5.0	3.5	407
Drinks/never gets drunk	1.5	1.5	37
Gets drunk sometimes	6.1	4.5	410
Gets drunk very often	13.2	10.8	109
Spousal education difference			
Husband better educated	7.1	5.5	355
Wife better educated	5.1	4.5	328
Both equally educated	8.3	4.7	203
Neither educated	0.0	0.0	26
Spousal age difference ${ }^{2}$			
Wife older	5.8	3.8	114
Wife is same age	8.3	5.5	51
Wife is 1-4 years younger	4.8	4.3	257
Wife is 5-9 years younger	8.0	6.0	228
Wife is $10+$ years younger	7.1	5.4	173
Number of marital control behaviours displayed by husband/partner ${ }^{3}$			
0	2.9	2.0	435
1-2	6.9	4.7	269
3-4	9.8	8.4	180
5-6	14.3	10.4	78
Number of decisions in which women participate ${ }^{4}$			
0	9.6	7.0	45
1-2	6.7	4.0	147
3	6.1	5.0	648
Number of reasons for which wife beating is justified ${ }^{5}$			
0	6.3	4.4	666
1-2	8.2	6.8	179
3-4	3.5	3.5	83
5	1.0	1.0	35
Woman's father beat her mother			
Yes	7.0	5.7	231
No	5.9	4.2	608
Don't know/missing	6.6	5.2	124
Woman afraid of husband/partner			
Afraid most of the time	12.0	9.3	100
Sometimes afraid	8.2	6.7	210
Never afraid	4.5	3.1	648
Total	6.2	4.6	963

Note: Husband/partner refers to the current husband/partner for currently married women and the most recent husband/partner for divorced, separated, or widowed women. Total includes 42 women with missing information on husband's/partner's education, 51 women with missing information on spousal education difference, 17 women with missing information on spousal age difference, and 4 women with missing information on whether they are afraid of their husband/partner.
${ }^{1}$ Includes violence in the past 12 months
${ }^{2}$ Includes only women who have been married only once
${ }^{3}$ According to the wife's report. See Table 20.7 for list of behaviours.
${ }^{4}$ According to the wife's report. See Table 19.6.1 for list of decisions
${ }^{5}$ According to the wife's report. See Table 19.7.1 for list of reasons.

20.16 Help-Seeking Behaviour by Women Who Experience Violence

Table 20.16 shows the percent distribution of women who have ever experienced physical or sexual violence committed by anyone, according to whether they sought help to stop the violence and, among those who did not seek help, whether or not they told anyone about the violence. Overall, only 21 percent of women in Namibia who have ever experienced any form of physical violence have sought help from any source.

Table 20.16 Help seeking to stop violence					
Percent distribution of women age 15-49 who have ever experienced physical or sexual violence by their help-seeking behaviour, according to type of					
violence and background characteristics, Namibia 2013					

[^27]Fifteen percent of women who have experienced any type of physical violence have never sought help and never told anyone about the violence and 9 percent have never sought help but have told someone that they were victims of violence.

Help-seeking behaviour consistently decreases with age and number of children. A much higher proportion of never-married women (36 percent) than currently married women (7 percent) or formerly married women (12 percent) have sought help to stop violence.

Among the regions, the proportion of women seeking help varies from a high of 36 percent in Ohangwena to a low of 7 percent in Otjozondjupa. Women with some education are more likely than women with no education to seek help as are women with no children than women with any children.

20.17 Sources of Help to Stop Violence

Table 20.17 shows information on sources of help. The most common source of help for physical or sexual violence is the woman's own family. Forty-eight percent of abused women who sought help did so from their own family, 15 percent did so from the police, 8 percent did so from their friends and 7 percent from a doctor or medical personnel. Social work organisations are a source of help for only 5 percent of abused women. One in five women sought help from other unspecified sources. Notably few women seek help from neighbours, religious leaders, or their husband/partner.

Table 20.17 Sources of help to stop the violence			
Percentage of women age 15-49 who have experienced physical or sexual violence and sought help by sources from which they sought help, according to the type of violence that women reported, Namibia 2013			
	Type of exper	violence enced	Physical or
Person	Physical only	Physical and sexual	sexual violence
Own family	51.8	34.2	48.4
Husband/partner's family	0.0	12.1	2.2
Husband/partner	0.4	0.0	0.3
Friend	7.8	10.8	8.2
Neighbour	0.4	8.6	1.9
Religious leader	0.2	2.8	0.7
Doctor/medical personnel	8.7	0.6	7.1
Police	9.4	35.3	14.9
Social work organisation	4.9	7.2	5.3
Other	23.7	8.0	20.4
Number of women who have experienced violence and sought help	125	29	156

Note: Women can report more than one source from which they sought help.

Arimond, M., and M. T. Ruel. 2004. "Dietary Diversity is Associated with Child Nutritional Status: Evidence from 11 Demographic and Health Surveys." Journal of Nutrition 134: 2579-2585.

Auvert, B., D. Taljaard, E. Lagarde, J. Sobngwi-Tambekou, R. Sitta, and A. Puren. 2005. "Randomized, Controlled Intervention Trial of Male Circumcision for Reduction of HIV Infection Risk: The ANRS 1265 Trial." PLoS Med 2(11): e298. doi:10.1371/journal.pmed.0020298.

Bank of Namibia. 2013 (August). Economic Outlook - Weathering Global Headwinds. Windhoek, Namibia: Bank of Namibia.

Bradley, E. K, Croft T. N, Fishel J. D, Westoff C. F. 2012. Revising Unmet Need for Family Planning. DHS Analytical Studies No. 25. Calverton, Maryland, USA: ICF International; 2012.

Brockmeyer Benedikt, and Friedrich-Ebert Stiftung. 2012. The Health System in Namibia—Deliberations about an Affordable National Health Insurance for the Low-Income Workforce in Namibia. Windhoek, Namibia.
http://www.fesnam.org/pdf/2012/reports_publications/PAPER_HealthSystem_Benedikt_Brockmeyer.pdf.
Centers for Disease Control and Prevention (CDC). 1998. "Recommendations to Prevent and Control Iiron Deficiency in the United States." Morbidity and Mortality Weekly Report 47(RR 3):1 29.

Centers for Disease Control and Prevention (CDC) and National Center for Chronic Disease Prevention and Health Promotion. 2009. The Power of Prevention: Chronic Disease: The Public Health Challenge of the 21st Century. Atlanta, GA: CDC.

Central Bureau of Statistics (CBS). 1992. 1991 Population and Housing Census: National Report. Windhoek, Namibia: CBS.

Central Bureau of Statistics (CBS). 2003. 2001 Population and Housing Census: National Report. Windhoek, Namibia: CBS.
de la Torre, Cristina, S. Khan, E. Eckert, J. Luna, and T. Koppenhaver. 2009. HIV/AIDS in Namibia: Behavioral and Contextual Factors Driving the Epidemic. Chapel Hill, NC: MEASURE Evaluation, Carolina Population Center.

DeMaeyer, E. M., P. Dallman, J. M. Gurney, L. Hallberg, S. K. Sood, and S. G. Srikantia. 1989. Preventing and Controlling Iron Deficiency Anemia through Primary Health Care: A Guide for Health Administrators and Program Managers. Geneva: World Health Organization.

Doolan, D. L., C. Dobaño, and J. K. Baird. 2009. "Acquired Immunity to Malaria." Clinical Microbiology Review 22(1): 13-36.

Killeen, G. F., T. A. Smith, H. M. Ferguson, H. Mshinda, S. Abdulla, C. Lengeler, and S. P. Kachur. 2007. "Preventing Childhood Malaria in Africa by Protecting Adults from Mosquitoes with Insecticide-Treated Nets." PLoS Medicine 4(7): e229.

Kish, L. 1965. Survey Sampling. New York: John Wiley and Sons Inc.

Korenromp, E. L., J. R. M. Armstrong-Schellenberg, B. G. Williams, B. Nahlen, and R. W. Snow. 2004. "Impact of Malaria Control on Childhood Anaemia in Africa-A Quantitative Review" Tropical Medicine and International Health 9: 1050-1065.

Krug, E. G., L. Dahlberg, J. Mercy, A. Zwi, and R. Lozano, eds. 2002. World Report on Violence and Health. Geneva, Switzerland: World Health Organization.

Ministry of Gender Equality and Child Welfare (MGECW). 2012. National Plan of Action on GenderBased Violence 2012-2016. Windhoek, Namibia: MGECW.

Ministry of Health and Social Services (MoHSS). 2005. National Malaria Policy. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2007. Annual Report 2005/06, Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS), 2010a. National Health Policy Framework 2010-2020: Towards Quality Health and Social Welfare Services." Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2010b. Malaria Strategic Plan 2010-2006. Windhoek, Namibia. MoHSS.

Ministry of Health and Social Services (MoHSS). 2010c. National Strategic Framework for HIV/AIDS Response in Namibia. 2010/11-2015/16. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2010d. National Tuberculosis and Leprosy Programme, Second Medium Term Strategic Plan for Tuberculosis and Leprosy 2010 - 2015. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2011. National Guidelines on Infant and Young Child Feeding. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2012a. The Ministry of Health and Social Services Functions. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2012b. 2011/12 Estimates and Projections of the Impact of HIV/AIDS in Namibia. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2012c. National Guidelines for HIV Counselling and Testing. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2012d. Guidelines for the Prevention of Mother-to-Child Transmission of HIV. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2012e. Report on the 2012 National HIV Sentinel Survey. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2013a. National Tuberculosis and Leprosy Programme. National Advocacy, Communication and Social Mobilisation Strategy for Tuberculosis 2013-2015. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2013b. National Policy on Sexual Reproductive and Child Health. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2013c. Focused Antenatal Care (FANC). Circular Number 48 of 2013. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2013c. Postnatal Care Services, Office of the Permanent Secretary, Circular Number (..1..1) of 2013. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS). 2014. National Strategy for Voluntary Medical Male Circumcision. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS) and Macro International Inc. 1993. Demographic and Health Survey 1992. Windhoek, Namibia, and Calverton, Maryland, USA: MoHSS and Macro International Inc.

Ministry of Health and Social Services (MoHSS) and Macro International Inc. 2003. Demographic and Health Survey 2000. Windhoek, Namibia: MoHSS.

Ministry of Health and Social Services (MoHSS) and Macro International Inc. 2008. Demographic and Health Survey 2006-07. Windhoek, Namibia and Calverton, Maryland, USA: MoHSS and Macro International Inc.

Namibia Statistics Agency (NSA), 2012. Namibia 2011 Population and Housing Census Main Report. Windhoek, Namibia: NSA.

Namibia Statistics Agency (NSA). 2013a. Namibia Labour Force Survey 2013 Report. Windhoek, Namibia: NSA.

Namibia Statistics Agency (NSA). 2013b. Namibia 2011 Population and Housing Census Main Report. Windhoek, Namibia: NSA.

Namibia Statistics Agency (NSA). 2013c. Namibia 2011 Population and Housing Census: Main Mortality Report. Windhoek, Namibia: NSA.

National Institutes of Health (NIH). 1997. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. NIH Publication No. 98-4080. Bethesda, Maryland, USA: NIH.

National Planning Commission (NPC). 2013. Economic Development Report. Windhoek, Namibia: NPC.
Pan American Health Organization (PAHO)/World Health Organization (WHO). 2003. Guiding Principles for Complementary Feeding of the Breastfed Child. Washington, DC/Geneva, Switzerland: PAHO/WHO.

Rutstein, S. 1999. Wealth versus expenditure: Comparison between the DHS wealth index and household expenditures in four departments of Guatemala. Calverton, Maryland: ORC Macro.

Rutstein, S., and K. Johnson. 2004. The DHS Wealth Index. DHS Comparative Reports No. 6. Calverton, Maryland: ORC Macro.

Straus, M. A. 1990. "Measuring Intra-Family Conflict and Violence: The Conflict Tactics Scale." In Physical Violence in American Families: Risk Factors and Adaptation to Violence in 8,145 Families. New Brunswick, New Jersey, USA: Transaction Publications.
"Tobacco Product Control Act, Act No. 1 of 2010." Government Gazette Republic of Namibia, 14 April 2010, Windhoek, Namibia.

United Nations Children's Fund (UNICEF). 2006. Child Protection Information Sheets. New York: United Nations Children's Fund.

United Nations General Assembly, 2001. United Nations Declaration of Commitment on HIV/AIDS. United Nations General Assembly Special Session on HIV/AIDS. New York: United Nations, General Assembly.

United Nations General Assembly. 2002. Road Map towards the Implementation of the United Nations Millennium Declaration: Report of the Secretary-General. A/56/326. New York: United Nations, General Assembly.
U.S. Department of Health and Human Services. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2006.

WHO and UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. 2012a. Types of Drinking-Water Sources and Sanitation. http://www.wssinfo.org/definitions-methods/watsan-categories

WHO and UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. 2012b. Progress on Drinking Water and Sanitation: 2012 Update. Geneva and New York: WHO/UNICEF. http://www.wssinfo.org/fileadmin/user_upload/resources/JMP-report-2012-en.pdf

WHO, UNICEF, UNFPA, and The World Bank. 2014. Trends in Maternal Mortality: 1990 to 2013. Geneva, Switzerland: WHO.

Williams, B. G., J. O. Lloyd-Smith, E. Gouws, C. Hankins, W. M. Getz, J. Hargrove, I. de Zoysa, C. Dye, B. Auvert. 2006. "The Potential Impact of Male Circumcision on HIV in Sub-Saharan Africa." PLoS Med 3(7):e262. doi:10.1371/journal.pmed.0030262.

Windham, G. C., A. Eaton, and B. Hopkins. 1999. Evidence for an Association between Environmental Tobacco Smoke Exposure and Birth Weight: A Meta-Analysis and New Data. Paediatric and Perinatal Epidemiology 13:35-37.World Health Organization (WHO). 1998. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. Geneva, Switzerland: WHO.

World Health Organization (WHO). 1998. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. Geneva, Switzerland: WHO.

World Health Organization (WHO). 1999. "1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension: Guidelines Subcommittee." Journal of Hypertension 17(2):151-185.

World Health Organization (WHO). 2001. Putting Women First: Ethical and Safety Recommendations for Research on Domestic Violence against Women. Geneva, Switzerland: WHO Department of Gender and Women's Health.

World Health Organization (WHO). 2002. World Health Report 2002. Reducing risks, promoting healthy life. Geneva, World Health Organization, 2002.

World Health Organization (WHO). 2005. Guiding Principles for Feeding Nonbreastfed Children 6-24 Months of Age. Geneva, Switzerland: WHO.

World Health Organization (WHO) Multicentre Growth Reference Study Group. 2006a. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Geneva, Switzerland: WHO.

World Health Organization (WHO). 2006b. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation. Geneva: WHO.

World Health Organization (WHO). 2008. Indicators for Assessing Infant and Young Child Feeding Practices. Part I: Definitions. Geneva, Switzerland: WHO.

World Health Organization (WHO). 2010a. Indicators for Assessing Infant and Young Child Feeding Practices. Part II: Measurement. Geneva, Switzerland: WHO.

World Health Organization (WHO). 2010b. Global Status Report on Noncommunicable Diseases. Geneva: WHO.

World Health Organization (WHO). 2011. Indoor Air Pollution and Health. Fact Sheet No. 292. Geneva, Switzerland: WHO. http://www.who.int/mediacentre/factsheets/fs292/en

World Health Organization (WHO) and Joint United Nations Program on HIV/AIDS (UNAIDS). 2007. New Data on Male Circumcision and HIV Prevention: Policy and Programme Implications. Geneva, Switzerland: WHO and UNAIDS. Accessed 13 February 2014. http://libdoc.who.int/publications/ 2007/9789241595988_eng.pdf.

SAMPLE SELECTION

A. 1 Introduction

The 2013 Namibia Demographic and Health Survey (2013 NDHS) follows similar surveys conducted in 1992, 2000, and 2006-07. A nationally representative sample of about 11,000 households was selected. All women age 15-49 who were usual residents of the selected households, or who slept in the households the night before the survey, were eligible to participate. The survey resulted in about 10,500 interviews of women age 15-49. As with prior surveys, the main objectives of the 2013 NDHS were to provide up-to-date information on fertility and childhood mortality levels; fertility preferences; awareness, approval, and use of family planning methods; maternal and child health; and knowledge and attitudes toward HIV/AIDS and other sexually transmitted infections (STIs). HIV testing was implemented for the first time in the 2013 Namibia DHS to provide a measure of HIV prevalence among the general population. The survey produced representative results for the country as a whole, for the urban and the rural areas separately, and for each of the 13 administrative regions.

A male survey was conducted at the same time as the female survey in a subsample consisting of half of all the selected survey households. All men age 15-64 who were usual residents of the selected households, or who slept in the households the night before the survey, were eligible for the male survey. The survey collected information on their basic demographic and social status, on their knowledge and use of family planning methods, and on their knowledge and attitudes toward HIV/AIDS and other sexually transmitted infections. The survey resulted in about 4,366 interviews of men age $15-64$. In this subsample, all male and female respondents age15-64 were eligible for HIV testing and anaemia testing; all women and men 35-64 were eligible for blood pressure measurements and blood glucose testing; and all children under age 5 were eligible for anthropometry measurement and anaemia testing.

A. 2 Sampling Frame

The sampling frame used for the 2013 NDHS is the preliminary frame of the Namibia Population and Housing Census conducted in 2011 (NPHC 2011), with partial updating of the frame provided by the Namibia Statistics Agency (NSA). The sampling frame is a complete list of all enumeration areas (EAs) in the country. An EA is a geographical area covering a specified number of households that serves as the counting unit for the population census. In the rural area, an EA is either a natural village, a part of a large village, or a group of small villages; in the urban area, an EA is usually a city block. An electronic file contains a complete list of 6,102 EAs. In this file, each EA has an identification code; list of administrative areas, such as region and constituency, to which it belongs; residence type, namely urban or rural; other socioeconomic and geographical information; and a measure of size equivalent to the number of households in the EA. The 2011 NPHC also produced a digitalized map for each of the EAs, which serves as the primary source material for EA identification. The distribution of the number of EAs and their average size in number of households by region and by residence type is given in Table A.1..Among the 6,102 EAs, 2,818 are in urban areas, and 3,284 are in rural areas. The average EA size is 86 households in urban areas and 74 households in rural areas, with an overall average of 79 households per EA. This is an adequate size for a primary sampling unit in surveys with a sample take of 20 households per EA.

Administratively, Namibia is divided into 13 regions, and each region is subdivided into 107 constituencies. Each constituency is subdivided into lower-level administrative units. An EA is the smallest identifiable entity without administrative specification, and is numbered sequentially within each constituency. Table A. 2 gives the distribution of households by region and by rural or urban residence. The most populated region in Namibia is Khomas, which represents 19 percent of total households. The smallest region is Omaheke, which represents only 4 percent of the total households. The urban proportion in Namibia is 50 percent, with a large variation in the proportion urban at the regional level. The most urbanized region is Khomas (94 percent urban) which includes the capital city Windhoek, and the least urbanized region is Omusati, which is only 9 percent urban.

Distribution of EAs and their average size in the sampling frame by region and residence, Namibia 2013						
Region	Number of EAs in the sample frame			Average EA size		
	Urban	Rural	Total	Urban	Rural	Total
Zambezi	77	228	305	93	75	80
Erongo	499	81	580	84	75	83
Hardap	160	123	283	84	67	77
//Karas	163	141	304	87	66	77
Kavango	138	323	461	83	79	80
Khomas	1,009	81	1,090	86	69	85
Kunene	75	195	270	81	68	71
Ohangwena	76	492	568	85	76	77
Omaheke	76	153	229	82	72	76
Omusati	50	592	642	83	74	75
Oshana	229	236	465	86	75	80
Oshikoto	70	441	511	86	73	75
Otjozondjupa	196	198	394	92	76	84
Namibia	2,818	3,284	6,102	86	74	79

Table A. 2 Distribution of households in the sampling frame
Distribution of households in the sampling frame by region and residence, Namibia 2013

	Number households				Proportion	
Region	Urban	Rural	Total		Urban	Rural
Zambezi	7,130	17,173	24,303		29.3	5.0
Erongo	42,154	6,040	48,194		87.5	10.0
Hardap	13,469	8,294	21,763		61.9	4.5
I/Karas	14,234	9,291	23,525		60.5	4.9
Kavango	11,431	25,449	36,880		31.0	7.6
Khomas	86,634	5,632	92,266		93.9	19.1
Kunene	6,044	13,163	19,207		31.5	4.0
Ohangwena	6,447	37,256	43,703		14.8	9.0
Omaheke	6,202	11,089	17,291		35.9	3.6
Omusati	4,168	43,721	47,889		8.7	9.9
Oshana	19,669	17,637	37,306		52.7	7.7
Oshikoto	6,015	32,263	38,278		15.7	7.9
Otjozondjupa	17,982	14,975	32,957		54.6	6.8
Namibia	241,579	241,983	483,562		50.0	100.0

A. 3 Sampling Procedure and Sample Allocation

The sample for the 2013 NDHS was a stratified sample selected in two stages. In the first stage, 554 EAs were selected with a stratified probability proportional to size within the sampling frame. The EA size is the number of households residing in the EA and recorded in the 2011 NPHC. Stratification was achieved by separating each region into urban and rural areas. Therefore, the 13 regions were stratified into 26 sampling strata: 13 rural strata, and 13 urban strata. Samples were selected independently in each stratum, with a predetermined number of EAs selected as shown in Table A.3. Implicit stratification with proportional allocation was achieved at each of the lower administrative unit levels by sorting the sampling frame before the sample selection. Sorting was done according to the constituency and the EA code within a sampling stratum, and by using a probability proportional-to-size selection procedure.

After the selection of EAs and before the main survey, a household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. Some of the selected EAs may large. To limit the amount of work done to list each household, selected EAs with more than 200 households were segmented by the listing team in the field before the household listing. Only one segment was selected for the survey, with probability proportional to the segment size. Household listing was conducted only in the selected segment (see detailed instructions for segmentation in the DHS Manual for Household Listing). So a 2013 NDHS cluster is either an EA or a segment of an EA. In the second-stage selection, a fixed number of 20 households was selected in every urban cluster and rural cluster, by equal probability systematic sampling. A spreadsheet indicating the selected household numbers for each cluster was prepared. The survey interviewers interviewed only the pre-selected households. To prevent bias, no replacements and no changes of the pre-
selected households were allowed in the implementing stages. In half of the selected households where there was no male survey, all women age 15-49 were interviewed; in the other half of the selected households where there was a male survey, all males and females age 15-64 were interviewed.

Table A. 3 shows the sample allocation of clusters and households by region and by type of residence. The sample allocation is a power allocation, which takes into account the size of the region and the urban-rural distribution. A proportional allocation was not applied because of the large disparity in population size among regions. Otherwise, small regions such as Omaheke would have received a sample size too small to allow the calculation of reliable estimates for indicators such as total fertility rates and child mortality rates. Among the 554 clusters selected, 269 clusters were in urban areas, and 285 clusters were in rural areas. The total number of households selected in the 2013 NDHS was 11,080 (20 households per cluster) of which 5,380 households were from urban areas and 5,700 households were from rural areas. The urban areas were slightly undersampled because of the oversampling in the small regions that are mainly rural and the undersampling of the largest region, Khomas, which is mainly urban. Neither the oversampling of the rural area nor the undersampling of the urban area caused any problems because sampling weights were applied in the data analysis using the NDHS data. Table A. 4 shows the expected number of completed interviews with women and men, by region and by type of residence. A total of 10,504 women age 15-49 were interviewed, with 4,741 in urban areas and 5,763 in rural areas. We expected to interview 4,366 men age 15-49, of which 2,127 would be from urban areas and 2,239 would be from rural areas.

Table A. 3 Sample allocation of clusters and households
Sample allocation of clusters and households by region and residence, Namibia 2013

	Allocation of EAs				Allocation of households		
Regiona	Urban	Rural	Total		Urban	Rural	Total
Caprivi	12	27	39		240	540	780
Erongo	53	7	60		1,060	140	1,200
Hardap	25	15	40		500	300	800
Karas	30	19	49		600	380	980
Kavango	11	24	35		220	480	700
Khomas	50	3	53		1,000	60	1,060
Kunene	14	30	44		280	600	880
Ohangwena	5	29	34		100	580	680
Omaheke	15	26	41		300	520	820
Omusati	3	35	38		60	700	760
Oshana	19	17	36		380	340	720
Oshikoto	6	32	38		120	640	760
Otjozondjupa	26	21	47		520	420	940
Namibia	269	285	554		5,380	5,700	11,080

Table A. 4 Sample allocation of expected number of interviews with women and men
Sample allocation of expected number of completed interviews with women and men by region and residence, Namibia 2013

	Women interviewed				Men interviewed		
Region	Urban	Rural	Total		Urban	Rural	Total
Caprivi	228	529	757		95	212	307
Erongo	763	104	867		419	55	474
Hardap	449	278	727		198	117	315
Karas	456	298	754		237	149	386
Kavango	253	570	823		87	189	276
Khomas	923	57	980		396	24	420
Kunene	225	499	724		111	236	347
Ohangwena	120	720	840		39	228	267
Omaheke	257	458	715		118	204	322
Omusati	65	787	852		24	275	299
Oshana	433	400	833		150	134	284
Oshikoto	126	693	819		47	251	298
Otjozondjupa	443	370	813		206	165	371
Namibia	4,741	5,763	10,504		2,127	2,239	4,366

* Male survey will be conducted in a sub-sample of 50 percent of the sampled households

The calculations in Table A. 4 of expected number of interviews were based on the survey results obtained from NDHS 2006-07: in Namibia, there were 1.12 women age 15-49 per household, and this number varied by region, from 0.84 in Erongo region to 1.40 in Ohangwena region; the household gross response rate was 92.3 percent for both urban and rural areas; the women's individual response rate was 92.9 percent for urban areas and 96.2 percent for rural areas; there were 1.02 men age 15-49 per household in urban areas and 0.93 men age 15-49 per household in rural areas; the men's individual response rate was 83.9 percent in urban areas and 91.5 percent in rural areas.

A. 4 Sampling Probabilities

Due to the nonproportional allocation of the sample to the different regions and the possible differences in response rates, sampling weights were required for any analysis using 2013 NDHS data to ensure the actual representativeness of the survey results at the national and regional levels. Because the 2013 NDHS sample is a two-stage stratified cluster sample, sampling probabilities were calculated separately for each sampling stage and for each cluster. We used the following notations:
$P_{1 h i}$: first stage's sampling probability of the $i^{\text {th }}$ cluster in stratum h
$P_{2 h i}$: second-stage's sampling probability within the $i^{\text {th }}$ cluster (households)
$P_{h i}$: overall sampling probability of any household of the $i^{\text {th }}$ cluster in stratum h

Let n_{h} be the number of clusters selected in stratum $h, M_{h i}$ the number of households according to the sampling frame in the $i^{\text {th }}$ cluster, and $\sum M_{h i}$ the total number of households in the stratum h. The probability of selecting the $i^{\text {th }}$ cluster in stratum h is calculated as follows:

$$
P_{1 h i}=\frac{n_{h} M_{h i}}{\sum M_{h i}}
$$

Let $s_{h i}$ be the proportion of households in the selected segment compared with the total number of households in EA i in stratum h if the EA is segmented, otherwise $S_{h i}=1$. Let $L_{h i}$ be the number of households listed in the household listing operation in cluster i in stratum h, let $m_{h i}$ be the number of households selected in the cluster. The second stage's selection probability for each household in the cluster is calculated as follows:

$$
P_{2 h i}=\frac{s_{h i}}{L_{h i}} \times m_{h i}
$$

The overall selection probability of each household in cluster i of stratum h is therefore the production of the selection probabilities:

$$
P_{h i}=P_{1 h i} \times P_{2 h i}
$$

Therefore the sampling weight for each household in cluster i of stratum h is the inverse of its overall selection probability:

$$
W_{h i}=1 / P_{h i}
$$

A spreadsheet containing all sampling parameters and selection probabilities was prepared to facilitate the calculation of the design weights. Design weights were adjusted for household non-response and for individual non-response to get the sampling weights for women's and men's surveys, respectively. The differences between the household sampling weights and the individual sampling weights were
introduced by individual non-response. The final sampling weights were normalized to give the total number of unweighted cases equal to the total number of weighted cases at the national level, for both household weights and individual weights, respectively. The normalized weights are relative weights, which are valid for estimating means, proportions, and ratios, but not valid for estimating population totals and pooled data. The sampling weights for HIV testing were calculated in a similar way, but the normalization of the HIV sampling weights differed compared with the individual survey weights. The HIV weights were normalized for men and women together at the national level, so that the HIV prevalence calculated for men and women together was valid.
 Namibia 2013

Result	Residence		Region													Total
	Urban	Rural	Zambezi	Erongo	Hardap	//Karas	Kavango	Khomas	Kunene	Ohangwena	Omaheke	Omusati	Oshana	Oshikoto	Otjozondjupa	
Selected households																
Completed (C)	89.2	89.8	93.8	85.9	86.3	86.8	92.6	87.7	87.8	93.7	87.7	93.9	91.4	92.6	88.4	89.5
Household present but no competent respondent at home (HP)	2.7	1.4	0.9	4.5	1.8	2.1	0.6	3.0	1.5	1.5	1.8	1.4	2.9	1.1	1.4	2.0
Postponed (P)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
Refused (R)	1.0	0.3	0.1	1.1	0.3	0.4	0.0	2.4	0.5	0.6	0.2	0.7	0.6	0.3	0.4	0.6
Dwelling not found (DNF)	0.2	0.2	0.1	0.1	0.3	0.1	0.3	0.4	0.0	0.1	0.2	0.5	0.1	0.1	0.3	0.2
Household absent (HA)	2.7	3.6	2.4	1.8	4.6	5.7	2.9	3.3	6.8	0.4	3.0	1.3	1.8	2.1	4.0	3.2
Dwelling vacant/address not a dwelling (DV)	2.7	3.0	1.2	4.5	5.8	2.7	1.1	2.4	2.3	2.9	3.2	1.8	2.5	3.2	2.5	2.8
Dwelling destroyed (DD)	0.6	0.4	0.8	0.4	0.6	0.5	0.6	0.3	0.5	0.3	0.4	0.1	0.3	0.1	1.2	0.5
Other (O)	0.9	1.4	0.7	1.7	0.5	1.6	2.0	0.7	0.7	0.4	3.3	0.1	0.4	0.5	1.6	1.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of sampled households	5,343	5,661	761	1,160	800	980	700	1,062	880	680	820	760	720	761	920	11,004
Household response rate $(H R R)^{1}$	95.8	97.9	98.8	93.8	97.5	97.0	99.1	93.9	97.8	97.7	97.3	97.3	96.2	98.5	97.5	96.9
Eligible women																
Completed (EWC)	90.8	93.8	92.0	91.4	93.2	94.0	87.9	85.1	94.5	95.3	95.0	94.3	94.1	94.0	93.7	92.2
Not at home (EWNH)	4.9	2.7	4.6	4.3	3.1	3.0	5.4	7.2	3.1	1.8	1.6	3.3	3.7	3.9	2.6	3.9
Postponed (EWP)	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1
Refused (EWR)	1.9	0.9	1.2	1.6	1.4	1.4	1.8	3.5	1.0	0.6	0.5	0.5	1.0	0.7	1.8	1.4
Partly completed (EWPC)	0.3	0.4	0.1	0.4	0.3	0.3	0.4	0.6	0.3	0.6	0.5	0.2	0.0	0.0	0.4	0.3
Incapacitated (EWI)	0.4	1.2	0.7	0.3	1.3	0.7	1.1	0.2	0.3	1.3	1.6	1.3	0.9	0.9	0.7	0.8
Other (EWO)	1.5	0.9	1.5	2.0	0.7	0.6	3.4	2.7	0.9	0.4	0.8	0.3	0.1	0.5	0.7	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	5,686	5,175	758	1,000	710	903	922	1,222	687	794	625	875	777	765	823	10,861
Eligible women response rate (EWRR) ${ }^{2}$	90.8	93.8	92.0	91.4	93.2	94.0	87.9	85.1	94.5	95.3	95.0	94.3	94.1	94.0	93.7	92.2
Overall women response rate (ORR) ${ }^{3}$	87.0	91.9	90.8	85.7	90.9	91.2	87.0	79.9	92.4	93.1	92.5	91.7	90.5	92.5	91.3	89.4

${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is calculated as: $C+H P+P+R+D N F$
${ }^{2}$ The eligible women response rate (EWRR) is equivalent to the percentage of interviews completed (EWC)
${ }^{3}$ The overall women response rate (OWRR) is calculated as:
Table A. 6 Sample implementation: Men
 2013

Result	Residence		Region													Total
	Urban	Rural	Zambezi	Erongo	Hardap	//Karas	Kavango	Khomas	Kunene	Ohangwena	Omaheke	Omusati	Oshana	Oshikoto	Otjozondjupa	
Selected households																
Completed (C)	89.9	89.1	93.2	86.2	88.8	84.9	91.7	89.4	87.7	92.1	88.3	92.4	91.4	93.4	88.5	89.5
Household present but no competent respondent at home (HP)	2.2	1.7	0.8	3.8	2.8	2.0	0.6	2.5	1.6	1.5	2.0	2.1	2.8	0.0	1.5	1.9
Postponed (P)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
Refused (R)	0.9	0.5	0.3	0.7	0.5	0.8	0.0	2.3	0.5	0.6	0.2	1.1	0.3	0.5	0.4	0.7
Dwelling not found (DNF)	0.1	0.2	0.0	0.0	0.0	0.2	0.3	0.2	0.0	0.3	0.2	0.5	0.0	0.0	0.2	0.1
Household absent (HA)	2.6	3.7	3.4	1.7	3.5	6.3	3.7	2.7	6.8	0.6	2.2	1.6	1.9	1.8	3.7	3.1
Dwelling vacant/address not a dwelling (DV)	2.5	2.9	1.3	4.7	3.3	2.9	1.7	1.9	2.3	3.5	3.2	1.8	2.8	3.4	2.2	2.7
Dwelling destroyed (DD)	0.7	0.5	1.0	0.7	0.5	0.8	1.1	0.6	0.5	0.6	0.2	0.3	0.3	0.3	1.3	0.6
Other (O)	0.9	1.5	0.0	2.2	0.8	2.0	0.9	0.6	0.7	0.9	3.7	0.3	0.6	0.5	2.0	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of sampled households	2,667	2,827	381	579	400	489	350	526	439	340	410	380	360	381	459	5,494
Household response rate $(H R R)^{1}$	96.5	97.5	98.9	95.0	96.5	96.5	99.1	94.8	97.7	97.5	97.3	96.2	96.8	99.4	97.4	97.0
Eligible men																
Completed (EMC)	81.7	88.5	86.2	86.1	91.0	85.7	82.9	72.2	90.7	91.2	86.8	86.2	84.6	86.4	84.3	85.0
Not at home (EMNH)	9.9	6.0	7.7	7.4	4.7	5.9	7.2	18.6	5.9	4.2	5.2	9.2	11.4	6.4	4.1	8.0
Postponed (EMP)	0.3	0.0	0.6	0.0	0.0	0.0	0.3	0.7	0.0	0.0	0.3	0.0	0.0	0.0	0.2	0.2
Refused (EMR)	3.9	1.8	1.7	1.3	3.4	4.4	1.6	4.6	0.6	1.6	3.0	0.9	1.7	3.8	6.8	2.9
Partly completed (EMPC)	0.7	0.4	0.6	0.9	0.5	0.7	0.0	0.8	0.3	0.0	0.3	0.9	0.3	0.8	0.5	0.5
Incapacitated (EMI)	0.9	1.8	1.1	0.5	0.5	2.0	1.9	0.3	0.6	2.3	1.4	2.6	1.7	1.0	2.0	1.3
Other (EMO)	2.6	1.5	2.2	3.8	0.0	1.3	6.1	2.8	1.9	0.6	3.0	0.3	0.3	1.5	2.0	2.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	2,722	2,549	363	555	387	455	374	612	321	308	365	349	351	391	440	5,271
Eligible men response rate (EMRR) ${ }^{2}$	81.7	88.5	86.2	86.1	91.0	85.7	82.9	72.2	90.7	91.2	86.8	86.2	84.6	86.4	84.3	85.0
Overall men response rate $(\mathrm{ORR})^{3}$	78.8	86.3	85.3	81.9	87.7	82.7	82.1	68.4	88.6	89.0	84.5	82.9	81.9	86.0	82.1	82.5

${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is calculated as:
$C+H P+P+R+D N F$
${ }^{2}$ The eligible men response rate (EMRR) is equivalent to the percentage of interviews completed (EMC)
${ }^{3}$ The overall men response rate (OMRR) is calculated as:

Table A. 7 Coverage of HIV testing by social and demographic characteristics: Women
Percent distribution of interviewed women age $15-64$ by HIV testing status, according to social and demographic characteristics (unweighted), Namibia 2013

Characteristic	HIV test status				Total	Number
	DBS tested ${ }^{1}$	Refused to provide blood	Absent at the time of blood collection	Other/missing ${ }^{2}$		
Marital status						
Never married	90.3	5.5	2.3	1.9	100.0	2,783
Ever had sexual intercourse	90.6	5.3	2.4	1.7	100.0	2,197
Never had sexual intercourse	89.2	6.3	1.9	2.6	100.0	586
Married/living together	90.4	6.2	2.0	1.5	100.0	2,125
Divorced or separated	92.5	4.6	1.6	1.3	100.0	306
Widowed	91.4	5.5	2.4	0.7	100.0	291
Type of union						
In polygynous union	92.9	4.8	2.4	0.0	100.0	126
In non-polygynous union	90.5	6.2	1.8	1.5	100.0	1,703
Not currently in union	90.6	5.4	2.2	1.7	100.0	3,380
Don't know/missing	88.9	6.4	2.7	2.0	100.0	296
Ever had sexual intercourse						
Yes	90.8	5.6	2.2	1.5	100.0	4,898
No	89.7	5.8	1.9	2.6	100.0	573
Missing	73.5	26.5	0.0	0.0	100.0	34
Currently pregnant						
Pregnant	91.5	5.1	2.0	1.4	100.0	295
Not pregnant or not sure	90.1	5.9	2.3	1.8	100.0	4,368
Missing	92.6	5.2	1.3	0.8	100.0	842
Times slept away from home in the past 12 months						
None	91.4	4.9	2.0	1.7	100.0	3,410
1-2	91.3	5.9	1.5	1.3	100.0	1,258
3-4	88.1	6.2	3.8	1.9	100.0	370
$5+$	84.4	10.4	3.3	2.0	100.0	461
Missing	66.7	33.3	0.0	0.0	100.0	6
Time away in past 12 months						
Away for more than 1 month	89.7	6.8	1.9	1.6	100.0	991
Away for less than 1 month	88.7	7.2	2.6	1.5	100.0	1,097
No away	91.4	5.0	2.0	1.7	100.0	3,413
Missing	100.0	0.0	0.0	0.0	100.0	4
Religion						
Roman Catholic	91.1	5.8	1.7	1.5	100.0	1,140
Protestant/Anglican	90.6	5.6	2.2	1.6	100.0	1,253
ELCIN	92.6	4.2	2.0	1.2	100.0	2,249
Seventh-day Adventist	85.4	8.0	4.3	2.2	100.0	323
No religion	87.5	9.7	1.4	1.4	100.0	72
Other	83.1	11.0	2.0	3.9	100.0	456
Total 15-64	90.5	5.7	2.1	1.6	100.0	5,505

${ }^{1}$ Includes all dried blood samples (DBSs) tested at the lab for which there was a result, i.e., positive, negative, or indeterminate. Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
${ }^{2}$ Includes 1) other results of blood collection (e.g., technical problem in the field), 2) lost specimens, 3) noncorresponding bar codes, and 4) other lab results, such as blood not tested for technical reason, not enough blood to complete the algorithm.

Table A. 8 Coverage of HIV testing by social and demographic characteristics: Men
Percent distribution of interviewed men $15-64$ by HIV testing status, according to social and demographic characteristics (unweighted), Namibia 2013

Characteristic	HIV test status				Total	Number
	DBS tested ${ }^{1}$	Refused to provide blood	Absent at the time of blood collection	Other/missing ${ }^{2}$		
Marital status						
Never married	86.7	7.8	3.0	2.5	100.0	2,641
Ever had sexual intercourse	85.8	8.7	3.0	2.4	100.0	2,026
Never had sexual intercourse	89.6	4.7	2.8	2.9	100.0	615
Married/living together	86.2	7.6	3.3	2.9	100.0	1,661
Divorced or separated	85.7	9.1	3.2	1.9	100.0	154
Widowed	84.0	4.0	4.0	8.0	100.0	25
Type of union						
In polygynous union	80.9	12.8	4.3	2.1	100.0	47
In non-polygynous union	86.3	7.5	3.3	2.9	100.0	1,614
Not currently in union	86.6	7.8	3.0	2.6	100.0	2,820
Ever had sexual intercourse						
Yes	86.1	8.2	3.2	2.6	100.0	3,840
No	89.6	4.6	2.8	3.0	100.0	606
Missing	71.4	17.1	0.0	11.4	100.0	35
Male circumcision						
Circumcised	84.8	10.1	2.9	2.3	100.0	1,174
Not circumcised	87.1	6.9	3.1	2.8	100.0	3,283
Don't know/missing	75.0	12.5	8.3	4.2	100.0	24
Times slept away from home in the past 12 months						
None	86.4	7.9	3.3	2.4	100.0	2,457
1-2	88.2	6.3	3.1	2.4	100.0	746
3-4	85.5	9.1	3.1	2.3	100.0	386
5+	85.8	8.1	2.5	3.6	100.0	867
Missing	76.0	12.0	0.0	12.0	100.0	25
Time away in past 12 months						
Away for more than 1 month	85.3	8.9	3.1	2.8	100.0	834
Away for less than 1 month	87.6	6.7	2.7	3.0	100.0	1,161
No away	86.4	7.9	3.3	2.4	100.0	2,457
Missing	79.3	10.3	0.0	10.3	100.0	29
Religion						
Roman Catholic	88.5	6.8	2.8	1.9	100.0	1,140
Protestant/Anglican	86.2	8.1	3.5	2.2	100.0	595
ELCIN	87.7	6.4	3.0	2.9	100.0	1,786
Seventh-day Adventist	76.4	10.8	6.1	6.6	100.0	212
No religion	77.9	13.3	4.4	4.4	100.0	113
Other	84.3	11.0	2.2	2.4	100.0	625
Total 15-64	86.5	7.8	3.1	2.7	100.0	4,481

[^28]Table A. 9 Coverage of HIV testing by sexual behaviour characteristics: Women
Percent distribution of interviewed women age 15-64 who ever had sexual intercourse by HIV test status, according to sexual behaviour characteristics (unweighted), Namibia 2013

Sexual behaviour characteristic	HIV test status				Total	Number
	DBS Tested ${ }^{1}$	Refused to provide blood	Absent at the time of blood collection	Other/missing ${ }^{2}$		
Age at first sexual intercourse						
<16	91.3	5.4	1.9	1.5	100.0	803
16-17	91.8	5.2	1.6	1.4	100.0	1,261
18-19	90.1	5.7	2.7	1.5	100.0	1,226
20+	89.9	5.8	2.5	1.8	100.0	1,314
Missing	91.2	6.5	1.7	0.7	100.0	294
Multiple sexual partners and partner concurrency in past 12 months						
0	92.7	4.7	1.8	0.8	100.0	1,063
1	90.4	5.7	2.2	1.7	100.0	3,692
2+	91.5	5.1	2.5	0.8	100.0	118
Had concurrent partners ${ }^{3}$	81.5	14.8	3.7	0.0	100.0	27
None of the partners were concurrent	94.5	2.2	2.2	1.1	100.0	91
Missing	64.0	24.0	8.0	4.0	100.0	25
Condom use at last sexual intercourse in past 12 months						
Used condom	89.3	6.3	2.6	1.8	100.0	1,604
Did not use condom	91.2	5.3	2.0	1.5	100.0	2,203
No sexual intercourse in last 12 months	92.0	5.1	1.9	0.9	100.0	1,088
Don't know/missing	66.7	0.0	0.0	33.3	100.0	3
Number of lifetime partners						
1	90.1	6.2	1.9	1.7	100.0	1,490
2	91.3	4.7	2.7	1.3	100.0	1,385
3-4	92.4	4.7	1.6	1.3	100.0	1,437
5-9	89.1	6.6	2.9	1.5	100.0	412
10+	85.6	8.9	2.2	3.3	100.0	90
Missing	79.8	15.5	2.4	2.4	100.0	84
Prior HIV testing						
Ever tested	91.2	5.2	2.2	1.4	100.0	4,175
Received results	91.2	5.2	2.2	1.4	100.0	4,085
Did not receive results	93.3	4.4	2.2	0.0	100.0	90
Never tested	88.3	7.4	2.1	2.1	100.0	698
Missing	80.0	12.0	0.0	8.0	100.0	25
Total 15-64	90.8	5.6	2.2	1.5	100.0	4,898

${ }^{1}$ Includes all dried blood samples (DBSs) tested at the lab and for which there is a result, i.e., positive, negative, or indeterminate. Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
${ }^{2}$ Includes 1) other results of blood collection (e.g., technical problem in the field), 2) lost specimens, 3) noncorresponding bar codes, and 4) other lab results, such as blood not tested for technical reason and not enough blood to complete the algorithm.
${ }^{3}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with two or more people during the 12 months before the survey

Table A. 10 Coverage of HIV testing by sexual behaviour characteristics: Men
Percent distribution of interviewed men age 15-64 who ever had sexual intercourse by HIV test status, according to sexual behaviour characteristics (unweighted), Namibia 2013

Sexual behaviour characteristic	HIV test status				Total	Number
	DBS Tested ${ }^{1}$	Refused to provide blood	Absent at the time of blood collection	Other/missing ${ }^{2}$		
Age at first sexual intercourse						
<16	85.4	9.3	2.4	2.9	100.0	962
16-17	86.9	8.2	2.8	2.1	100.0	1,038
18-19	85.5	8.3	4.0	2.2	100.0	952
20+	86.8	6.5	3.6	3.0	100.0	859
Missing	75.9	17.2	3.4	3.4	100.0	29
Multiple sexual partners and partner concurrency in past 12 months						
0	88.1	6.9	3.3	1.7	100.0	523
1	85.9	8.2	3.3	2.6	100.0	2,881
$2+$	84.5	9.9	2.4	3.1	100.0	414
Had concurrent partners ${ }^{2}$	84.3	9.8	2.0	3.9	100.0	102
None of the partners were concurrent	84.6	9.9	2.6	2.9	100.0	312
Missing	90.9	4.5	0.0	4.5	100.0	22
Condom use at last sexual intercourse in past 12 months						
Used condom	84.5	9.3	3.2	3.0	100.0	1,774
Did not use condom	87.2	7.4	3.1	2.3	100.0	1,519
No sexual intercourse in last 12 months	88.3	6.8	3.1	1.8	100.0	545
Don't know/missing	50.0	0.0	50.0	0.0	100.0	2
Paid for sexual intercourse in past 12 months						
Yes	92.9	4.8	0.0	2.4	100.0	42
Used condom	95.5	4.5	0.0	0.0	100.0	22
Did not use condom	90.0	5.0	0.0	5.0	100.0	20
No/no sexual intercourse in past						
Number of lifetime partners						
1 边	86.5	6.7	3.6	3.2	100.0	496
2	84.9	8.5	4.4	2.2	100.0	551
3-4	86.4	8.0	3.2	2.5	100.0	852
5-9	87.2	8.0	2.7	2.1	100.0	874
10+	86.2	8.8	2.4	2.6	100.0	805
Missing	82.8	9.5	3.8	3.8	100.0	262
Prior HIV testing						
Ever tested	85.7	8.1	3.7	2.5	100.0	2,675
Received results	85.4	8.3	3.8	2.6	100.0	2,582
Did not receive results	94.6	4.3	1.1	0.0	100.0	93
Never tested	87.0	8.2	2.1	2.7	100.0	1,164
Missing	100.0	0.0	0.0	0.0	100.0	1
Total 15-64	86.1	8.2	3.2	2.6	100.0	3,840

[^29]TThe estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, misinformation from respondents, and data entry errors. Although numerous efforts were made during the implementation of the 2013 Namibia Demographic and Health Survey (2013 NDHS) to minimise nonsampling errors, such errors are difficult to avoid and evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2013 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. This represents the accuracy with which a sample represents a population. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2013 NDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method of variance estimation for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

The Taylor linearisation method treats any percentage or average as a ratio estimate, $r=y / x$, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance:

$$
S E^{2}(r)=\operatorname{var}(r)=\frac{1-f}{x^{2}} \sum_{h=1}^{H}\left[\frac{m_{h}}{m_{h}-1}\left(\sum_{i=1}^{m_{h}} z_{h i}^{2}-\frac{z_{h}^{2}}{m_{h}}\right)\right]
$$

in which

$$
z_{h i}=y_{h i}-r x_{h i}, \text { and } z_{h}=y_{h}-r x_{h}
$$

where $h \quad$ represents the stratum which varies from 1 to H,
$m_{h} \quad$ is the total number of clusters selected in the $h^{\text {th }}$ stratum,
$y_{h i} \quad$ is the sum of the weighted values of variable y in the $i^{\text {ih }}$ cluster in the $h^{\text {th }}$ stratum,
$x_{h i} \quad$ is the sum of the weighted number of cases in the $i^{\text {th }}$ cluster in the $h^{h \text { th }}$ stratum, and
f is the overall sampling fraction, which is so small that it is ignored.

The Jackknife repeated replication method derives estimates of complex rates from each of several replications of the parent sample, and calculates standard errors for these estimates using simple formulas. Each replication considers all but one cluster in the calculation of the estimates. Pseudo-independent replications are thus created. In the 2013 NDHS, there were 550 non-empty clusters. Hence, 550 replications were created. The variance of a rate r is calculated as follows:

$$
S E^{2}(r)=\operatorname{var}(r)=\frac{1}{k(k-1)} \sum_{i=1}^{k}\left(r_{i}-r\right)^{2}
$$

in which

$$
r_{i}=k r-(k-1) r_{(i)}
$$

where r is the estimate computed from the full sample of 550 clusters,
$r_{(i)} \quad$ is the estimate computed from the reduced sample of 549 clusters ($i^{\text {th }}$ cluster excluded), and
$k \quad$ is the total number of clusters.
In addition to the standard error, the design effect (DEFT) for each estimate is also calculated The design effect is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. Relative standard errors and confidence limits for the estimates are also calculated.

Sampling errors for the 2013 NDHS are calculated for selected variables considered to be of primary interest. The results are presented in this appendix for the country as a whole, for urban and rural areas separately, and for each of the thirteen administrative regions. For each variable, the type of statistic (mean, proportion, or rate) and the base population are given in Table B.1. Tables B. 2 through B. 17 present the value of the statistic (R), its standard error (SE), the number of unweighted (N) and weighted (WN) cases, the design effect (DEFT), the relative standard error (SE/R), and the 95 percent confidence limits ($\mathrm{R} \pm 2 \mathrm{SE}$), for each variable. The sampling errors for mortality rates are presented for the five-year period preceding the survey for the whole country and for the ten-year period preceding the survey by residence and region. The DEFT is considered undefined when the standard error considering a simple random sample is zero (when the estimate is close to 0 or 1). In the case of the total fertility rate, the number of unweighted cases is not relevant, as there is no known unweighted value for woman-years of exposure to childbearing.

The confidence interval (e.g., as calculated for children ever born to women age 40-49) can be interpreted as follows: the overall average from the national sample is 3.738 , and its standard error is 0.068 . Therefore, to obtain the 95 percent confidence limits, one adds and subtracts twice the standard error to the sample estimate, i.e., $3.738 \pm 2 \times 0.068$. There is a high probability (95 percent) that the true average number of children ever born to all women age 40-49 is between 3.602 and 3.874.

For the total sample, the value of the DEFT, averaged over all variables, is 1.27 . This means that, due to multi-stage clustering of the sample, the average standard error is increased by a factor of 1.27 over that in an equivalent simple random sample.

Table B. 1 List of selected variables for sampling errors, Namibia 2013

Variable	Estimate	Base population
WOMEN		
Urban residence	Proportion	All women 15-49
No education	Proportion	All women 15-49
Secondary education or higher	Proportion	All women 15-49
Never married/in union	Proportion	All women 15-49
Currently married/in union	Proportion	All women 15-49
Married before age 20	Proportion	All women 20-49
Had sexual intercourse before age 18	Proportion	All women 20-49
Currently pregnant	Proportion	All women 15-49
Children ever born	Mean	All women 15-49
Children surviving	Mean	All women 15-49
Children ever born to women age 40-49	Mean	All women 40-49
Knowing any contraceptive method	Proportion	Currently married women 15-49
Knowing any modern contraceptive method	Proportion	Currently married women 15-49
Currently using any method	Proportion	Currently married women 15-49
Currently using a modern method	Proportion	Currently married women 15-49
Currently using pill	Proportion	Currently married women 15-49
Currently using IUD	Proportion	Currently married women 15-49
Currently using condoms	Proportion	Currently married women 15-49
Currently using injectables	Proportion	Currently married women 15-49
Currently using female sterilisation	Proportion	Currently married women 15-49
Currently using periodic abstinence	Proportion	Currently married women 15-49
Using public sector source	Proportion	Current users of modern method
Want no more children	Proportion	Currently married women 15-49
Want to delay at least 2 years	Proportion	Currently married women 15-49
Ideal number of children	Mean	All women 15-49
Mothers received prenatal care for last birth	Proportion	Women with a live birth in last five years
Mothers protected against tetanus for last birth	Proportion	Women with a live birth in last five years
Mothers received medical asisstance at delivery	Proportion	Births occurring 1-59 months before survey
Had diarrhoea in the last 2 weeks	Proportion	Children under 5
Treated with oral rehydration salts (ORS)	Proportion	Children under 5 with diarrhoea in past 2 weeks
Taken to health provider	Proportion	Children under 5 with diarrhoea in past 2 weeks
Having health card, seen	Proportion	Children 12-23 months
Received BCG vaccination	Proportion	Children 12-23 months
Received DPT vaccination (3 doses)	Proportion	Children 12-23 months
Received polio vaccination (3 doses)	Proportion	Children 12-23 months
Received measles vaccination	Proportion	Children 12-23 months
Fully immunised	Proportion	Children 12-23 months
Height-for-age (below -2SD)	Proportion	Children under 5 who are measured
Weight-for-height (below-2SD)	Proportion	Children under 5 who are measured
Weight-for-age (below -2SD)	Proportion	Children under 5 who are measured
Anaemia children	Proportion	Children under 5 who were tested
Anaemia women	Proportion	women 15-49 who were tested
BMI <18.5	Proportion	All women 15-49 who were measured
Had 2+ sexual partners in past 12 months	Proportion	All women 15-49
Condom use at last sex	Proportion	Women 15-49 with $2+$ partners in past 12 months
Abstinence among never-married youth (never had sex)	Proportion	Never-married women 15-24
Sexually active in past 12 months among never-married youth	Proportion	Never-married women 15-24
Had an HIV test and received results in past 12 months	Proportion	All women 15-49
Accepting attitudes towards people with HIV	Proportion	All women who have heard of HIVIAIDS
Total fertility rate (3 years)	Rate	Women-years of exposure to childbearing
Neonatal mortality rate ${ }^{1}$	Rate	Children exposed to the risk of mortality
Post-neonatal mortality rate ${ }^{1}$	Rate	Children exposed to the risk of mortality
Infant mortality rate ${ }^{1}$	Rate	Children exposed to the risk of mortality
Child mortality rate ${ }^{1}$	Rate	Children exposed to the risk of mortality
Under-five mortality rate ${ }^{1}$	Rate	Children exposed to the risk of mortality
HIV prevalence among all women 15-49	Proportion	All interviewed women 15-49 with DBS tested at the lab
HIV prevalence among all women 50-64	Proportion	All interviewed women 50-64 with DBS tested at the lab
HIV prevalence among all women 15-24	Proportion	All interviewed women 15-24 with DBS tested at the lab
MEN		
Urban residence	Proportion	All men 15-49
No education	Proportion	All men 15-49
Secondary or higher education	Proportion	All men 15-49
Never married (never in union)	Proportion	All men 15-49
Currently married (in union)	Proportion	All men 15-49
Want no more children	Proportion	Currently married men 15-49
Want to delay next birth at least 2 years	Proportion	Currently married men 15-49
Ideal number of children	Mean	All men 15-49
Had 2+ sexual partners in past 12 months	Proportion	All men 15-49
Condom use at last sex	Proportion	Men 15-49 with 2+ partners in past 12 months
Abstinence among never-married youth (never had sex)	Proportion	Never-married men 15-24
Sexually active in past 12 months among never-married youth	Proportion	Never-married men 15-24
Paid for sexual intercourse in past 12 months	Proportion	All men 15-49
Had an HIV test and received results in past 12 months	Proportion	All men 15-49
Accepting attitudes towards people with HIV	Proportion	All men who have heard of HIVIAIDS
HIV prevalence among all men 15-49	Proportion	All interviewed men 15-49 with DBS tested at the lab
HIV prevalence among all men 50-64	Proportion	All interviewed men 50-64 with DBS tested at the lab
HIV prevalence among all men 15-24	Proportion	All interviewed men 15-24 with DBS tested at the lab
MEN AND WOMEN		
HIV prevalence among all men and women 15-49	Proportion	All interviewed men and women 15-49 with DBS tested at the lab
HIV prevalence among all men and women 50-64	Proportion	All interviewed men and women 50-64 with DBS tested at the lab
HIV prevalence among all men and women 15-24	Proportion	All interviewed men and women 15-24 with DBS tested at the lab

[^30]| Variable | Value(R) | Standard error (SE) | Number of cases | | Design effect (DEFT) | Relative error (SE/R) | Confidence limits | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unweighted
 (N) | Weighted (WN) | | | R-2SE | R+2SE |
| WOMEN | | | | | | | | |
| Urban residence | 0.566 | 0.010 | 9,176 | 9,176 | 1.903 | 0.017 | 0.546 | 0.585 |
| No education | 0.046 | 0.003 | 9,176 | 9,176 | 1.438 | 0.069 | 0.039 | 0.052 |
| With secondary education or higher | 0.758 | 0.008 | 9,176 | 9,176 | 1.730 | 0.010 | 0.743 | 0.774 |
| Never married/in union | 0.595 | 0.007 | 9,176 | 9,176 | 1.427 | 0.012 | 0.580 | 0.609 |
| Currently married/in union | 0.340 | 0.007 | 9,176 | 9,176 | 1.476 | 0.021 | 0.325 | 0.355 |
| Had sex before age of 18 | 0.360 | 0.008 | 7,319 | 7,270 | 1.421 | 0.022 | 0.344 | 0.376 |
| Married before age 20 | 0.143 | 0.006 | 5,599 | 5,485 | 1.238 | 0.040 | 0.132 | 0.155 |
| Currently pregnant | 0.065 | 0.003 | 9,176 | 9,176 | 1.102 | 0.043 | 0.060 | 0.071 |
| Children ever born | 1.850 | 0.029 | 9,176 | 9,176 | 1.407 | 0.016 | 1.792 | 1.907 |
| Children ever born to women over 40 | 3.738 | 0.068 | 1,696 | 1,625 | 1.220 | 0.018 | 3.602 | 3.874 |
| Children surviving | 1.730 | 0.027 | 9,176 | 9,176 | 1.418 | 0.016 | 1.675 | 1.785 |
| Knowing any contraceptive method | 0.998 | 0.001 | 3,366 | 3,121 | 1.180 | 0.001 | 0.995 | 1.000 |
| Knowing any modern contraceptive method | 0.998 | 0.001 | 3,366 | 3,121 | 1.180 | 0.001 | 0.995 | 1.000 |
| Currently using any method | 0.561 | 0.011 | 3,366 | 3,121 | 1.242 | 0.019 | 0.540 | 0.582 |
| Currently using a modern method | 0.553 | 0.011 | 3,366 | 3,121 | 1.274 | 0.020 | 0.531 | 0.574 |
| Currently using pill | 0.070 | 0.005 | 3,366 | 3,121 | 1.243 | 0.078 | 0.059 | 0.080 |
| Currently using IUD | 0.012 | 0.002 | 3,366 | 3,121 | 1.228 | 0.192 | 0.007 | 0.017 |
| Currently using condoms | 0.120 | 0.007 | 3,366 | 3,121 | 1.270 | 0.059 | 0.106 | 0.135 |
| Currently using injectables | 0.268 | 0.010 | 3,366 | 3,121 | 1.302 | 0.037 | 0.249 | 0.288 |
| Currently using female sterilisation | 0.064 | 0.005 | 3,366 | 3,121 | 1.187 | 0.078 | 0.054 | 0.074 |
| Currently using periodic abstinence | 0.002 | 0.001 | 3,366 | 3,121 | 0.997 | 0.386 | 0.000 | 0.004 |
| Using public sector source | 0.730 | 0.011 | 4,573 | 4,549 | 1.656 | 0.015 | 0.708 | 0.752 |
| Want no more children | 0.520 | 0.010 | 3,366 | 3,121 | 1.196 | 0.020 | 0.499 | 0.541 |
| Want to delay at least 2 years | 0.203 | 0.008 | 3,366 | 3,121 | 1.201 | 0.041 | 0.186 | 0.220 |
| Ideal number of children | 3.220 | 0.028 | 9,056 | 9,050 | 1.350 | 0.009 | 3.165 | 3.276 |
| Mothers received prenatal care for last birth | 0.966 | 0.003 | 3,974 | 3,842 | 1.139 | 0.003 | 0.960 | 0.973 |
| Mothers protected against tetanus for last birth | 0.659 | 0.011 | 3,974 | 3,842 | 1.492 | 0.017 | 0.636 | 0.681 |
| Mothers received medical asisstance at delivery | 0.882 | 0.008 | 5,046 | 4,804 | 1.420 | 0.009 | 0.867 | 0.897 |
| Had diarrhoea in the last 2 weeks | 0.174 | 0.007 | 4,818 | 4,588 | 1.183 | 0.038 | 0.161 | 0.188 |
| Treated with oral rehydration salts (ORS) | 0.716 | 0.021 | 810 | 800 | 1.255 | 0.029 | 0.675 | 0.757 |
| Taken to health provider | 0.637 | 0.022 | 810 | 800 | 1.273 | 0.035 | 0.593 | 0.681 |
| Having health card, seen | 0.695 | 0.017 | 991 | 938 | 1.120 | 0.024 | 0.662 | 0.729 |
| Received BCG vaccination | 0.942 | 0.010 | 991 | 938 | 1.338 | 0.011 | 0.922 | 0.962 |
| Received DPT vaccination (3 doses) | 0.835 | 0.016 | 991 | 938 | 1.380 | 0.020 | 0.802 | 0.868 |
| Received polio vaccination (3 doses) | 0.743 | 0.016 | 991 | 938 | 1.115 | 0.021 | 0.712 | 0.775 |
| Received measles vaccination | 0.895 | 0.012 | 991 | 938 | 1.241 | 0.014 | 0.870 | 0.919 |
| Fully immunised | 0.684 | 0.017 | 991 | 938 | 1.144 | 0.025 | 0.650 | 0.718 |
| Height-for-age (below -2SD) | 0.238 | 0.011 | 2,292 | 2,287 | 1.156 | 0.045 | 0.216 | 0.259 |
| Weight-for-height (below -2SD) | 0.062 | 0.006 | 2,292 | 2,287 | 1.097 | 0.091 | 0.051 | 0.074 |
| Weight-for-age (below -2SD) | 0.134 | 0.009 | 2,292 | 2,287 | 1.204 | 0.065 | 0.116 | 0.151 |
| Anaemia children | 0.475 | 0.013 | 2,312 | 2,297 | 1.203 | 0.028 | 0.448 | 0.501 |
| Anaemia women | 0.207 | 0.007 | 4,327 | 4,242 | 1.161 | 0.035 | 0.192 | 0.221 |
| BMI <18.5 | 0.139 | 0.007 | 4,008 | 3,922 | 1.294 | 0.051 | 0.125 | 0.153 |
| Had 2+ sexual partners in past 12 months | 0.022 | 0.002 | 9,176 | 9,176 | 1.331 | 0.092 | 0.018 | 0.026 |
| Condom use at last sex | 0.681 | 0.038 | 214 | 203 | 1.203 | 0.057 | 0.604 | 0.758 |
| Abstinence among never-married youth (never had sex) | 0.383 | 0.012 | 3,010 | 3,184 | 1.312 | 0.030 | 0.360 | 0.407 |
| Sexually active in past 12 months among never-married youth | 0.515 | 0.011 | 3,010 | 3,184 | 1.169 | 0.021 | 0.494 | 0.536 |
| Had an HIV test and received results in past 12 months | 0.491 | 0.007 | 9,176 | 9,176 | 1.302 | 0.014 | 0.478 | 0.505 |
| Accepting attitudes towards people with HIV | 0.281 | 0.006 | 9,110 | 9,128 | 1.374 | 0.023 | 0.268 | 0.294 |
| Total fertility rate (3 years) | 3.647 | 0.094 | 25,856 | 25,857 | 1.355 | 0.026 | 3.458 | 3.836 |
| Neonatal mortality rate (last 0-4 years) | 19.717 | 2.611 | 5,091 | 4,849 | 1.174 | 0.132 | 14.494 | 24.939 |
| Post-neonatal mortality rate (last 0-4 years) | 19.160 | 2.211 | 5,065 | 4,818 | 1.048 | 0.115 | 14.738 | 23.582 |
| Infant mortality rate (last 0-4 years) | 38.876 | 3.453 | 5,097 | 4,855 | 1.124 | 0.089 | 31.970 | 45.783 |
| Child mortality rate (last 0-4 years) | 16.221 | 2.228 | 4,840 | 4,611 | 1.086 | 0.137 | 11.764 | 20.678 |
| Under-five mortality rate (last 0-4 years) | 54.467 | 4.108 | 5,116 | 4,872 | 1.114 | 0.075 | 46.250 | 62.683 |
| HIV prevalence (women 15-49) | 0.169 | 0.008 | 4,204 | 4,051 | 1.331 | 0.046 | 0.153 | 0.184 |
| HIV prevalence (women 50-64) | 0.167 | 0.015 | 780 | 689 | 1.119 | 0.090 | 0.137 | 0.197 |
| HIV prevalence for youth (women 15-24) | 0.044 | 0.006 | 1,659 | 1,649 | 1.171 | 0.134 | 0.032 | 0.056 |
| MEN | | | | | | | | |
| Urban residence | 0.568 | 0.012 | 3,950 | 4,021 | 1.526 | 0.021 | 0.543 | 0.592 |
| Literacy | 0.905 | 0.006 | 3,950 | 4,021 | 1.275 | 0.007 | 0.893 | 0.917 |
| No education | 0.077 | 0.006 | 3,950 | 4,021 | 1.369 | 0.075 | 0.065 | 0.089 |
| Secondary or higher education | 0.688 | 0.012 | 3,950 | 4,021 | 1.645 | 0.018 | 0.664 | 0.713 |
| Never married (never in union) | 0.683 | 0.010 | 3,950 | 4,021 | 1.312 | 0.014 | 0.663 | 0.702 |
| Currently married (in union) | 0.288 | 0.010 | 3,950 | 4,021 | 1.326 | 0.033 | 0.269 | 0.308 |
| Want no more children | 0.415 | 0.019 | 1,244 | 1,160 | 1.372 | 0.046 | 0.377 | 0.454 |
| Want to delay next birth at least 2 years | 0.177 | 0.015 | 1,244 | 1,160 | 1.352 | 0.083 | 0.148 | 0.206 |
| Ideal number of children | 3.897 | 0.068 | 3,905 | 3,980 | 1.362 | 0.018 | 3.760 | 4.034 |
| Had 2+ sexual partners in past 12 months | 0.104 | 0.007 | 3,950 | 4,021 | 1.388 | 0.065 | 0.091 | 0.118 |
| Condom use at last sex | 0.722 | 0.027 | 388 | 420 | 1.178 | 0.037 | 0.668 | 0.776 |
| Abstinence among never-married youth (never had sex) | 0.358 | 0.016 | 1,559 | 1,642 | 1.285 | 0.044 | 0.327 | 0.389 |
| Sexually active in past 12 months among never-married youth | 0.521 | 0.016 | 1,559 | 1,642 | 1.301 | 0.032 | 0.488 | 0.554 |
| Paid for sexual intercourse in past 12 months | 0.009 | 0.002 | 3,950 | 4,021 | 1.208 | 0.201 | 0.005 | 0.013 |
| Had an HIV test and received results in past 12 months | 0.381 | 0.011 | 3,950 | 4,021 | 1.397 | 0.028 | 0.360 | 0.403 |
| Accepting attitudes towards people with HIV | 0.259 | 0.010 | 3,904 | 3,985 | 1.459 | 0.039 | 0.239 | 0.280 |
| HIV prevalence (men 15-49) | 0.109 | 0.009 | 3,399 | 3,680 | 1.599 | 0.078 | 0.092 | 0.126 |
| HIV prevalence (men 50-64) | 0.160 | 0.022 | 475 | 438 | 1.295 | 0.136 | 0.117 | 0.204 |
| HIV prevalence for youth (men 15-24) | 0.027 | 0.005 | 1,437 | 1,594 | 1.097 | 0.175 | 0.017 | 0.036 |
| MEN AND WOMEN | | | | | | | | |
| HIV prevalence (men and women 15-49) | 0.140 | 0.006 | 7,603 | 7,731 | 1.547 | 0.044 | 0.128 | 0.153 |
| HIV prevalence (men and women 50-64) | 0.164 | 0.012 | 1,255 | 1,127 | 1.168 | 0.074 | 0.140 | 0.189 |
| HIV prevalence for youth (men and women 15-24) | 0.036 | 0.004 | 3,096 | 3,243 | 1.186 | 0.111 | 0.028 | 0.044 |

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	1.000	0.000	4,843	5,190	na	0.000	1.000	1.000
No education	0.031	0.004	4,843	5,190	1.473	0.119	0.023	0.038
With secondary education or higher	0.843	0.010	4,843	5,190	1.945	0.012	0.823	0.863
Never married/in union	0.584	0.010	4,843	5,190	1.438	0.017	0.563	0.604
Currently married/in union	0.351	0.010	4,843	5,190	1.517	0.030	0.330	0.371
Had sex before age of 18	0.322	0.011	3,992	4,289	1.500	0.034	0.300	0.344
Married before age 20	0.119	0.007	3,025	3,182	1.257	0.062	0.104	0.133
Currently pregnant	0.067	0.004	4,843	5,190	1.154	0.062	0.059	0.076
Children ever born	1.581	0.037	4,843	5,190	1.545	0.023	1.507	1.654
Children ever born to women over 40	3.160	0.086	871	875	1.325	0.027	2.987	3.332
Children surviving	1.492	0.035	4,843	5,190	1.537	0.023	1.423	1.562
Knowing any contraceptive method	0.998	0.001	1,783	1,819	1.321	0.001	0.995	1.001
Knowing any modern contraceptive method	0.998	0.001	1,783	1,819	1.321	0.001	0.995	1.001
Currently using any method	0.611	0.015	1,783	1,819	1.279	0.024	0.581	0.640
Currently using a modern method	0.605	0.015	1,783	1,819	1.272	0.024	0.575	0.634
Currently using pill	0.080	0.008	1,783	1,819	1.254	0.101	0.064	0.096
Currently using IUD	0.016	0.004	1,783	1,819	1.204	0.220	0.009	0.024
Currently using condoms	0.125	0.010	1,783	1,819	1.330	0.083	0.104	0.146
Currently using injectables	0.270	0.014	1,783	1,819	1.327	0.052	0.242	0.297
Currently using female sterilisation	0.086	0.008	1,783	1,819	1.183	0.091	0.071	0.102
Currently using periodic abstinence	0.002	0.001	1,783	1,819	0.878	0.451	0.000	0.004
Using public sector source	0.660	0.016	2,632	2,850	1.712	0.024	0.628	0.692
Want no more children	0.515	0.014	1,783	1,819	1.205	0.028	0.486	0.543
Want to delay at least 2 years	0.210	0.012	1,783	1,819	1.234	0.057	0.186	0.234
Ideal number of children	3.034	0.036	4,808	5,151	1.472	0.012	2.962	3.105
Mothers received prenatal care for last birth	0.967	0.005	1,887	1,970	1.122	0.005	0.958	0.976
Mothers protected against tetanus for last birth	0.655	0.016	1,887	1,970	1.452	0.024	0.623	0.687
Mothers received medical asisstance at delivery	0.949	0.006	2,290	2,347	1.178	0.006	0.937	0.961
Had diarrhoea in the last 2 weeks	0.147	0.009	2,198	2,249	1.189	0.063	0.128	0.165
Treated with oral rehydration salts (ORS)	0.754	0.035	303	330	1.368	0.046	0.685	0.823
Taken to health provider	0.638	0.037	303	330	1.306	0.057	0.565	0.711
Having health card, seen	0.595	0.026	455	467	1.108	0.043	0.544	0.647
Received BCG vaccination	0.918	0.018	455	467	1.406	0.020	0.882	0.955
Received DPT vaccination (3 doses)	0.783	0.028	455	467	1.452	0.036	0.727	0.840
Received polio vaccination (3 doses)	0.664	0.025	455	467	1.137	0.038	0.613	0.715
Received measles vaccination	0.857	0.022	455	467	1.304	0.025	0.813	0.900
Fully immunised	0.581	0.027	455	467	1.152	0.046	0.527	0.635
Height-for-age (below -2SD)	0.167	0.017	843	836	1.201	0.102	0.133	0.201
Weight-for-height (below -2SD)	0.050	0.009	843	836	1.157	0.184	0.031	0.068
Weight-for-age (below -2SD)	0.091	0.012	843	836	1.127	0.128	0.067	0.114
Anaemia children	0.466	0.023	843	840	1.245	0.049	0.421	0.512
Anaemia women	0.192	0.010	2,239	2,303	1.180	0.052	0.172	0.212
BMI <18.5	0.106	0.009	2,075	2,133	1.361	0.089	0.087	0.125
Had 2+ sexual partners in past 12 months	0.029	0.003	4,843	5,190	1.334	0.111	0.023	0.036
Condom use at last sex	0.720	0.045	124	151	1.121	0.063	0.629	0.811
Abstinence among never-married youth (never had sex)	0.352	0.017	1,542	1,724	1.407	0.049	0.318	0.387
Sexually active in past 12 months among never-married youth	0.553	0.015	1,542	1,724	1.212	0.028	0.522	0.584
Had an HIV test and received results in past 12 months	0.497	0.010	4,843	5,190	1.335	0.019	0.478	0.517
Accepting attitudes towards people with HIV	0.283	0.009	4,825	5,174	1.383	0.032	0.265	0.301
Total fertility rate (3 years)	2.932	0.105	13,816	14,879	1.429	0.036	2.722	3.142
Neonatal mortality rate (last 0-9 years)	15.741	2.323	4,303	4,385	1.077	0.148	11.095	20.387
Post-neonatal mortality rate (last 0-9 years)	19.089	2.343	4,294	4,376	1.029	0.123	14.402	23.776
Infant mortality rate (last 0-9 years)	34.830	3.265	4,307	4,391	1.030	0.094	28.299	41.361
Child mortality rate (last 0-9 years)	19.768	3.266	4,155	4,247	1.226	0.165	13.237	26.300
Under-five mortality rate (last 0-9 years)	53.910	4.547	4,319	4,403	1.021	0.084	44.816	63.004
HIV prevalence (women 15-49)	0.150	0.012	2,145	2,280	1.496	0.077	0.127	0.173
HIV prevalence (women 50-64)	0.182	0.026	279	265	1.116	0.142	0.131	0.234
HIV prevalence for youth (women 15-24)	0.045	0.009	824	903	1.197	0.193	0.028	0.062
MEN								
Urban residence	1.000	0.000	1,998	2,282	na	0.000	1.000	1.000
Literacy	0.947	0.006	1,998	2,282	1.214	0.006	0.935	0.960
No education	0.049	0.007	1,998	2,282	1.350	0.133	0.036	0.062
Secondary or higher education	0.808	0.014	1,998	2,282	1.642	0.018	0.779	0.837
Never married (never in union)	0.644	0.015	1,998	2,282	1.356	0.023	0.615	0.673
Currently married (in union)	0.327	0.014	1,998	2,282	1.374	0.044	0.298	0.355
Want no more children	0.412	0.025	695	745	1.317	0.060	0.363	0.461
Want to delay next birth at least 2 years	0.169	0.020	695	745	1.418	0.119	0.129	0.210
Ideal number of children	3.518	0.098	1,982	2,266	1.543	0.028	3.322	3.714
Had 2+ sexual partners in past 12 months	0.098	0.010	1,998	2,282	1.487	0.101	0.078	0.117
Condom use at last sex	0.736	0.041	183	223	1.261	0.056	0.653	0.818
Abstinence among never-married youth (never had sex)	0.297	0.022	710	804	1.294	0.075	0.253	0.342
Sexually active in past 12 months among never-married youth	0.569	0.026	710	804	1.378	0.045	0.518	0.620
Paid for sexual intercourse in past 12 months	0.009	0.003	1,998	2,282	1.300	0.301	0.004	0.015
Had an HIV test and received results in past 12 months	0.443	0.014	1,998	2,282	1.301	0.033	0.414	0.472
Accepting attitudes towards people with HIV	0.243	0.014	1,979	2,263	1.499	0.060	0.214	0.272
HIV prevalence (men 15-49)	0.115	0.014	1,642	2,088	1.720	0.118	0.088	0.142
HIV prevalence (men 50-64)	0.135	0.033	194	206	1.325	0.242	0.070	0.200
HIV prevalence for youth (men 15-24)	0.029	0.007	638	804	1.121	0.255	0.014	0.044
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.133	0.010	3,787	4,367	1.747	0.073	0.114	0.152
HIV prevalence (men and women 50-64)	0.161	0.020	473	471	1.182	0.124	0.121	0.202
HIV prevalence for youth (men and women 15-24)	0.038	0.006	1,462	1,707	1.260	0.167	0.025	0.050

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.000	0.000	4,333	3,986	na	na	0.000	0.000
No education	0.065	0.005	4,333	3,986	1.416	0.082	0.054	0.076
With secondary education or higher	0.648	0.011	4,333	3,986	1.528	0.017	0.626	0.671
Never married/in union	0.609	0.010	4,333	3,986	1.403	0.017	0.589	0.630
Currently married/in union	0.326	0.010	4,333	3,986	1.400	0.031	0.307	0.346
Had sex before age of 18	0.415	0.011	3,327	2,981	1.237	0.025	0.394	0.436
Married before age 20	0.178	0.009	2,574	2,303	1.198	0.051	0.160	0.196
Currently pregnant	0.063	0.004	4,333	3,986	0.998	0.058	0.056	0.070
Children ever born	2.200	0.044	4,333	3,986	1.286	0.020	2.111	2.288
Children ever born to women over 40	4.413	0.101	825	750	1.151	0.023	4.212	4.614
Children surviving	2.039	0.042	4,333	3,986	1.308	0.021	1.955	2.123
Knowing any contraceptive method	0.997	0.002	1,583	1,301	1.054	0.002	0.994	1.000
Knowing any modern contraceptive method	0.997	0.002	1,583	1,301	1.054	0.002	0.994	1.000
Currently using any method	0.492	0.015	1,583	1,301	1.186	0.030	0.462	0.522
Currently using a modern method	0.480	0.016	1,583	1,301	1.272	0.033	0.448	0.512
Currently using pill	0.055	0.007	1,583	1,301	1.171	0.122	0.042	0.069
Currently using IUD	0.006	0.002	1,583	1,301	1.126	0.368	0.002	0.010
Currently using condoms	0.114	0.009	1,583	1,301	1.115	0.078	0.096	0.132
Currently using injectables	0.267	0.014	1,583	1,301	1.236	0.052	0.239	0.294
Currently using female sterilisation	0.033	0.005	1,583	1,301	1.069	0.146	0.023	0.042
Currently using periodic abstinence	0.002	0.001	1,583	1,301	1.181	0.706	0.000	0.004
Using public sector source	0.847	0.011	1,941	1,698	1.326	0.013	0.825	0.869
Want no more children	0.527	0.015	1,583	1,301	1.160	0.028	0.498	0.556
Want to delay at least 2 years	0.193	0.011	1,583	1,301	1.105	0.057	0.171	0.215
Ideal number of children	3.467	0.042	4,248	3,899	1.225	0.012	3.384	3.551
Mothers received prenatal care for last birth	0.965	0.005	2,087	1,871	1.163	0.005	0.956	0.975
Mothers protected against tetanus for last birth	0.663	0.016	2,087	1,871	1.540	0.024	0.631	0.695
Mothers received medical asisstance at delivery	0.817	0.013	2,756	2,457	1.516	0.016	0.791	0.844
Had diarrhoea in the last 2 weeks	0.201	0.010	2,620	2,340	1.207	0.048	0.182	0.221
Treated with oral rehydration salts (ORS)	0.690	0.025	507	471	1.193	0.036	0.640	0.740
Taken to health provider	0.637	0.027	507	471	1.262	0.043	0.582	0.691
Having health card, seen	0.794	0.019	536	471	1.082	0.024	0.756	0.833
Received BCG vaccination	0.965	0.008	536	471	1.058	0.009	0.948	0.982
Received DPT vaccination (3 doses)	0.886	0.016	536	471	1.145	0.018	0.855	0.918
Received polio vaccination (3 doses)	0.821	0.017	536	471	1.004	0.020	0.788	0.855
Received measles vaccination	0.932	0.011	536	471	0.990	0.012	0.911	0.954
Fully immunised	0.786	0.019	536	471	1.046	0.024	0.748	0.823
Height-for-age (below -2SD)	0.278	0.013	1,449	1,451	1.146	0.048	0.251	0.305
Weight-for-height (below -2SD)	0.069	0.007	1,449	1,451	1.091	0.104	0.055	0.084
Weight-for-age (below -2SD)	0.158	0.012	1,449	1,451	1.266	0.075	0.135	0.182
Anaemia children	0.480	0.016	1,469	1,458	1.197	0.034	0.447	0.512
Anaemia women	0.224	0.010	2,088	1,938	1.142	0.046	0.203	0.245
BMI <18.5	0.178	0.011	1,933	1,788	1.218	0.059	0.157	0.200
Had 2+ sexual partners in past 12 months	0.013	0.002	4,333	3,986	1.183	0.157	0.009	0.017
Condom use at last sex	0.567	0.064	90	52	1.210	0.112	0.439	0.694
Abstinence among never-married youth (never had sex)	0.420	0.015	1,468	1,461	1.189	0.036	0.389	0.451
Sexually active in past 12 months among never-married youth	0.470	0.014	1,468	1,461	1.112	0.031	0.441	0.499
Had an HIV test and received results in past 12 months	0.484	0.009	4,333	3,986	1.240	0.019	0.465	0.502
Accepting attitudes towards people with HIV	0.279	0.009	4,285	3,954	1.352	0.033	0.261	0.298
Total fertility rate (3 years)	4.678	0.124	12,040	10,978	1.219	0.027	4.430	4.926
Neonatal mortality rate (last 0-9 years)	21.565	2.578	5,113	4,523	1.103	0.120	16.410	26.720
Post-neonatal mortality rate (last 0-9 years)	24.530	2.716	5,089	4,497	1.178	0.111	19.097	29.963
Infant mortality rate (last 0-9 years)	46.095	3.602	5,116	4,526	1.077	0.078	38.892	53.299
Child mortality rate (last 0-9 years)	18.425	2.396	4,853	4,273	1.123	0.130	13.633	23.217
Under-five mortality rate (last 0-9 years)	63.671	4.275	5,133	4,544	1.086	0.067	55.121	72.221
HIV prevalence (women 15-49)	0.193	0.009	2,059	1,771	1.085	0.049	0.174	0.212
HIV prevalence (women 50-64)	0.157	0.018	501	424	1.110	0.115	0.121	0.194
HIV prevalence for youth (women 15-24)	0.044	0.008	835	746	1.112	0.181	0.028	0.059
MEN								
Urban residence	0.000	0.000	1,952	1,739	na	na	0.000	0.000
Literacy	0.849	0.011	1,952	1,739	1.329	0.013	0.828	0.871
No education	0.114	0.010	1,952	1,739	1.405	0.089	0.094	0.134
Secondary or higher education	0.531	0.018	1,952	1,739	1.632	0.035	0.494	0.567
Never married (never in union)	0.734	0.012	1,952	1,739	1.166	0.016	0.710	0.757
Currently married (in union)	0.238	0.011	1,952	1,739	1.176	0.048	0.216	0.261
Want no more children	0.422	0.030	549	415	1.440	0.072	0.361	0.482
Want to delay next birth at least 2 years	0.190	0.019	549	415	1.133	0.100	0.152	0.228
Ideal number of children	4.398	0.091	1,923	1,715	1.154	0.021	4.217	4.579
Had 2+ sexual partners in past 12 months	0.113	0.009	1,952	1,739	1.208	0.077	0.096	0.130
Condom use at last sex	0.706	0.032	205	197	1.018	0.046	0.641	0.771
Abstinence among never-married youth (never had sex)	0.416	0.021	849	838	1.240	0.050	0.374	0.458
Sexually active in past 12 months among never-married youth	0.476	0.020	849	838	1.164	0.042	0.436	0.516
Paid for sexual intercourse in past 12 months	0.009	0.002	1,952	1,739	0.996	0.237	0.005	0.013
Had an HIV test and received results in past 12 months	0.300	0.015	1,952	1,739	1.418	0.049	0.271	0.330
Accepting attitudes towards people with HIV	0.280	0.014	1,925	1,722	1.397	0.051	0.252	0.309
HIV prevalence (men 15-49)	0.101	0.008	1,757	1,592	1.174	0.083	0.084	0.118
HIV prevalence (men 50-64)	0.183	0.029	281	232	1.245	0.157	0.125	0.241
HIV prevalence for youth (men 15-24)	0.024	0.005	799	790	1.011	0.229	0.013	0.035
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.150	0.007	3,816	3,364	1.169	0.045	0.136	0.163
HIV prevalence (men and women 50-64)	0.166	0.015	782	656	1.146	0.092	0.136	0.197
HIV prevalence for youth (men and women 15-24)	0.033	0.005	1,634	1,536	1.031	0.137	0.024	0.043

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.356	0.024	647	457	1.285	0.068	0.307	0.404
No education	0.050	0.013	647	457	1.514	0.261	0.024	0.076
With secondary education or higher	0.778	0.025	647	457	1.554	0.033	0.728	0.829
Never married/in union	0.448	0.024	647	457	1.224	0.053	0.400	0.496
Currently married/in union	0.447	0.022	647	457	1.148	0.050	0.402	0.492
Had sex before age of 18	0.508	0.024	514	362	1.086	0.047	0.460	0.556
Married before age 20	0.305	0.028	386	271	1.180	0.091	0.250	0.361
Currently pregnant	0.045	0.008	647	457	0.990	0.180	0.029	0.061
Children ever born	2.044	0.066	647	457	0.876	0.032	1.912	2.177
Children ever born to women over 40	4.351	0.150	104	74	0.745	0.034	4.051	4.650
Children surviving	1.863	0.061	647	457	0.886	0.033	1.740	1.986
Knowing any contraceptive method	0.998	0.003	291	204	0.858	0.003	0.993	1.003
Knowing any modern contraceptive method	0.998	0.003	291	204	0.858	0.003	0.993	1.003
Currently using any method	0.504	0.032	291	204	1.088	0.063	0.440	0.568
Currently using a modern method	0.498	0.031	291	204	1.041	0.061	0.437	0.560
Currently using pill	0.051	0.016	291	204	1.264	0.322	0.018	0.083
Currently using IUD	0.000	0.000	291	204	na	na	0.000	0.000
Currently using condoms	0.030	0.010	291	204	1.044	0.349	0.009	0.051
Currently using injectables	0.410	0.033	291	204	1.142	0.080	0.344	0.476
Currently using female sterilisation	0.000	0.000	291	204	na	na	0.000	0.000
Currently using periodic abstinence	0.005	0.005	291	204	1.237	0.997	0.000	0.016
Using public sector source	0.908	0.023	317	226	1.390	0.025	0.862	0.953
Want no more children	0.344	0.027	291	204	0.963	0.078	0.290	0.397
Want to delay at least 2 years	0.276	0.023	291	204	0.869	0.083	0.230	0.322
Ideal number of children	3.699	0.065	639	450	0.851	0.017	3.570	3.828
Mothers received prenatal care for last birth	0.971	0.010	333	239	1.085	0.010	0.951	0.991
Mothers protected against tetanus for last birth	0.834	0.021	333	239	1.034	0.025	0.792	0.876
Mothers received medical asisstance at delivery	0.861	0.021	412	297	1.014	0.025	0.818	0.904
Had diarrhoea in the last 2 weeks	0.323	0.033	387	279	1.347	0.101	0.258	0.388
Treated with oral rehydration salts (ORS)	0.697	0.047	122	90	1.094	0.068	0.602	0.792
Taken to health provider	0.634	0.057	122	90	1.278	0.091	0.519	0.749
Having health card, seen	0.741	0.053	78	57	1.065	0.072	0.635	0.847
Received BCG vaccination	1.000	0.000	78	57	na	0.000	1.000	1.000
Received DPT vaccination (3 doses)	0.888	0.035	78	57	0.999	0.040	0.818	0.959
Received polio vaccination (3 doses)	0.817	0.050	78	57	1.153	0.062	0.717	0.918
Received measles vaccination	0.917	0.026	78	57	0.836	0.028	0.865	0.969
Fully immunised	0.783	0.051	78	57	1.100	0.066	0.680	0.886
Height-for-age (below -2SD)	0.186	0.033	190	150	1.107	0.178	0.120	0.252
Weight-for-height (below -2SD)	0.057	0.020	190	150	1.113	0.343	0.018	0.097
Weight-for-age (below -2SD)	0.105	0.026	190	150	1.003	0.250	0.053	0.158
Anaemia children	0.566	0.039	191	149	1.077	0.068	0.489	0.643
Anaemia women	0.263	0.031	304	219	1.248	0.119	0.201	0.326
BMI <18.5	0.109	0.019	288	208	1.072	0.179	0.070	0.148
Had 2+ sexual partners in past 12 months	0.011	0.004	647	457	0.865	0.323	0.004	0.018
Condom use at last sex	0.734	0.172	7	5	0.960	0.234	0.390	1.078
Abstinence among never-married youth (never had sex)	0.216	0.031	201	143	1.058	0.142	0.155	0.278
Sexually active in past 12 months among never-married youth	0.657	0.034	201	143	1.020	0.052	0.589	0.725
Had an HIV test and received results in past 12 months	0.492	0.025	647	457	1.256	0.050	0.442	0.541
Accepting attitudes towards people with HIV	0.059	0.010	642	453	1.050	0.165	0.040	0.079
Total fertility rate (3 years)	4.229	0.242	1,813	1,276	0.996	0.057	3.745	4.713
Neonatal mortality rate (last 0-9 years)	23.193	9.028	719	513	1.217	0.389	5.137	41.248
Post-neonatal mortality rate (last 0-9 years)	30.265	8.666	718	513	1.231	0.286	12.933	47.597
Infant mortality rate (last 0-9 years)	53.457	11.833	719	513	1.191	0.221	29.791	77.124
Child mortality rate (last 0-9 years)	20.548	5.972	680	485	0.988	0.291	8.605	32.492
Under-five mortality rate (last 0-9 years)	72.907	12.989	722	515	1.155	0.178	46.928	98.886
HIV prevalence (women 15-49)	0.309	0.027	294	212	0.993	0.087	0.255	0.363
HIV prevalence (women 50-64)	0.376	0.077	43	31	1.028	0.204	0.222	0.530
HIV prevalence for youth (women 15-24)	0.192	0.040	122	87	1.112	0.207	0.113	0.272
MEN								
Urban residence	0.339	0.041	291	218	1.457	0.120	0.257	0.420
Literacy	0.883	0.019	291	218	1.021	0.022	0.845	0.922
No education	0.045	0.014	291	218	1.109	0.300	0.018	0.072
Secondary or higher education	0.712	0.029	291	218	1.097	0.041	0.654	0.771
Never married (never in union)	0.586	0.029	291	218	1.016	0.050	0.527	0.645
Currently married (in union)	0.359	0.033	291	218	1.179	0.093	0.292	0.425
Want no more children	0.210	0.032	106	78	0.800	0.151	0.147	0.274
Want to delay next birth at least 2 years	0.431	0.051	106	78	1.055	0.118	0.329	0.533
Ideal number of children	4.568	0.218	291	218	0.990	0.048	4.131	5.005
Had 2+ sexual partners in past 12 months	0.120	0.020	291	218	1.065	0.170	0.079	0.160
Condom use at last sex	0.429	0.101	36	26	1.199	0.236	0.227	0.631
Abstinence among never-married youth (never had sex)	0.149	0.031	111	83	0.914	0.208	0.087	0.211
Sexually active in past 12 months among never-married youth	0.696	0.044	111	83	1.009	0.064	0.608	0.785
Paid for sexual intercourse in past 12 months	0.027	0.009	291	218	0.997	0.353	0.008	0.046
Had an HIV test and received results in past 12 months	0.310	0.035	291	218	1.274	0.112	0.240	0.379
Accepting attitudes towards people with HIV	0.129	0.029	291	218	1.492	0.228	0.070	0.188
HIV prevalence (men 15-49)	0.159	0.031	231	197	1.280	0.195	0.097	0.221
HIV prevalence (men 50-64)	0.109	0.072	17	14	0.929	0.661	0.000	0.253
HIV prevalence for youth (men 15-24)	0.128	0.042	88	74	1.167	0.328	0.044	0.211
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.237	0.026	525	409	1.397	0.110	0.185	0.289
HIV prevalence (men and women 50-64)	0.294	0.059	60	45	1.001	0.202	0.175	0.413
HIV prevalence for youth (men and women 15-24)	0.163	0.031	210	161	1.219	0.192	0.100	0.225

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.939	0.013	858	771	1.576	0.014	0.914	0.965
No education	0.010	0.005	858	771	1.425	0.491	0.000	0.019
With secondary education or higher	0.857	0.019	858	771	1.623	0.023	0.818	0.896
Never married/in union	0.543	0.025	858	771	1.449	0.045	0.494	0.592
Currently married/in union	0.396	0.024	858	771	1.433	0.061	0.348	0.444
Had sex before age of 18	0.367	0.025	723	652	1.416	0.069	0.317	0.418
Married before age 20	0.132	0.014	546	492	0.997	0.109	0.103	0.161
Currently pregnant	0.061	0.010	858	771	1.207	0.162	0.041	0.080
Children ever born	1.645	0.073	858	771	1.296	0.044	1.500	1.790
Children ever born to women over 40	3.315	0.196	152	137	1.321	0.059	2.924	3.707
Children surviving	1.563	0.068	858	771	1.267	0.044	1.427	1.700
Knowing any contraceptive method	1.000	0.000	340	305	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	340	305	na	0.000	1.000	1.000
Currently using any method	0.632	0.027	340	305	1.013	0.042	0.579	0.685
Currently using a modern method	0.622	0.027	340	305	1.019	0.043	0.568	0.675
Currently using pill	0.090	0.018	340	305	1.175	0.203	0.054	0.127
Currently using IUD	0.010	0.006	340	305	1.130	0.611	0.000	0.022
Currently using condoms	0.112	0.018	340	305	1.026	0.157	0.076	0.147
Currently using injectables	0.296	0.029	340	305	1.176	0.098	0.238	0.355
Currently using female sterilisation	0.090	0.019	340	305	1.197	0.207	0.053	0.127
Currently using periodic abstinence	0.005	0.004	340	305	0.931	0.699	0.000	0.012
Using public sector source	0.705	0.031	474	430	1.456	0.043	0.643	0.766
Want no more children	0.521	0.025	340	305	0.931	0.048	0.471	0.572
Want to delay at least 2 years	0.228	0.025	340	305	1.097	0.110	0.178	0.278
Ideal number of children	3.060	0.078	851	766	1.204	0.026	2.903	3.216
Mothers received prenatal care for last birth	0.986	0.007	309	285	1.002	0.007	0.973	1.000
Mothers protected against tetanus for last birth	0.575	0.038	309	285	1.351	0.066	0.499	0.650
Mothers received medical asisstance at delivery	0.979	0.009	364	334	0.966	0.010	0.960	0.998
Had diarrhoea in the last 2 weeks	0.101	0.017	349	320	1.048	0.169	0.067	0.136
Treated with oral rehydration salts (ORS)	0.693	0.096	36	32	1.232	0.139	0.501	0.886
Taken to health provider	0.635	0.089	36	32	1.090	0.140	0.457	0.814
Having health card, seen	0.609	0.054	75	70	0.969	0.089	0.501	0.717
Received BCG vaccination	0.916	0.038	75	70	1.187	0.041	0.840	0.991
Received DPT vaccination (3 doses)	0.804	0.059	75	70	1.301	0.074	0.685	0.922
Received polio vaccination (3 doses)	0.719	0.062	75	70	1.211	0.087	0.594	0.844
Received measles vaccination	0.933	0.033	75	70	1.155	0.035	0.867	0.999
Fully immunised	0.657	0.064	75	70	1.177	0.097	0.530	0.785
Height-for-age (below -2SD)	0.152	0.036	127	119	1.106	0.235	0.081	0.224
Weight-for-height (below -2SD)	0.081	0.031	127	119	1.275	0.378	0.020	0.143
Weight-for-age (below -2SD)	0.099	0.027	127	119	1.051	0.272	0.045	0.153
Anaemia children	0.461	0.053	124	116	1.097	0.114	0.356	0.567
Anaemia women	0.211	0.027	399	356	1.302	0.127	0.158	0.265
BMI <18.5	0.072	0.016	368	326	1.186	0.223	0.040	0.105
Had 2+ sexual partners in past 12 months	0.035	0.008	858	771	1.293	0.231	0.019	0.052
Condom use at last sex	0.574	0.085	30	27	0.923	0.147	0.405	0.744
Abstinence among never-married youth (never had sex)	0.370	0.043	264	232	1.428	0.115	0.285	0.456
Sexually active in past 12 months among never-married youth	0.547	0.041	264	232	1.340	0.075	0.464	0.629
Had an HIV test and received results in past 12 months	0.502	0.022	858	771	1.263	0.043	0.459	0.545
Accepting attitudes towards people with HIV	0.304	0.021	856	770	1.314	0.068	0.263	0.346
Total fertility rate (3 years)	2.927	0.198	2,436	2,191	1.156	0.068	2.531	3.322
Neonatal mortality rate (last 0-9 years)	19.077	6.182	732	672	1.046	0.324	6.713	31.440
Post-neonatal mortality rate (last 0-9 years)	18.076	5.921	732	671	1.194	0.328	6.234	29.918
Infant mortality rate (last 0-9 years)	37.152	7.158	732	672	0.945	0.193	22.837	51.468
Child mortality rate (last 0-9 years)	16.390	5.093	708	651	1.044	0.311	6.204	26.577
Under-five mortality rate (last 0-9 years)	52.934	8.045	734	674	0.894	0.152	36.844	69.024
HIV prevalence (women 15-49)	0.146	0.026	382	332	1.429	0.177	0.094	0.198
HIV prevalence (women 50-64)	0.114	0.057	52	41	1.276	0.501	0.000	0.228
HIV prevalence for youth (women 15-24)	0.035	0.014	142	124	0.919	0.405	0.007	0.064
MEN								
Urban residence	0.923	0.016	421	372	1.203	0.017	0.891	0.954
Literacy	0.954	0.013	421	372	1.227	0.013	0.929	0.979
No education	0.048	0.011	421	372	1.009	0.218	0.027	0.070
Secondary or higher education	0.801	0.024	421	372	1.243	0.030	0.752	0.849
Never married (never in union)	0.603	0.027	421	372	1.133	0.045	0.548	0.657
Currently married (in union)	0.369	0.026	421	372	1.099	0.070	0.317	0.420
Want no more children	0.403	0.048	156	137	1.217	0.119	0.307	0.499
Want to delay next birth at least 2 years	0.132	0.037	156	137	1.373	0.284	0.057	0.207
Ideal number of children	3.851	0.188	416	367	1.258	0.049	3.476	4.226
Had 2+ sexual partners in past 12 months	0.065	0.015	421	372	1.269	0.235	0.035	0.096
Condom use at last sex	0.599	0.106	25	24	1.060	0.178	0.386	0.811
Abstinence among never-married youth (never had sex)	0.414	0.054	122	108	1.207	0.131	0.306	0.523
Sexually active in past 12 months among never-married youth	0.505	0.058	122	108	1.272	0.115	0.389	0.621
Paid for sexual intercourse in past 12 months	0.000	0.000	421	372	na	na	0.000	0.000
Had an HIV test and received results in past 12 months	0.467	0.028	421	372	1.145	0.060	0.412	0.523
Accepting attitudes towards people with HIV	0.208	0.027	416	368	1.348	0.129	0.155	0.262
HIV prevalence (men 15-49)	0.104	0.016	350	342	0.987	0.155	0.072	0.137
HIV prevalence (men 50-64)	0.218	0.075	50	45	1.257	0.342	0.069	0.367
HIV prevalence for youth (men 15-24)	0.048	0.022	116	116	1.125	0.468	0.003	0.093
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.125	0.019	732	674	1.567	0.153	0.087	0.163
HIV prevalence (men and women 50-64)	0.168	0.048	102	86	1.298	0.288	0.071	0.265
HIV prevalence for youth (men and women 15-24)	0.041	0.013	258	240	1.077	0.323	0.015	0.068

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \\ & \hline \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.721	0.036	595	304	1.955	0.050	0.649	0.793
No education	0.032	0.010	595	304	1.333	0.301	0.013	0.051
With secondary education or higher	0.769	0.029	595	304	1.649	0.037	0.712	0.826
Never married/in union	0.493	0.027	595	304	1.320	0.055	0.439	0.548
Currently married/in union	0.432	0.026	595	304	1.295	0.061	0.380	0.485
Had sex before age of 18	0.336	0.026	492	252	1.204	0.076	0.285	0.387
Married before age 20	0.168	0.021	379	194	1.117	0.128	0.125	0.211
Currently pregnant	0.038	0.009	595	304	1.191	0.246	0.019	0.056
Children ever born	1.915	0.070	595	304	0.965	0.037	1.774	2.056
Children ever born to women over 40	3.385	0.179	128	66	1.094	0.053	3.027	3.744
Children surviving	1.837	0.068	595	304	0.971	0.037	1.701	1.974
Knowing any contraceptive method	0.993	0.005	260	131	0.933	0.005	0.983	1.003
Knowing any modern contraceptive method	0.993	0.005	260	131	0.933	0.005	0.983	1.003
Currently using any method	0.578	0.033	260	131	1.070	0.057	0.512	0.644
Currently using a modern method	0.578	0.033	260	131	1.070	0.057	0.512	0.644
Currently using pill	0.094	0.019	260	131	1.021	0.197	0.057	0.131
Currently using IUD	0.007	0.005	260	131	0.917	0.682	0.000	0.016
Currently using condoms	0.050	0.027	260	131	1.958	0.536	0.000	0.103
Currently using injectables	0.268	0.038	260	131	1.360	0.140	0.193	0.344
Currently using female sterilisation	0.145	0.023	260	131	1.058	0.160	0.098	0.191
Currently using periodic abstinence	0.000	0.000	260	131	na	na	0.000	0.000
Using public sector source	0.818	0.031	298	151	1.371	0.038	0.756	0.879
Want no more children	0.648	0.035	260	131	1.187	0.054	0.577	0.718
Want to delay at least 2 years	0.099	0.022	260	131	1.159	0.217	0.056	0.142
Ideal number of children	2.397	0.083	592	303	1.373	0.035	2.230	2.564
Mothers received prenatal care for last birth	0.968	0.010	261	133	0.938	0.011	0.947	0.988
Mothers protected against tetanus for last birth	0.807	0.026	261	133	1.069	0.032	0.755	0.860
Mothers received medical asisstance at delivery	0.953	0.018	338	173	1.260	0.019	0.918	0.989
Had diarrhoea in the last 2 weeks	0.075	0.016	326	166	1.109	0.217	0.042	0.107
Treated with oral rehydration salts (ORS)	0.638	0.095	24	12	0.967	0.148	0.449	0.827
Taken to health provider	0.585	0.092	24	12	0.920	0.158	0.400	0.769
Having health card, seen	0.828	0.046	69	35	0.988	0.055	0.736	0.919
Received BCG vaccination	0.987	0.013	69	35	0.933	0.013	0.961	1.013
Received DPT vaccination (3 doses)	0.975	0.017	69	35	0.910	0.018	0.941	1.010
Received polio vaccination (3 doses)	0.878	0.037	69	35	0.934	0.042	0.804	0.953
Received measles vaccination	0.975	0.017	69	35	0.893	0.017	0.941	1.009
Fully immunised	0.878	0.037	69	35	0.934	0.042	0.804	0.953
Height-for-age (below -2SD)	0.291	0.047	151	85	1.264	0.162	0.197	0.386
Weight-for-height (below -2SD)	0.082	0.022	151	85	1.011	0.268	0.038	0.126
Weight-for-age (below -2SD)	0.178	0.034	151	85	1.084	0.194	0.109	0.247
Anaemia children	0.394	0.056	156	87	1.426	0.143	0.281	0.506
Anaemia women	0.146	0.024	314	159	1.188	0.163	0.099	0.194
BMI <18.5	0.145	0.021	294	149	1.016	0.145	0.103	0.186
Had 2+ sexual partners in past 12 months	0.017	0.006	595	304	1.189	0.373	0.004	0.029
Condom use at last sex	0.323	0.210	11	5	1.360	0.651	0.000	0.744
Abstinence among never-married youth (never had sex)	0.423	0.048	170	87	1.262	0.114	0.327	0.519
Sexually active in past 12 months among never-married youth	0.484	0.050	170	87	1.307	0.104	0.383	0.585
Had an HIV test and received results in past 12 months	0.413	0.025	595	304	1.258	0.062	0.363	0.464
Accepting attitudes towards people with HIV	0.326	0.024	585	300	1.218	0.072	0.279	0.373
Total fertility rate (3 years)	3.710	0.246	1,704	869	0.969	0.066	3.219	4.201
Neonatal mortality rate (last 0-9 years)	10.968	3.882	589	303	0.896	0.354	3.205	18.732
Post-neonatal mortality rate (last 0-9 years)	18.333	6.045	583	299	1.165	0.330	6.243	30.424
Infant mortality rate (last 0-9 years)	29.302	7.070	589	303	0.971	0.241	15.162	43.441
Child mortality rate (last 0-9 years)	8.859	4.294	545	280	0.932	0.485	0.272	17.446
Under-five mortality rate (last 0-9 years)	37.901	9.047	590	303	1.070	0.239	19.807	55.995
HIV prevalence (women 15-49)	0.088	0.018	304	151	1.096	0.203	0.052	0.124
HIV prevalence (women 50-64)	0.060	0.028	55	29	0.885	0.477	0.003	0.117
HIV prevalence for youth (women 15-24)	0.038	0.024	112	55	1.288	0.613	0.000	0.086
MEN								
Urban residence	0.653	0.034	299	152	1.231	0.052	0.585	0.721
Literacy	0.906	0.024	299	152	1.411	0.026	0.859	0.954
No education	0.054	0.015	299	152	1.158	0.282	0.023	0.084
Secondary or higher education	0.690	0.037	299	152	1.382	0.054	0.616	0.765
Never married (never in union)	0.537	0.036	299	152	1.260	0.068	0.464	0.610
Currently married (in union)	0.412	0.039	299	152	1.366	0.095	0.334	0.490
Want no more children	0.572	0.054	126	63	1.210	0.094	0.465	0.679
Want to delay next birth at least 2 years	0.176	0.030	126	63	0.886	0.171	0.116	0.236
Ideal number of children	3.205	0.182	299	152	1.410	0.057	2.840	3.569
Had 2+ sexual partners in past 12 months	0.077	0.018	299	152	1.188	0.238	0.040	0.114
Condom use at last sex	0.628	0.107	23	12	1.041	0.171	0.413	0.843
Abstinence among never-married youth (never had sex)	0.456	0.064	83	44	1.166	0.141	0.328	0.585
Sexually active in past 12 months among never-married youth	0.467	0.066	83	44	1.192	0.141	0.335	0.598
Paid for sexual intercourse in past 12 months	0.004	0.004	299	152	1.039	0.983	0.000	0.011
Had an HIV test and received results in past 12 months	0.320	0.034	299	152	1.269	0.107	0.252	0.389
Accepting attitudes towards people with HIV	0.140	0.026	297	151	1.295	0.186	0.088	0.193
HIV prevalence (men 15-49)	0.075	0.020	256	138	1.205	0.266	0.035	0.114
HIV prevalence (men 50-64)	0.037	0.026	50	26	0.966	0.707	0.000	0.088
HIV prevalence for youth (men 15-24)	0.024	0.017	80	44	1.009	0.725	0.000	0.059
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.082	0.016	560	289	1.389	0.197	0.049	0.114
HIV prevalence (men and women 50-64)	0.049	0.019	105	56	0.906	0.392	0.011	0.087
HIV prevalence for youth (men and women 15-24)	0.032	0.019	192	98	1.508	0.602	0.000	0.071

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.657	0.036	782	343	2.142	0.055	0.584	0.730
No education	0.017	0.005	782	343	1.081	0.295	0.007	0.027
With secondary education or higher	0.796	0.029	782	343	2.022	0.037	0.738	0.855
Never married/in union	0.541	0.022	782	343	1.225	0.040	0.497	0.584
Currently married/in union	0.388	0.018	782	343	1.043	0.047	0.352	0.424
Had sex before age of 18	0.346	0.025	662	291	1.377	0.074	0.295	0.397
Married before age 20	0.126	0.020	519	226	1.391	0.161	0.086	0.167
Currently pregnant	0.064	0.011	782	343	1.254	0.172	0.042	0.086
Children ever born	1.954	0.072	782	343	1.176	0.037	1.809	2.098
Children ever born to women over 40	3.364	0.150	171	75	1.084	0.045	3.063	3.665
Children surviving	1.854	0.068	782	343	1.168	0.037	1.718	1.990
Knowing any contraceptive method	1.000	0.000	306	133	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	306	133	na	0.000	1.000	1.000
Currently using any method	0.679	0.026	306	133	0.986	0.039	0.627	0.732
Currently using a modern method	0.670	0.026	306	133	0.968	0.039	0.618	0.722
Currently using pill	0.062	0.014	306	133	0.998	0.222	0.035	0.090
Currently using IUD	0.007	0.005	306	133	1.073	0.755	0.000	0.017
Currently using condoms	0.117	0.022	306	133	1.170	0.184	0.074	0.160
Currently using injectables	0.332	0.032	306	133	1.186	0.096	0.268	0.396
Currently using female sterilisation	0.138	0.024	306	133	1.212	0.174	0.090	0.186
Currently using periodic abstinence	0.005	0.005	306	133	1.203	1.006	0.000	0.014
Using public sector source	0.808	0.030	452	200	1.633	0.038	0.747	0.868
Want no more children	0.610	0.035	306	133	1.254	0.057	0.540	0.680
Want to delay at least 2 years	0.119	0.018	306	133	0.998	0.156	0.082	0.155
Ideal number of children	2.864	0.103	781	343	1.801	0.036	2.657	3.070
Mothers received prenatal care for last birth	0.971	0.009	305	136	0.958	0.009	0.953	0.989
Mothers protected against tetanus for last birth	0.776	0.031	305	136	1.304	0.040	0.715	0.838
Mothers received medical asisstance at delivery	0.933	0.020	371	165	1.396	0.021	0.894	0.973
Had diarrhoea in the last 2 weeks	0.096	0.018	357	160	1.151	0.184	0.061	0.131
Treated with oral rehydration salts (ORS)	0.759	0.056	38	15	0.766	0.073	0.648	0.870
Taken to health provider	0.559	0.091	38	15	1.077	0.162	0.378	0.741
Having health card, seen	0.664	0.059	74	33	1.077	0.089	0.546	0.782
Received BCG vaccination	0.972	0.019	74	33	0.990	0.019	0.934	1.010
Received DPT vaccination (3 doses)	0.814	0.056	74	33	1.243	0.069	0.702	0.927
Received polio vaccination (3 doses)	0.687	0.060	74	33	1.105	0.087	0.567	0.806
Received measles vaccination	0.918	0.031	74	33	0.971	0.034	0.855	0.980
Fully immunised	0.650	0.062	74	33	1.115	0.095	0.526	0.774
Height-for-age (below -2SD)	0.270	0.054	149	69	1.368	0.199	0.162	0.377
Weight-for-height (below -2SD)	0.056	0.021	149	69	1.105	0.375	0.014	0.098
Weight-for-age (below -2SD)	0.121	0.029	149	69	1.069	0.240	0.063	0.179
Anaemia children	0.574	0.043	154	71	1.020	0.075	0.488	0.660
Anaemia women	0.209	0.020	382	167	0.975	0.097	0.168	0.250
BMI <18.5	0.082	0.015	361	158	1.040	0.184	0.052	0.112
Had 2+ sexual partners in past 12 months	0.014	0.005	782	343	1.167	0.353	0.004	0.024
Condom use at last sex	0.805	0.148	11	5	1.164	0.184	0.508	1.102
Abstinence among never-married youth (never had sex)	0.372	0.035	225	100	1.077	0.093	0.303	0.442
Sexually active in past 12 months among never-married youth	0.545	0.035	225	100	1.040	0.064	0.475	0.614
Had an HIV test and received results in past 12 months	0.498	0.025	782	343	1.413	0.051	0.448	0.549
Accepting attitudes towards people with HIV	0.254	0.015	779	342	0.971	0.060	0.224	0.285
Total fertility rate (3 years)	3.374	0.185	2,237	981	0.901	0.055	3.005	3.744
Neonatal mortality rate (last 0-9 years)	16.830	5.765	745	330	1.033	0.343	5.301	28.359
Post-neonatal mortality rate (last 0-9 years)	18.705	6.429	742	329	1.267	0.344	5.848	31.563
Infant mortality rate (last 0-9 years)	35.536	8.870	745	330	1.098	0.250	17.796	53.275
Child mortality rate (last 0-9 years)	8.542	3.210	731	323	0.987	0.376	2.122	14.962
Under-five mortality rate (last 0-9 years)	43.774	10.288	746	331	1.147	0.235	23.199	64.349
HIV prevalence (women 15-49)	0.150	0.024	375	155	1.303	0.160	0.102	0.199
HIV prevalence (women 50-64)	0.094	0.041	63	27	1.111	0.439	0.011	0.176
HIV prevalence for youth (women 15-24)	0.030	0.015	122	50	0.972	0.506	0.000	0.059
MEN								
Urban residence	0.688	0.031	333	151	1.230	0.045	0.626	0.751
Literacy	0.937	0.018	333	151	1.367	0.020	0.900	0.973
No education	0.030	0.015	333	151	1.607	0.501	0.000	0.061
Secondary or higher education	0.753	0.042	333	151	1.778	0.056	0.668	0.837
Never married (never in union)	0.620	0.030	333	151	1.112	0.048	0.561	0.680
Currently married (in union)	0.351	0.029	333	151	1.097	0.082	0.294	0.409
Want no more children	0.434	0.054	120	53	1.190	0.125	0.326	0.542
Want to delay next birth at least 2 years	0.131	0.031	120	53	1.009	0.238	0.069	0.194
Ideal number of children	3.338	0.167	329	149	1.170	0.050	3.004	3.672
Had 2+ sexual partners in past 12 months	0.068	0.015	333	151	1.085	0.220	0.038	0.099
Condom use at last sex	0.738	0.089	24	10	0.974	0.121	0.560	0.917
Abstinence among never-married youth (never had sex)	0.482	0.041	124	56	0.904	0.084	0.401	0.564
Sexually active in past 12 months among never-married youth	0.395	0.039	124	56	0.892	0.100	0.316	0.473
Paid for sexual intercourse in past 12 months	0.028	0.011	333	151	1.215	0.392	0.006	0.050
Had an HIV test and received results in past 12 months	0.337	0.035	333	151	1.334	0.103	0.268	0.406
Accepting attitudes towards people with HIV	0.314	0.032	323	147	1.219	0.101	0.250	0.377
HIV prevalence (men 15-49)	0.095	0.020	307	139	1.174	0.207	0.056	0.135
HIV prevalence (men 50-64)	0.101	0.047	51	24	1.105	0.468	0.006	0.195
HIV prevalence for youth (men 15-24)	0.027	0.015	123	57	1.013	0.551	0.000	0.057
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.124	0.017	682	294	1.364	0.139	0.090	0.159
HIV prevalence (men and women 50-64)	0.097	0.031	114	51	1.120	0.321	0.035	0.160
HIV prevalence for youth (men and women 15-24)	0.028	0.012	245	107	1.110	0.418	0.005	0.052

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \\ & \hline \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.353	0.034	743	835	1.926	0.096	0.285	0.421
No education	0.066	0.011	743	835	1.228	0.169	0.044	0.089
With secondary education or higher	0.511	0.032	743	835	1.754	0.063	0.447	0.576
Never married/in union	0.376	0.024	743	835	1.343	0.064	0.328	0.423
Currently married/in union	0.513	0.026	743	835	1.404	0.050	0.462	0.565
Had sex before age of 18	0.638	0.021	564	635	1.044	0.033	0.596	0.681
Married before age 20	0.450	0.029	416	471	1.174	0.064	0.393	0.507
Currently pregnant	0.068	0.009	743	835	1.022	0.139	0.049	0.087
Children ever born	2.387	0.115	743	835	1.342	0.048	2.156	2.617
Children ever born to women over 40	5.380	0.309	105	116	1.263	0.057	4.763	5.998
Children surviving	2.149	0.114	743	835	1.460	0.053	1.922	2.376
Knowing any contraceptive method	0.994	0.004	378	429	1.024	0.004	0.986	1.002
Knowing any modern contraceptive method	0.994	0.004	378	429	1.024	0.004	0.986	1.002
Currently using any method	0.442	0.028	378	429	1.099	0.064	0.385	0.498
Currently using a modern method	0.417	0.034	378	429	1.339	0.082	0.349	0.485
Currently using pill	0.045	0.013	378	429	1.229	0.293	0.018	0.071
Currently using IUD	0.003	0.003	378	429	1.065	0.998	0.000	0.009
Currently using condoms	0.020	0.006	378	429	0.774	0.281	0.009	0.031
Currently using injectables	0.336	0.034	378	429	1.405	0.102	0.268	0.405
Currently using female sterilisation	0.014	0.006	378	429	1.067	0.469	0.001	0.026
Currently using periodic abstinence	0.000	0.000	378	429	na	na	0.000	0.000
Using public sector source	0.899	0.022	298	328	1.252	0.024	0.855	0.942
Want no more children	0.425	0.033	378	429	1.278	0.077	0.360	0.490
Want to delay at least 2 years	0.252	0.023	378	429	1.032	0.092	0.206	0.298
Ideal number of children	3.261	0.115	737	829	1.444	0.035	3.032	3.490
Mothers received prenatal care for last birth	0.963	0.012	398	448	1.230	0.012	0.940	0.987
Mothers protected against tetanus for last birth	0.612	0.037	398	448	1.496	0.060	0.539	0.686
Mothers received medical asisstance at delivery	0.750	0.038	513	577	1.686	0.051	0.673	0.827
Had diarrhoea in the last 2 weeks	0.318	0.021	481	541	0.972	0.068	0.275	0.361
Treated with oral rehydration salts (ORS)	0.783	0.043	152	172	1.161	0.055	0.696	0.869
Taken to health provider	0.720	0.051	152	172	1.285	0.071	0.618	0.823
Having health card, seen	0.778	0.045	96	108	1.056	0.058	0.688	0.868
Received BCG vaccination	0.947	0.024	96	108	1.043	0.025	0.898	0.995
Received DPT vaccination (3 doses)	0.806	0.052	96	108	1.268	0.064	0.703	0.909
Received polio vaccination (3 doses)	0.780	0.042	96	108	0.996	0.054	0.695	0.865
Received measles vaccination	0.890	0.034	96	108	1.052	0.038	0.822	0.957
Fully immunised	0.734	0.049	96	108	1.076	0.067	0.636	0.832
Height-for-age (below -2SD)	0.239	0.027	222	259	0.907	0.111	0.186	0.292
Weight-for-height (below -2SD)	0.085	0.017	222	259	0.879	0.201	0.051	0.120
Weight-for-age (below -2SD)	0.150	0.028	222	259	1.147	0.186	0.094	0.206
Anaemia children	0.629	0.051	211	247	1.453	0.081	0.527	0.730
Anaemia women	0.329	0.028	335	377	1.108	0.087	0.272	0.386
BMI <18.5	0.176	0.023	301	339	1.048	0.131	0.130	0.222
Had 2+ sexual partners in past 12 months	0.005	0.002	743	835	0.906	0.453	0.001	0.010
Condom use at last sex	0.488	0.264	4	4	0.935	0.541	0.000	1.016
Abstinence among never-married youth (never had sex)	0.243	0.033	214	236	1.118	0.135	0.177	0.308
Sexually active in past 12 months among never-married youth	0.535	0.031	214	236	0.902	0.058	0.473	0.597
Had an HIV test and received results in past 12 months	0.529	0.026	743	835	1.418	0.049	0.477	0.581
Accepting attitudes towards people with HIV	0.192	0.015	739	831	1.036	0.078	0.162	0.222
Total fertility rate (3 years)	4.639	0.331	2,051	2,310	1.327	0.071	3.978	5.300
Neonatal mortality rate (last 0-9 years)	27.119	6.106	950	1,069	1.037	0.225	14.908	39.331
Post-neonatal mortality rate (last 0-9 years)	34.466	8.019	946	1,064	1.198	0.233	18.429	50.504
Infant mortality rate (last 0-9 years)	61.585	8.821	951	1,071	0.981	0.143	43.943	79.228
Child mortality rate (last 0-9 years)	38.014	9.331	901	1,017	1.175	0.245	19.353	56.676
Under-five mortality rate (last 0-9 years)	97.259	12.651	957	1,078	1.016	0.130	71.957	122.560
HIV prevalence (women 15-49)	0.198	0.018	329	364	0.829	0.092	0.162	0.235
HIV prevalence (women 50-64)	0.102	0.040	64	69	1.047	0.392	0.022	0.182
HIV prevalence for youth (women 15-24)	0.046	0.016	151	166	0.949	0.353	0.014	0.078
MEN								
Urban residence	0.311	0.038	281	316	1.381	0.123	0.234	0.388
Literacy	0.820	0.028	281	316	1.203	0.034	0.764	0.875
No education	0.121	0.024	281	316	1.223	0.197	0.074	0.169
Secondary or higher education	0.584	0.034	281	316	1.143	0.058	0.517	0.652
Never married (never in union)	0.551	0.033	281	316	1.104	0.060	0.486	0.617
Currently married (in union)	0.398	0.034	281	316	1.157	0.085	0.330	0.466
Want no more children	0.378	0.075	110	126	1.596	0.197	0.229	0.528
Want to delay next birth at least 2 years	0.142	0.042	110	126	1.267	0.299	0.057	0.227
Ideal number of children	4.357	0.160	279	314	0.979	0.037	4.036	4.677
Had 2+ sexual partners in past 12 months	0.096	0.020	281	316	1.124	0.207	0.056	0.135
Condom use at last sex	0.450	0.098	28	30	1.022	0.218	0.254	0.646
Abstinence among never-married youth (never had sex)	0.286	0.056	119	132	1.336	0.195	0.175	0.398
Sexually active in past 12 months among never-married youth	0.636	0.057	119	132	1.287	0.090	0.522	0.750
Paid for sexual intercourse in past 12 months	0.015	0.007	281	316	1.001	0.480	0.001	0.030
Had an HIV test and received results in past 12 months	0.314	0.035	281	316	1.254	0.111	0.245	0.384
Accepting attitudes towards people with HIV	0.354	0.034	278	313	1.193	0.097	0.286	0.423
HIV prevalence (men 15-49)	0.135	0.023	249	290	1.049	0.169	0.089	0.180
HIV prevalence (men 50-64)	0.208	0.087	27	29	1.090	0.418	0.034	0.383
HIV prevalence for youth (men 15-24)	0.019	0.014	114	132	1.073	0.734	0.000	0.046
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.170	0.017	578	654	1.071	0.098	0.137	0.204
HIV prevalence (men and women 50-64)	0.133	0.036	91	98	1.009	0.271	0.061	0.206
HIV prevalence for youth (men and women 15-24)	0.034	0.011	265	298	0.955	0.314	0.013	0.055

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.983	0.009	986	2,202	2.225	0.009	0.965	1.002
No education	0.020	0.004	986	2,202	0.998	0.220	0.011	0.029
With secondary education or higher	0.892	0.016	986	2,202	1.593	0.018	0.861	0.924
Never married/in union	0.612	0.019	986	2,202	1.191	0.030	0.575	0.649
Currently married/in union	0.330	0.019	986	2,202	1.299	0.059	0.291	0.369
Had sex before age of 18	0.260	0.019	818	1,827	1.265	0.075	0.221	0.299
Married before age 20	0.080	0.013	585	1,309	1.132	0.159	0.054	0.105
Currently pregnant	0.064	0.007	986	2,202	0.907	0.110	0.050	0.078
Children ever born	1.371	0.064	986	2,202	1.327	0.047	1.243	1.499
Children ever born to women over 40	2.712	0.130	161	362	0.965	0.048	2.451	2.973
Children surviving	1.306	0.062	986	2,202	1.343	0.048	1.182	1.431
Knowing any contraceptive method	0.997	0.003	330	727	0.978	0.003	0.991	1.003
Knowing any modern contraceptive method	0.997	0.003	330	727	0.978	0.003	0.991	1.003
Currently using any method	0.610	0.030	330	727	1.124	0.050	0.550	0.671
Currently using a modern method	0.605	0.030	330	727	1.110	0.050	0.545	0.665
Currently using pill	0.071	0.016	330	727	1.118	0.222	0.040	0.103
Currently using IUD	0.032	0.008	330	727	0.856	0.260	0.015	0.048
Currently using condoms	0.153	0.022	330	727	1.093	0.142	0.110	0.197
Currently using injectables	0.221	0.026	330	727	1.132	0.117	0.169	0.273
Currently using female sterilisation	0.090	0.014	330	727	0.915	0.161	0.061	0.118
Currently using periodic abstinence	0.000	0.000	330	727	na	na	0.000	0.000
Using public sector source	0.567	0.031	544	1,227	1.434	0.054	0.506	0.628
Want no more children	0.480	0.027	330	727	0.974	0.056	0.426	0.534
Want to delay at least 2 years	0.229	0.023	330	727	1.011	0.102	0.182	0.276
Ideal number of children	2.976	0.065	980	2,190	1.266	0.022	2.846	3.105
Mothers received prenatal care for last birth	0.957	0.010	348	771	0.891	0.010	0.938	0.977
Mothers protected against tetanus for last birth	0.622	0.034	348	771	1.315	0.055	0.554	0.691
Mothers received medical asisstance at delivery	0.962	0.009	400	887	0.911	0.009	0.944	0.980
Had diarrhoea in the last 2 weeks	0.164	0.018	387	858	0.969	0.113	0.127	0.201
Treated with oral rehydration salts (ORS)	0.755	0.068	65	141	1.203	0.090	0.620	0.890
Taken to health provider	0.565	0.069	65	141	1.067	0.123	0.426	0.703
Having health card, seen	0.466	0.050	76	165	0.869	0.108	0.365	0.567
Received BCG vaccination	0.834	0.046	76	165	1.059	0.055	0.742	0.926
Received DPT vaccination (3 doses)	0.644	0.068	76	165	1.225	0.106	0.507	0.780
Received polio vaccination (3 doses)	0.526	0.053	76	165	0.906	0.100	0.421	0.632
Received measles vaccination	0.751	0.051	76	165	1.011	0.068	0.649	0.853
Fully immunised	0.396	0.050	76	165	0.886	0.128	0.295	0.497
Height-for-age (below -2SD)	0.128	0.032	123	265	1.019	0.249	0.064	0.192
Weight-for-height (below -2SD)	0.035	0.014	123	265	0.873	0.402	0.007	0.063
Weight-for-age (below -2SD)	0.091	0.026	123	265	1.035	0.281	0.040	0.142
Anaemia children	0.427	0.047	125	269	1.109	0.111	0.333	0.522
Anaemia women	0.158	0.017	397	889	0.945	0.109	0.124	0.193
$\mathrm{BMI}<18.5$	0.097	0.020	376	838	1.281	0.202	0.058	0.136
Had 2+ sexual partners in past 12 months	0.037	0.006	986	2,202	1.071	0.174	0.024	0.050
Condom use at last sex	0.770	0.067	34	82	0.919	0.087	0.635	0.904
Abstinence among never-married youth (never had sex)	0.338	0.033	351	787	1.290	0.097	0.272	0.403
Sexually active in past 12 months among never-married youth	0.586	0.028	351	787	1.049	0.047	0.530	0.641
Had an HIV test and received results in past 12 months	0.477	0.018	986	2,202	1.130	0.038	0.441	0.513
Accepting attitudes towards people with HIV	0.267	0.014	982	2,195	1.008	0.053	0.238	0.295
Total fertility rate (3 years)	2.601	0.193	2,859	6,389	1.351	0.074	2.215	2.987
Neonatal mortality rate (last 0-9 years)	11.849	3.959	739	1,649	0.923	0.334	3.930	19.768
Post-neonatal mortality rate (last 0-9 years)	14.914	3.851	735	1,640	0.856	0.258	7.211	22.616
Infant mortality rate (last 0-9 years)	26.762	5.987	741	1,652	0.971	0.224	14.788	38.736
Child mortality rate (last 0-9 years)	14.991	4.606	710	1,595	0.974	0.307	5.779	24.204
Under-five mortality rate (last 0-9 years)	41.352	6.360	742	1,652	0.803	0.154	28.632	54.072
HIV prevalence (women 15-49)	0.122	0.023	372	940	1.374	0.192	0.075	0.169
HIV prevalence (women 50-64)	0.139	0.054	42	93	1.001	0.389	0.031	0.247
HIV prevalence for youth (women 15-24)	0.028	0.014	151	385	1.031	0.496	0.000	0.056
MEN								
Urban residence	0.981	0.003	415	1,023	0.445	0.003	0.975	0.987
Literacy	0.966	0.009	415	1,023	1.047	0.010	0.948	0.985
No education	0.041	0.011	415	1,023	1.139	0.271	0.019	0.063
Secondary or higher education	0.827	0.028	415	1,023	1.512	0.034	0.771	0.884
Never married (never in union)	0.667	0.027	415	1,023	1.167	0.041	0.613	0.721
Currently married (in union)	0.300	0.027	415	1,023	1.179	0.088	0.247	0.354
Want no more children	0.454	0.044	129	307	0.998	0.097	0.367	0.542
Want to delay next birth at least 2 years	0.185	0.037	129	307	1.068	0.198	0.112	0.258
Ideal number of children	3.155	0.177	412	1,016	1.463	0.056	2.801	3.509
Had 2+ sexual partners in past 12 months	0.105	0.019	415	1,023	1.276	0.183	0.067	0.144
Condom use at last sex	0.778	0.066	43	108	1.032	0.085	0.646	0.911
Abstinence among never-married youth (never had sex)	0.252	0.039	136	341	1.046	0.155	0.174	0.331
Sexually active in past 12 months among never-married youth	0.598	0.047	136	341	1.122	0.079	0.503	0.693
Paid for sexual intercourse in past 12 months	0.011	0.005	415	1,023	1.073	0.501	0.000	0.022
Had an HIV test and received results in past 12 months	0.470	0.026	415	1,023	1.074	0.056	0.417	0.523
Accepting attitudes towards people with HIV	0.218	0.025	412	1,015	1.211	0.113	0.169	0.268
HIV prevalence (men 15-49)	0.116	0.028	300	927	1.492	0.239	0.061	0.171
HIV prevalence (men 50-64)	0.087	0.055	24	80	0.943	0.634	0.000	0.198
HIV prevalence for youth (men 15-24)	0.018	0.012	104	334	0.952	0.698	0.000	0.042
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.119	0.020	672	1,868	1.565	0.165	0.080	0.158
HIV prevalence (men and women 50-64)	0.115	0.037	66	172	0.935	0.321	0.041	0.189
HIV prevalence for youth (men and women 15-24)	0.023	0.011	255	719	1.145	0.466	0.002	0.045

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.425	0.043	584	258	2.090	0.101	0.339	0.511
No education	0.219	0.033	584	258	1.914	0.150	0.153	0.284
With secondary education or higher	0.559	0.035	584	258	1.696	0.062	0.489	0.629
Never married/in union	0.534	0.029	584	258	1.398	0.054	0.477	0.592
Currently married/in union	0.418	0.027	584	258	1.341	0.066	0.363	0.472
Had sex before age of 18	0.528	0.026	494	218	1.156	0.049	0.476	0.580
Married before age 20	0.166	0.031	386	170	1.653	0.189	0.103	0.229
Currently pregnant	0.085	0.013	584	258	1.090	0.148	0.060	0.111
Children ever born	2.514	0.103	584	258	1.139	0.041	2.307	2.720
Children ever born to women over 40	4.612	0.254	107	46	1.148	0.055	4.104	5.119
Children surviving	2.409	0.095	584	258	1.090	0.040	2.219	2.600
Knowing any contraceptive method	0.996	0.003	254	108	0.703	0.003	0.991	1.002
Knowing any modern contraceptive method	0.996	0.003	254	108	0.703	0.003	0.991	1.002
Currently using any method	0.519	0.039	254	108	1.247	0.076	0.441	0.598
Currently using a modern method	0.516	0.038	254	108	1.222	0.075	0.439	0.592
Currently using pill	0.075	0.019	254	108	1.121	0.248	0.038	0.112
Currently using IUD	0.005	0.005	254	108	1.086	0.981	0.000	0.014
Currently using condoms	0.149	0.032	254	108	1.409	0.212	0.085	0.212
Currently using injectables	0.274	0.032	254	108	1.153	0.118	0.209	0.338
Currently using female sterilisation	0.010	0.007	254	108	1.105	0.707	0.000	0.023
Currently using periodic abstinence	0.000	0.000	254	108	na	na	0.000	0.000
Using public sector source	0.849	0.025	297	134	1.194	0.029	0.799	0.899
Want no more children	0.613	0.036	254	108	1.171	0.059	0.541	0.685
Want to delay at least 2 years	0.207	0.030	254	108	1.164	0.144	0.147	0.266
Ideal number of children	3.542	0.155	575	254	1.524	0.044	3.232	3.853
Mothers received prenatal care for last birth	0.952	0.014	313	133	1.155	0.015	0.923	0.980
Mothers protected against tetanus for last birth	0.770	0.031	313	133	1.301	0.041	0.707	0.833
Mothers received medical asisstance at delivery	0.740	0.030	430	179	1.164	0.041	0.680	0.800
Had diarrhoea in the last 2 weeks	0.124	0.021	408	170	1.184	0.168	0.082	0.166
Treated with oral rehydration salts (ORS)	0.594	0.070	50	21	0.939	0.118	0.454	0.734
Taken to health provider	0.531	0.079	50	21	1.034	0.149	0.373	0.689
Having health card, seen	0.529	0.047	80	32	0.813	0.090	0.434	0.624
Received BCG vaccination	0.916	0.034	80	32	1.060	0.037	0.847	0.985
Received DPT vaccination (3 doses)	0.787	0.060	80	32	1.244	0.076	0.667	0.906
Received polio vaccination (3 doses)	0.607	0.062	80	32	1.088	0.102	0.482	0.731
Received measles vaccination	0.882	0.043	80	32	1.154	0.049	0.796	0.969
Fully immunised	0.560	0.066	80	32	1.136	0.118	0.428	0.692
Height-for-age (below -2SD)	0.194	0.030	203	93	0.994	0.153	0.135	0.253
Weight-for-height (below -2SD)	0.061	0.020	203	93	1.129	0.333	0.020	0.101
Weight-for-age (below -2SD)	0.119	0.024	203	93	0.983	0.199	0.072	0.166
Anaemia children	0.612	0.042	193	89	1.121	0.068	0.529	0.695
Anaemia women	0.158	0.021	266	120	0.965	0.135	0.116	0.201
BMI <18.5	0.120	0.025	244	109	1.209	0.208	0.070	0.170
Had 2+ sexual partners in past 12 months	0.072	0.019	584	258	1.807	0.268	0.034	0.111
Condom use at last sex	0.463	0.087	48	19	1.193	0.188	0.289	0.638
Abstinence among never-married youth (never had sex)	0.154	0.029	150	68	0.989	0.190	0.095	0.212
Sexually active in past 12 months among never-married youth	0.704	0.049	150	68	1.300	0.069	0.606	0.801
Had an HIV test and received results in past 12 months	0.498	0.027	584	258	1.287	0.054	0.445	0.552
Accepting attitudes towards people with HIV	0.300	0.036	572	254	1.856	0.119	0.228	0.371
Total fertility rate (3 years)	4.478	0.336	1,688	746	1.110	0.075	3.807	5.149
Neonatal mortality rate (last 0-9 years)	24.726	7.310	827	343	1.278	0.296	10.105	39.346
Post-neonatal mortality rate (last 0-9 years)	14.110	4.898	831	344	1.033	0.347	4.314	23.906
Infant mortality rate (last 0-9 years)	38.836	7.917	827	343	1.091	0.204	23.001	54.671
Child mortality rate (last 0-9 years)	6.096	2.608	805	332	0.903	0.428	0.880	11.312
Under-five mortality rate (last 0-9 years)	44.695	8.577	827	343	1.093	0.192	27.541	61.849
HIV prevalence (women 15-49)	0.089	0.022	253	112	1.209	0.244	0.046	0.133
HIV prevalence (women 50-64)	0.089	0.034	59	25	0.902	0.379	0.021	0.156
HIV prevalence for youth (women 15-24)	0.022	0.016	88	40	1.004	0.716	0.000	0.054
MEN								
Urban residence	0.351	0.038	252	104	1.272	0.109	0.274	0.427
Literacy	0.712	0.038	252	104	1.325	0.053	0.636	0.788
No education	0.302	0.036	252	104	1.256	0.121	0.229	0.374
Secondary or higher education	0.446	0.043	252	104	1.354	0.095	0.361	0.531
Never married (never in union)	0.607	0.032	252	104	1.038	0.053	0.543	0.671
Currently married (in union)	0.370	0.034	252	104	1.102	0.091	0.303	0.437
Want no more children	0.459	0.081	91	39	1.534	0.177	0.296	0.621
Want to delay next birth at least 2 years	0.123	0.039	91	39	1.117	0.314	0.046	0.201
Ideal number of children	3.186	0.262	246	102	1.284	0.082	2.661	3.711
Had 2+ sexual partners in past 12 months	0.129	0.031	252	104	1.459	0.240	0.067	0.191
Condom use at last sex	0.747	0.082	35	13	1.092	0.109	0.583	0.910
Abstinence among never-married youth (never had sex)	0.266	0.056	84	35	1.155	0.211	0.154	0.378
Sexually active in past 12 months among never-married youth	0.570	0.069	84	35	1.270	0.122	0.431	0.709
Paid for sexual intercourse in past 12 months	0.004	0.004	252	104	1.009	0.984	0.000	0.012
Had an HIV test and received results in past 12 months	0.303	0.038	252	104	1.297	0.124	0.228	0.378
Accepting attitudes towards people with HIV	0.289	0.055	246	102	1.875	0.189	0.180	0.398
HIV prevalence (men 15-49)	0.106	0.023	207	95	1.079	0.219	0.060	0.152
HIV prevalence (men 50-64)	0.056	0.053	36	16	1.356	0.956	0.000	0.162
HIV prevalence for youth (men 15-24)	0.018	0.018	69	32	1.110	1.000	0.000	0.054
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.097	0.018	460	206	1.281	0.183	0.061	0.132
HIV prevalence (men and women 50-64)	0.076	0.027	95	41	0.984	0.354	0.022	0.130
HIV prevalence for youth (men and women 15-24)	0.020	0.012	157	73	1.063	0.593	0.000	0.044

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \\ & \hline \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.162	0.032	695	894	2.284	0.198	0.098	0.226
No education	0.048	0.012	695	894	1.470	0.248	0.024	0.072
With secondary education or higher	0.659	0.027	695	894	1.500	0.041	0.605	0.713
Never married/in union	0.736	0.021	695	894	1.278	0.029	0.693	0.779
Currently married/in union	0.206	0.019	695	894	1.246	0.093	0.168	0.244
Had sex before age of 18	0.385	0.031	504	649	1.426	0.080	0.323	0.447
Married before age 20	0.067	0.012	383	494	0.974	0.187	0.042	0.092
Currently pregnant	0.098	0.011	695	894	1.007	0.116	0.075	0.121
Children ever born	2.297	0.120	695	894	1.270	0.052	2.057	2.536
Children ever born to women over 40	5.213	0.246	123	156	1.024	0.047	4.722	5.705
Children surviving	2.095	0.107	695	894	1.243	0.051	1.882	2.309
Knowing any contraceptive method	0.993	0.007	145	184	1.029	0.007	0.978	1.007
Knowing any modern contraceptive method	0.993	0.007	145	184	1.029	0.007	0.978	1.007
Currently using any method	0.503	0.042	145	184	0.999	0.083	0.419	0.586
Currently using a modern method	0.503	0.042	145	184	0.999	0.083	0.419	0.586
Currently using pill	0.055	0.017	145	184	0.875	0.301	0.022	0.089
Currently using IUD	0.000	0.000	145	184	na	na	0.000	0.000
Currently using condoms	0.181	0.030	145	184	0.943	0.167	0.120	0.241
Currently using injectables	0.221	0.034	145	184	0.992	0.155	0.153	0.290
Currently using female sterilisation	0.034	0.014	145	184	0.958	0.426	0.005	0.063
Currently using periodic abstinence	0.000	0.000	145	184	na	na	0.000	0.000
Using public sector source	0.808	0.027	271	349	1.122	0.033	0.754	0.862
Want no more children	0.568	0.040	145	184	0.970	0.071	0.488	0.648
Want to delay at least 2 years	0.181	0.030	145	184	0.925	0.164	0.121	0.240
Ideal number of children	4.105	0.115	660	851	1.132	0.028	3.875	4.336
Mothers received prenatal care for last birth	0.981	0.007	341	440	0.970	0.007	0.966	0.995
Mothers protected against tetanus for last birth	0.603	0.032	341	440	1.213	0.053	0.539	0.667
Mothers received medical asisstance at delivery	0.859	0.025	467	598	1.401	0.029	0.809	0.910
Had diarrhoea in the last 2 weeks	0.150	0.017	438	561	1.018	0.114	0.116	0.184
Treated with oral rehydration salts (ORS)	0.665	0.059	66	84	0.987	0.089	0.547	0.784
Taken to health provider	0.677	0.059	66	84	1.008	0.087	0.559	0.795
Having health card, seen	0.741	0.054	94	123	1.235	0.073	0.632	0.850
Received BCG vaccination	0.970	0.017	94	123	0.985	0.018	0.935	1.004
Received DPT vaccination (3 doses)	0.926	0.027	94	123	0.998	0.029	0.873	0.980
Received polio vaccination (3 doses)	0.791	0.040	94	123	0.972	0.050	0.711	0.870
Received measles vaccination	0.957	0.020	94	123	0.941	0.020	0.918	0.996
Fully immunised	0.747	0.054	94	123	1.238	0.072	0.639	0.856
Height-for-age (below -2SD)	0.365	0.034	261	371	1.096	0.092	0.298	0.433
Weight-for-height (below -2SD)	0.054	0.013	261	371	0.963	0.240	0.028	0.081
Weight-for-age (below -2SD)	0.163	0.025	261	371	1.137	0.154	0.113	0.213
Anaemia children	0.351	0.029	255	360	0.889	0.084	0.292	0.410
Anaemia women	0.165	0.020	365	469	1.054	0.124	0.124	0.205
BMI <18.5	0.236	0.029	323	414	1.208	0.121	0.179	0.293
Had 2+ sexual partners in past 12 months	0.008	0.003	695	894	0.968	0.402	0.002	0.015
Condom use at last sex	0.435	0.311	5	7	1.189	0.714	0.000	1.058
Abstinence among never-married youth (never had sex)	0.435	0.030	304	390	1.053	0.069	0.375	0.495
Sexually active in past 12 months among never-married youth	0.437	0.029	304	390	1.032	0.067	0.378	0.496
Had an HIV test and received results in past 12 months	0.531	0.020	695	894	1.064	0.038	0.491	0.572
Accepting attitudes towards people with HIV	0.312	0.019	693	892	1.077	0.061	0.274	0.350
Total fertility rate (3 years)	5.311	0.310	1,899	2,444	1.145	0.058	4.692	5.931
Neonatal mortality rate (last 0-9 years)	21.839	6.797	847	1,071	1.210	0.311	8.245	35.433
Post-neonatal mortality rate (last 0-9 years)	31.196	4.439	844	1,068	0.760	0.142	22.319	40.074
Infant mortality rate (last 0-9 years)	53.035	8.135	849	1,074	1.020	0.153	36.766	69.305
Child mortality rate (last 0-9 years)	27.941	8.643	809	1,024	1.144	0.309	10.656	45.226
Under-five mortality rate (last 0-9 years)	79.494	11.107	855	1,082	1.090	0.140	57.281	101.707
HIV prevalence (women 15-49)	0.221	0.026	365	420	1.175	0.116	0.170	0.272
HIV prevalence (women 50-64)	0.139	0.038	61	68	0.853	0.273	0.063	0.215
HIV prevalence for youth (women 15-24)	0.027	0.012	164	189	0.927	0.433	0.004	0.051
MEN								
Urban residence	0.195	0.032	255	328	1.297	0.165	0.131	0.260
Literacy	0.826	0.026	255	328	1.072	0.031	0.775	0.877
No education	0.136	0.027	255	328	1.256	0.199	0.082	0.190
Secondary or higher education	0.568	0.039	255	328	1.252	0.069	0.490	0.645
Never married (never in union)	0.858	0.026	255	328	1.178	0.030	0.806	0.909
Currently married (in union)	0.128	0.025	255	328	1.170	0.191	0.079	0.178
Want no more children	0.452	0.098	31	42	1.071	0.216	0.257	0.647
Want to delay next birth at least 2 years	0.138	0.066	31	42	1.056	0.484	0.005	0.270
Ideal number of children	4.885	0.256	254	327	1.201	0.052	4.372	5.397
Had 2+ sexual partners in past 12 months	0.119	0.020	255	328	0.977	0.167	0.079	0.158
Condom use at last sex	0.827	0.078	30	39	1.109	0.095	0.670	0.983
Abstinence among never-married youth (never had sex)	0.410	0.048	148	188	1.180	0.117	0.314	0.505
Sexually active in past 12 months among never-married youth	0.464	0.048	148	188	1.160	0.103	0.369	0.560
Paid for sexual intercourse in past 12 months	0.007	0.005	255	328	0.899	0.668	0.000	0.017
Had an HIV test and received results in past 12 months	0.360	0.034	255	328	1.114	0.093	0.293	0.427
Accepting attitudes towards people with HIV	0.324	0.038	254	327	1.301	0.118	0.247	0.400
HIV prevalence (men 15-49)	0.066	0.015	236	304	0.957	0.236	0.035	0.097
HIV prevalence (men 50-64)	0.307	0.101	23	27	1.029	0.330	0.104	0.509
HIV prevalence for youth (men 15-24)	0.000	0.000	137	174	na	na	0.000	0.000
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.156	0.016	601	724	1.086	0.103	0.123	0.188
HIV prevalence (men and women 50-64)	0.186	0.042	84	95	0.981	0.225	0.102	0.270
HIV prevalence for youth (men and women 15-24)	0.014	0.006	301	363	0.869	0.417	0.002	0.026

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.447	0.043	535	225	2.015	0.097	0.360	0.534
No education	0.172	0.024	535	225	1.465	0.139	0.124	0.220
With secondary education or higher	0.590	0.030	535	225	1.407	0.051	0.530	0.649
Never married/in union	0.453	0.031	535	225	1.431	0.068	0.391	0.515
Currently married/in union	0.487	0.035	535	225	1.615	0.072	0.417	0.557
Had sex before age of 18	0.487	0.027	440	185	1.121	0.055	0.434	0.541
Married before age 20	0.192	0.020	358	152	0.938	0.102	0.153	0.231
Currently pregnant	0.086	0.014	535	225	1.174	0.165	0.058	0.115
Children ever born	2.486	0.111	535	225	1.225	0.045	2.265	2.707
Children ever born to women over 40	4.222	0.270	121	53	1.438	0.064	3.682	4.761
Children surviving	2.340	0.100	535	225	1.169	0.043	2.140	2.540
Knowing any contraceptive method	1.000	0.000	267	110	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	267	110	na	0.000	1.000	1.000
Currently using any method	0.570	0.030	267	110	0.992	0.053	0.509	0.630
Currently using a modern method	0.570	0.030	267	110	0.992	0.053	0.509	0.630
Currently using pill	0.068	0.015	267	110	0.981	0.223	0.037	0.098
Currently using IUD	0.003	0.003	267	110	0.946	1.000	0.000	0.010
Currently using condoms	0.121	0.027	267	110	1.337	0.222	0.067	0.174
Currently using injectables	0.256	0.033	267	110	1.238	0.129	0.190	0.323
Currently using female sterilisation	0.091	0.024	267	110	1.378	0.267	0.043	0.140
Currently using periodic abstinence	0.000	0.000	267	110	na	na	0.000	0.000
Using public sector source	0.866	0.033	296	123	1.660	0.038	0.800	0.932
Want no more children	0.664	0.027	267	110	0.940	0.041	0.609	0.718
Want to delay at least 2 years	0.135	0.026	267	110	1.215	0.188	0.084	0.186
Ideal number of children	3.054	0.102	531	224	1.306	0.034	2.849	3.258
Mothers received prenatal care for last birth	0.888	0.024	256	107	1.218	0.027	0.840	0.936
Mothers protected against tetanus for last birth	0.741	0.029	256	107	1.060	0.039	0.683	0.800
Mothers received medical asisstance at delivery	0.762	0.036	348	149	1.348	0.047	0.691	0.833
Had diarrhoea in the last 2 weeks	0.147	0.017	333	143	0.903	0.119	0.112	0.182
Treated with oral rehydration salts (ORS)	0.823	0.067	50	21	1.263	0.081	0.689	0.957
Taken to health provider	0.534	0.079	50	21	1.094	0.148	0.376	0.691
Having health card, seen	0.693	0.060	68	27	1.049	0.087	0.573	0.813
Received BCG vaccination	0.944	0.026	68	27	0.922	0.028	0.892	0.997
Received DPT vaccination (3 doses)	0.879	0.047	68	27	1.170	0.054	0.785	0.974
Received polio vaccination (3 doses)	0.782	0.056	68	27	1.101	0.072	0.669	0.894
Received measles vaccination	0.873	0.046	68	27	1.113	0.053	0.780	0.965
Fully immunised	0.738	0.060	68	27	1.109	0.082	0.617	0.859
Height-for-age (below -2SD)	0.269	0.038	154	73	0.993	0.142	0.192	0.345
Weight-for-height (below -2SD)	0.104	0.027	154	73	1.096	0.263	0.049	0.159
Weight-for-age (below -2SD)	0.181	0.035	154	73	1.146	0.195	0.110	0.251
Anaemia children	0.377	0.033	165	79	0.831	0.087	0.312	0.443
Anaemia women	0.206	0.032	259	114	1.296	0.155	0.142	0.270
$\mathrm{BMI}<18.5$	0.137	0.021	235	103	0.941	0.151	0.095	0.178
Had 2+ sexual partners in past 12 months	0.052	0.009	535	225	0.966	0.178	0.034	0.071
Condom use at last sex	0.628	0.125	27	12	1.301	0.199	0.378	0.878
Abstinence among never-married youth (never had sex)	0.330	0.048	122	51	1.113	0.144	0.235	0.425
Sexually active in past 12 months among never-married youth	0.545	0.060	122	51	1.311	0.109	0.426	0.664
Had an HIV test and received results in past 12 months	0.503	0.028	535	225	1.302	0.056	0.447	0.560
Accepting attitudes towards people with HIV	0.194	0.023	529	222	1.350	0.120	0.147	0.240
Total fertility rate (3 years)	4.620	0.359	1,529	644	1.476	0.078	3.901	5.338
Neonatal mortality rate (last 0-9 years)	29.582	7.450	664	282	0.935	0.252	14.682	44.482
Post-neonatal mortality rate (last 0-9 years)	11.708	4.958	658	279	1.177	0.423	1.793	21.623
Infant mortality rate (last 0-9 years)	41.290	7.412	664	282	0.843	0.180	26.466	56.114
Child mortality rate (last 0-9 years)	5.051	2.462	646	274	0.828	0.488	0.126	9.975
Under-five mortality rate (last 0-9 years)	46.132	7.666	664	282	0.836	0.166	30.799	61.465
HIV prevalence (women 15-49)	0.069	0.016	245	104	1.004	0.236	0.037	0.102
HIV prevalence (women 50-64)	0.073	0.029	57	22	0.848	0.403	0.014	0.132
HIV prevalence for youth (women 15-24)	0.027	0.015	87	36	0.870	0.557	0.000	0.058
MEN								
Urban residence	0.352	0.032	256	103	1.081	0.092	0.287	0.416
Literacy	0.711	0.037	256	103	1.292	0.052	0.638	0.785
No education	0.192	0.028	256	103	1.148	0.148	0.135	0.248
Secondary or higher education	0.489	0.045	256	103	1.450	0.093	0.398	0.580
Never married (never in union)	0.559	0.039	256	103	1.252	0.070	0.481	0.637
Currently married (in union)	0.357	0.034	256	103	1.136	0.096	0.289	0.425
Want no more children	0.585	0.064	91	37	1.223	0.109	0.458	0.713
Want to delay next birth at least 2 years	0.107	0.031	91	37	0.953	0.290	0.045	0.169
Ideal number of children	3.556	0.223	254	103	0.998	0.063	3.110	4.003
Had 2+ sexual partners in past 12 months	0.056	0.018	256	103	1.247	0.322	0.020	0.092
Condom use at last sex	0.439	0.197	14	6	1.378	0.448	0.046	0.832
Abstinence among never-married youth (never had sex)	0.268	0.063	79	31	1.245	0.234	0.143	0.393
Sexually active in past 12 months among never-married youth	0.647	0.074	79	31	1.352	0.114	0.500	0.794
Paid for sexual intercourse in past 12 months	0.000	0.000	256	103	na	na	0.000	0.000
Had an HIV test and received results in past 12 months	0.441	0.039	256	103	1.244	0.088	0.363	0.518
Accepting attitudes towards people with HIV	0.130	0.020	253	102	0.942	0.154	0.090	0.170
HIV prevalence (men 15-49)	0.077	0.019	229	96	1.056	0.242	0.040	0.115
HIV prevalence (men 50-64)	0.090	0.040	54	25	1.008	0.441	0.011	0.169
HIV prevalence for youth (men 15-24)	0.039	0.021	86	36	0.995	0.538	0.000	0.080
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.073	0.013	474	199	1.120	0.184	0.046	0.100
HIV prevalence (men and women 50-64)	0.082	0.024	111	48	0.908	0.289	0.034	0.129
HIV prevalence for youth (men and women 15-24)	0.033	0.012	173	72	0.914	0.377	0.008	0.058

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.062	0.022	725	884	2.490	0.362	0.017	0.107
No education	0.044	0.013	725	884	1.660	0.287	0.019	0.070
With secondary education or higher	0.710	0.022	725	884	1.326	0.031	0.666	0.755
Never married/in union	0.747	0.018	725	884	1.111	0.024	0.711	0.783
Currently married/in union	0.211	0.019	725	884	1.240	0.089	0.174	0.249
Had sex before age of 18	0.266	0.025	524	632	1.293	0.094	0.216	0.316
Married before age 20	0.075	0.015	413	496	1.161	0.202	0.045	0.105
Currently pregnant	0.063	0.008	725	884	0.835	0.120	0.048	0.078
Children ever born	1.841	0.094	725	884	1.200	0.051	1.653	2.029
Children ever born to women over 40	3.579	0.241	148	176	1.174	0.067	3.098	4.061
Children surviving	1.740	0.092	725	884	1.221	0.053	1.557	1.923
Knowing any contraceptive method	1.000	0.000	157	187	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	157	187	na	0.000	1.000	1.000
Currently using any method	0.430	0.050	157	187	1.270	0.117	0.329	0.531
Currently using a modern method	0.423	0.048	157	187	1.202	0.112	0.328	0.519
Currently using pill	0.029	0.014	157	187	1.070	0.496	0.000	0.058
Currently using IUD	0.014	0.010	157	187	1.079	0.718	0.000	0.035
Currently using condoms	0.151	0.029	157	187	1.015	0.193	0.092	0.209
Currently using injectables	0.201	0.029	157	187	0.913	0.146	0.143	0.260
Currently using female sterilisation	0.023	0.011	157	187	0.908	0.478	0.001	0.044
Currently using periodic abstinence	0.007	0.006	157	187	0.991	0.978	0.000	0.019
Using public sector source	0.832	0.028	273	328	1.214	0.033	0.777	0.887
Want no more children	0.528	0.039	157	187	0.988	0.075	0.449	0.607
Want to delay at least 2 years	0.122	0.028	157	187	1.084	0.233	0.065	0.179
Ideal number of children	3.298	0.078	717	873	0.984	0.024	3.142	3.454
Mothers received prenatal care for last birth	0.992	0.005	287	350	1.008	0.005	0.982	1.003
Mothers protected against tetanus for last birth	0.640	0.050	287	350	1.756	0.078	0.540	0.739
Mothers received medical asisstance at delivery	0.870	0.023	372	454	1.182	0.026	0.825	0.915
Had diarrhoea in the last 2 weeks	0.192	0.022	361	440	1.006	0.114	0.148	0.236
Treated with oral rehydration salts (ORS)	0.671	0.068	69	85	1.167	0.102	0.534	0.807
Taken to health provider	0.702	0.060	69	85	1.102	0.085	0.583	0.822
Having health card, seen	0.904	0.035	72	89	1.017	0.039	0.834	0.974
Received BCG vaccination	0.988	0.012	72	89	0.940	0.012	0.963	1.012
Received DPT vaccination (3 doses)	0.930	0.033	72	89	1.103	0.035	0.864	0.996
Received polio vaccination (3 doses)	0.918	0.035	72	89	1.074	0.038	0.848	0.987
Received measles vaccination	0.917	0.037	72	89	1.139	0.040	0.844	0.991
Fully immunised	0.847	0.045	72	89	1.064	0.053	0.758	0.937
Height-for-age (below -2SD)	0.242	0.029	206	283	0.983	0.119	0.185	0.300
Weight-for-height (below -2SD)	0.060	0.018	206	283	1.045	0.305	0.024	0.097
Weight-for-age (below -2SD)	0.146	0.031	206	283	1.275	0.216	0.083	0.209
Anaemia children	0.467	0.040	218	295	1.162	0.085	0.388	0.547
Anaemia women	0.254	0.026	337	409	1.107	0.104	0.201	0.306
BMI <18.5	0.186	0.023	318	386	1.032	0.121	0.141	0.231
Had 2+ sexual partners in past 12 months	0.005	0.003	725	884	1.036	0.559	0.000	0.010
Condom use at last sex	1.000	0.000	3	4	na	0.000	1.000	1.000
Abstinence among never-married youth (never had sex)	0.540	0.035	306	381	1.236	0.065	0.470	0.611
Sexually active in past 12 months among never-married youth	0.407	0.032	306	381	1.152	0.080	0.342	0.472
Had an HIV test and received results in past 12 months	0.463	0.022	725	884	1.171	0.047	0.419	0.506
Accepting attitudes towards people with HIV	0.435	0.028	723	881	1.509	0.064	0.379	0.491
Total fertility rate (3 years)	4.165	0.219	1,977	2,403	0.970	0.053	3.727	4.603
Neonatal mortality rate (last 0-9 years)	10.717	3.658	678	823	0.940	0.341	3.402	18.033
Post-neonatal mortality rate (last 0-9 years)	19.669	6.121	673	818	1.123	0.311	7.428	31.910
Infant mortality rate (last 0-9 years)	30.386	6.420	678	823	0.984	0.211	17.545	43.227
Child mortality rate (last 0-9 years)	14.942	5.191	640	775	1.057	0.347	4.560	25.325
Under-five mortality rate (last 0-9 years)	44.874	7.193	681	827	0.917	0.160	30.488	59.261
HIV prevalence (women 15-49)	0.219	0.016	338	380	0.717	0.074	0.187	0.251
HIV prevalence (women 50-64)	0.207	0.041	96	113	0.988	0.198	0.125	0.289
HIV prevalence for youth (women 15-24)	0.038	0.019	138	158	1.170	0.505	0.000	0.076
MEN								
Urban residence	0.052	0.021	262	342	1.521	0.403	0.010	0.094
Literacy	0.946	0.016	262	342	1.124	0.017	0.915	0.978
No education	0.035	0.010	262	342	0.861	0.280	0.015	0.054
Secondary or higher education	0.552	0.045	262	342	1.461	0.082	0.462	0.642
Never married (never in union)	0.865	0.023	262	342	1.097	0.027	0.818	0.911
Currently married (in union)	0.131	0.023	262	342	1.117	0.178	0.085	0.178
Want no more children	0.380	0.096	35	45	1.147	0.252	0.189	0.572
Want to delay next birth at least 2 years	0.160	0.060	35	45	0.951	0.373	0.041	0.280
Ideal number of children	4.535	0.301	259	339	1.297	0.066	3.934	5.137
Had 2+ sexual partners in past 12 months	0.119	0.024	262	342	1.196	0.202	0.071	0.167
Condom use at last sex	0.814	0.080	31	41	1.118	0.098	0.654	0.973
Abstinence among never-married youth (never had sex)	0.564	0.044	171	223	1.145	0.077	0.477	0.652
Sexually active in past 12 months among never-married youth	0.379	0.041	171	223	1.099	0.108	0.298	0.461
Paid for sexual intercourse in past 12 months	0.000	0.000	262	342	na	na	0.000	0.000
Had an HIV test and received results in past 12 months	0.262	0.026	262	342	0.967	0.100	0.210	0.315
Accepting attitudes towards people with HIV	0.286	0.034	260	339	1.203	0.118	0.218	0.353
HIV prevalence (men 15-49)	0.121	0.024	243	316	1.132	0.197	0.073	0.168
HIV prevalence (men 50-64)	0.236	0.088	35	45	1.195	0.372	0.061	0.411
HIV prevalence for youth (men 15-24)	0.036	0.014	162	209	0.960	0.393	0.008	0.064
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.174	0.014	581	695	0.903	0.082	0.146	0.203
HIV prevalence (men and women 50-64)	0.215	0.039	131	158	1.072	0.180	0.138	0.293
HIV prevalence for youth (men and women 15-24)	0.037	0.010	300	367	0.947	0.281	0.016	0.057

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.591	0.024	671	755	1.262	0.041	0.543	0.639
No education	0.009	0.004	671	755	0.965	0.382	0.002	0.017
With secondary education or higher	0.875	0.014	671	755	1.068	0.016	0.848	0.902
Never married/in union	0.742	0.016	671	755	0.971	0.022	0.709	0.775
Currently married/in union	0.217	0.017	671	755	1.099	0.081	0.182	0.252
Had sex before age of 18	0.234	0.018	529	601	0.980	0.077	0.197	0.270
Married before age 20	0.053	0.010	405	459	0.898	0.188	0.033	0.074
Currently pregnant	0.062	0.009	671	755	0.984	0.148	0.043	0.080
Children ever born	1.509	0.061	671	755	0.933	0.041	1.386	1.632
Children ever born to women over 40	3.110	0.186	117	129	0.972	0.060	2.739	3.481
Children surviving	1.421	0.059	671	755	0.959	0.042	1.303	1.539
Knowing any contraceptive method	1.000	0.000	143	164	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	143	164	na	0.000	1.000	1.000
Currently using any method	0.693	0.041	143	164	1.064	0.060	0.610	0.775
Currently using a modern method	0.681	0.044	143	164	1.116	0.064	0.594	0.769
Currently using pill	0.098	0.026	143	164	1.022	0.260	0.047	0.149
Currently using IUD	0.000	0.000	143	164	na	na	0.000	0.000
Currently using condoms	0.252	0.034	143	164	0.930	0.134	0.184	0.320
Currently using injectables	0.210	0.036	143	164	1.057	0.172	0.138	0.283
Currently using female sterilisation	0.103	0.033	143	164	1.280	0.319	0.037	0.168
Currently using periodic abstinence	0.006	0.006	143	164	0.912	1.023	0.000	0.017
Using public sector source	0.687	0.036	378	434	1.494	0.052	0.615	0.758
Want no more children	0.557	0.045	143	164	1.070	0.080	0.468	0.646
Want to delay at least 2 years	0.207	0.045	143	164	1.308	0.215	0.118	0.296
Ideal number of children	3.240	0.051	668	752	0.897	0.016	3.138	3.342
Mothers received prenatal care for last birth	0.987	0.008	234	261	1.039	0.008	0.971	1.002
Mothers protected against tetanus for last birth	0.571	0.030	234	261	0.918	0.052	0.511	0.631
Mothers received medical asisstance at delivery	0.948	0.016	279	310	0.998	0.017	0.916	0.981
Had diarrhoea in the last 2 weeks	0.102	0.023	270	300	1.260	0.224	0.056	0.148
Treated with oral rehydration salts (ORS)	0.783	0.081	29	31	1.024	0.103	0.621	0.945
Taken to health provider	0.640	0.100	29	31	1.089	0.156	0.440	0.841
Having health card, seen	0.633	0.072	55	60	1.053	0.114	0.489	0.778
Received BCG vaccination	0.942	0.034	55	60	1.069	0.037	0.873	1.010
Received DPT vaccination (3 doses)	0.809	0.058	55	60	1.073	0.072	0.693	0.926
Received polio vaccination (3 doses)	0.665	0.068	55	60	1.007	0.102	0.529	0.801
Received measles vaccination	0.898	0.045	55	60	1.086	0.050	0.808	0.988
Fully immunised	0.622	0.067	55	60	0.966	0.107	0.489	0.755
Height-for-age (below -2SD)	0.198	0.042	142	169	1.155	0.210	0.115	0.281
Weight-for-height (below -2SD)	0.045	0.022	142	169	1.241	0.486	0.001	0.088
Weight-for-age (below -2SD)	0.082	0.025	142	169	1.043	0.312	0.031	0.132
Anaemia children	0.421	0.046	137	165	1.067	0.110	0.329	0.513
Anaemia women	0.208	0.020	338	382	0.895	0.095	0.169	0.248
BMI <18.5	0.145	0.024	309	349	1.221	0.168	0.096	0.194
Had 2+ sexual partners in past 12 months	0.009	0.005	671	755	1.327	0.533	0.000	0.019
Condom use at last sex	0.852	0.104	6	7	0.691	0.123	0.643	1.061
Abstinence among never-married youth (never had sex)	0.414	0.031	260	289	1.006	0.074	0.353	0.476
Sexually active in past 12 months among never-married youth	0.494	0.034	260	289	1.084	0.068	0.426	0.561
Had an HIV test and received results in past 12 months	0.514	0.018	671	755	0.922	0.035	0.478	0.549
Accepting attitudes towards people with HIV	0.358	0.029	669	753	1.577	0.082	0.300	0.417
Total fertility rate (3 years)	2.718	0.174	1,897	2,144	0.928	0.064	2.370	3.066
Neonatal mortality rate (last 0-9 years)	13.443	4.712	509	571	0.941	0.351	4.019	22.866
Post-neonatal mortality rate (last 0-9 years)	23.603	7.910	506	567	1.036	0.335	7.783	39.423
Infant mortality rate (last 0-9 years)	37.046	9.212	509	571	0.917	0.249	18.622	55.470
Child mortality rate (last 0-9 years)	9.591	4.368	494	557	0.998	0.455	0.855	18.327
Under-five mortality rate (last 0-9 years)	46.282	10.798	509	571	0.978	0.233	24.686	67.878
HIV prevalence (women 15-49)	0.203	0.023	332	352	1.033	0.113	0.157	0.248
HIV prevalence (women 50-64)	0.328	0.052	57	57	0.833	0.159	0.224	0.432
HIV prevalence for youth (women 15-24)	0.059	0.024	136	145	1.195	0.412	0.010	0.107
MEN								
Urban residence	0.514	0.034	274	335	1.110	0.065	0.447	0.582
Literacy	0.958	0.018	274	335	1.453	0.018	0.923	0.994
No education	0.021	0.014	274	335	1.655	0.684	0.000	0.050
Secondary or higher education	0.741	0.037	274	335	1.398	0.050	0.666	0.815
Never married (never in union)	0.834	0.023	274	335	1.026	0.028	0.788	0.880
Currently married (in union)	0.151	0.023	274	335	1.057	0.152	0.105	0.197
Want no more children	0.370	0.093	40	50	1.196	0.251	0.184	0.556
Want to delay next birth at least 2 years	0.280	0.068	40	50	0.940	0.241	0.145	0.415
Ideal number of children	3.873	0.146	274	335	0.952	0.038	3.581	4.165
Had 2+ sexual partners in past 12 months	0.156	0.023	274	335	1.062	0.150	0.109	0.202
Condom use at last sex	0.799	0.061	44	52	1.002	0.077	0.676	0.921
Abstinence among never-married youth (never had sex)	0.359	0.044	144	172	1.087	0.122	0.272	0.446
Sexually active in past 12 months among never-married youth	0.535	0.039	144	172	0.929	0.072	0.457	0.612
Paid for sexual intercourse in past 12 months	0.006	0.004	274	335	0.934	0.719	0.000	0.015
Had an HIV test and received results in past 12 months	0.389	0.034	274	335	1.167	0.088	0.321	0.458
Accepting attitudes towards people with HIV	0.414	0.044	274	335	1.486	0.107	0.325	0.503
HIV prevalence (men 15-49)	0.113	0.022	244	308	1.068	0.192	0.070	0.156
HIV prevalence (men 50-64)	0.149	0.086	20	25	1.045	0.574	0.000	0.320
HIV prevalence for youth (men 15-24)	0.012	0.008	128	158	0.849	0.691	0.000	0.028
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.161	0.017	576	660	1.092	0.104	0.127	0.194
HIV prevalence (men and women 50-64)	0.273	0.044	77	82	0.866	0.162	0.185	0.362
HIV prevalence for youth (men and women 15-24)	0.034	0.013	264	303	1.136	0.372	0.009	0.060

Variable	Value (R)	Standard error (SE)	Number of cases		$\begin{aligned} & \text { Design effect } \\ & \text { (DEFT) } \end{aligned}$	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.203	0.023	656	707	1.455	0.113	0.157	0.248
No education	0.052	0.014	656	707	1.590	0.267	0.024	0.079
With secondary education or higher	0.745	0.036	656	707	2.118	0.049	0.672	0.817
Never married/in union	0.657	0.029	656	707	1.543	0.044	0.599	0.714
Currently married/in union	0.294	0.027	656	707	1.509	0.091	0.241	0.348
Had sex before age of 18	0.341	0.029	490	530	1.368	0.086	0.282	0.400
Married before age 20	0.107	0.021	380	409	1.325	0.197	0.065	0.149
Currently pregnant	0.057	0.008	656	707	0.909	0.144	0.041	0.074
Children ever born	1.924	0.125	656	707	1.505	0.065	1.674	2.175
Children ever born to women over 40	3.959	0.341	113	123	1.408	0.086	3.276	4.642
Children surviving	1.776	0.110	656	707	1.425	0.062	1.556	1.997
Knowing any contraceptive method	1.000	0.000	191	208	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	191	208	na	0.000	1.000	1.000
Currently using any method	0.538	0.035	191	208	0.958	0.064	0.468	0.607
Currently using a modern method	0.538	0.035	191	208	0.958	0.064	0.468	0.607
Currently using pill	0.083	0.017	191	208	0.852	0.205	0.049	0.118
Currently using IUD	0.020	0.010	191	208	0.984	0.495	0.000	0.041
Currently using condoms	0.168	0.029	191	208	1.065	0.172	0.110	0.225
Currently using injectables	0.204	0.030	191	208	1.026	0.147	0.144	0.264
Currently using female sterilisation	0.041	0.013	191	208	0.875	0.306	0.016	0.066
Currently using periodic abstinence	0.000	0.000	191	208	na	na	0.000	0.000
Using public sector source	0.699	0.039	318	347	1.500	0.055	0.621	0.776
Want no more children	0.596	0.039	191	208	1.093	0.065	0.518	0.674
Want to delay at least 2 years	0.201	0.027	191	208	0.921	0.133	0.148	0.255
Ideal number of children	3.166	0.072	634	683	0.981	0.023	3.022	3.310
Mothers received prenatal care for last birth	0.974	0.014	270	290	1.408	0.014	0.947	1.002
Mothers protected against tetanus for last birth	0.698	0.028	270	290	1.008	0.041	0.641	0.754
Mothers received medical asisstance at delivery	0.897	0.022	350	373	1.261	0.024	0.854	0.941
Had diarrhoea in the last 2 weeks	0.147	0.025	332	353	1.203	0.168	0.098	0.196
Treated with oral rehydration salts (ORS)	0.644	0.067	48	52	0.933	0.105	0.509	0.779
Taken to health provider	0.567	0.061	48	52	0.854	0.108	0.444	0.689
Having health card, seen	0.813	0.054	73	78	1.155	0.066	0.706	0.920
Received BCG vaccination	0.987	0.012	73	78	0.929	0.012	0.963	1.012
Received DPT vaccination (3 doses)	0.908	0.032	73	78	0.938	0.035	0.844	0.972
Received polio vaccination (3 doses)	0.838	0.045	73	78	1.026	0.054	0.748	0.928
Received measles vaccination	0.987	0.013	73	78	0.969	0.013	0.962	1.013
Fully immunised	0.825	0.046	73	78	1.030	0.056	0.732	0.918
Height-for-age (below -2SD)	0.263	0.039	181	204	1.142	0.149	0.185	0.342
Weight-for-height (below -2SD)	0.085	0.024	181	204	1.099	0.282	0.037	0.133
Weight-for-age (below -2SD)	0.207	0.032	181	204	1.063	0.157	0.142	0.271
Anaemia children	0.491	0.043	186	212	1.087	0.087	0.405	0.577
Anaemia women	0.212	0.028	307	330	1.213	0.134	0.155	0.269
BMI <18.5	0.146	0.021	288	309	0.984	0.140	0.105	0.188
Had 2+ sexual partners in past 12 months	0.021	0.005	656	707	0.964	0.255	0.010	0.032
Condom use at last sex	0.633	0.162	15	15	1.232	0.255	0.310	0.956
Abstinence among never-married youth (never had sex)	0.431	0.028	257	276	0.909	0.065	0.374	0.487
Sexually active in past 12 months among never-married youth	0.484	0.030	257	276	0.957	0.062	0.424	0.544
Had an HIV test and received results in past 12 months	0.504	0.020	656	707	1.015	0.039	0.465	0.544
Accepting attitudes towards people with HIV	0.297	0.020	654	704	1.096	0.066	0.258	0.336
Total fertility rate (3 years)	4.151	0.300	1,799	1,942	1.141	0.072	3.550	4.752
Neonatal mortality rate (last 0-9 years)	26.603	7.053	663	707	0.969	0.265	12.498	40.709
Post-neonatal mortality rate (last 0-9 years)	20.494	5.066	664	709	0.929	0.247	10.362	30.626
Infant mortality rate (last 0-9 years)	47.097	7.882	665	709	0.829	0.167	31.332	62.862
Child mortality rate (last 0-9 years)	21.755	6.202	627	667	1.002	0.285	9.352	34.159
Under-five mortality rate (last 0-9 years)	67.828	8.905	668	713	0.815	0.131	50.018	85.637
HIV prevalence (women 15-49)	0.164	0.026	299	299	1.193	0.156	0.113	0.215
HIV prevalence (women 50-64)	0.202	0.065	62	62	1.258	0.322	0.072	0.331
HIV prevalence for youth (women 15-24)	0.035	0.017	129	128	1.038	0.485	0.001	0.068
MEN								
Urban residence	0.194	0.034	302	335	1.477	0.174	0.127	0.262
Literacy	0.858	0.032	302	335	1.606	0.038	0.793	0.923
No education	0.137	0.033	302	335	1.680	0.244	0.070	0.204
Secondary or higher education	0.528	0.057	302	335	1.969	0.108	0.414	0.642
Never married (never in union)	0.790	0.033	302	335	1.416	0.042	0.723	0.857
Currently married (in union)	0.195	0.033	302	335	1.429	0.167	0.130	0.261
Want no more children	0.420	0.089	56	66	1.322	0.211	0.243	0.597
Want to delay next birth at least 2 years	0.184	0.093	56	66	1.745	0.504	0.000	0.370
Ideal number of children	4.691	0.268	291	323	1.051	0.057	4.155	5.227
Had 2+ sexual partners in past 12 months	0.141	0.019	302	335	0.952	0.135	0.103	0.179
Condom use at last sex	0.776	0.073	41	47	1.101	0.094	0.631	0.922
Abstinence among never-married youth (never had sex)	0.299	0.043	143	153	1.109	0.143	0.214	0.384
Sexually active in past 12 months among never-married youth	0.504	0.048	143	153	1.143	0.095	0.408	0.600
Paid for sexual intercourse in past 12 months	0.013	0.006	302	335	0.954	0.482	0.000	0.025
Had an HIV test and received results in past 12 months	0.302	0.045	302	335	1.679	0.148	0.213	0.391
Accepting attitudes towards people with HIV	0.345	0.029	301	334	1.072	0.085	0.286	0.404
HIV prevalence (men 15-49)	0.105	0.022	266	306	1.166	0.210	0.061	0.148
HIV prevalence (men 50-64)	0.290	0.093	34	38	1.175	0.322	0.103	0.477
HIV prevalence for youth (men 15-24)	0.018	0.011	128	142	0.926	0.600	0.000	0.041
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.134	0.017	565	605	1.204	0.129	0.099	0.168
HIV prevalence (men and women 50-64)	0.235	0.053	96	99	1.222	0.227	0.129	0.342
HIV prevalence for youth (men and women 15-24)	0.026	0.009	257	270	0.937	0.358	0.007	0.045

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.737	0.025	699	540	1.488	0.034	0.687	0.786
No education	0.095	0.017	699	540	1.531	0.179	0.061	0.129
With secondary education or higher	0.670	0.028	699	540	1.565	0.042	0.614	0.725
Never married/in union	0.474	0.029	699	540	1.530	0.061	0.416	0.532
Currently married/in union	0.427	0.030	699	540	1.581	0.069	0.368	0.487
Had sex before age of 18	0.424	0.026	565	437	1.233	0.061	0.372	0.475
Married before age 20	0.194	0.021	443	340	1.116	0.108	0.152	0.236
Currently pregnant	0.054	0.008	699	540	0.884	0.140	0.039	0.070
Children ever born	2.063	0.069	699	540	0.974	0.033	1.926	2.201
Children ever born to women over 40	4.013	0.155	146	113	1.027	0.039	3.703	4.323
Children surviving	1.968	0.065	699	540	0.951	0.033	1.838	2.097
Knowing any contraceptive method	1.000	0.000	304	231	na	0.000	1.000	1.000
Knowing any modern contraceptive method	1.000	0.000	304	231	na	0.000	1.000	1.000
Currently using any method	0.603	0.026	304	231	0.931	0.043	0.551	0.656
Currently using a modern method	0.591	0.026	304	231	0.914	0.044	0.539	0.643
Currently using pill	0.099	0.018	304	231	1.054	0.182	0.063	0.136
Currently using IUD	0.002	0.002	304	231	0.873	1.011	0.000	0.007
Currently using condoms	0.118	0.018	304	231	0.968	0.152	0.082	0.153
Currently using injectables	0.287	0.019	304	231	0.749	0.068	0.248	0.326
Currently using female sterilisation	0.075	0.016	304	231	1.081	0.218	0.042	0.108
Currently using periodic abstinence	0.003	0.003	304	231	0.984	0.996	0.000	0.010
Using public sector source	0.813	0.031	357	272	1.501	0.038	0.751	0.875
Want no more children	0.601	0.034	304	231	1.192	0.056	0.533	0.668
Want to delay at least 2 years	0.154	0.023	304	231	1.096	0.148	0.108	0.199
Ideal number of children	3.103	0.071	691	534	1.031	0.023	2.961	3.245
Mothers received prenatal care for last birth	0.917	0.016	319	248	1.070	0.018	0.884	0.950
Mothers protected against tetanus for last birth	0.718	0.031	319	248	1.216	0.043	0.657	0.779
Mothers received medical asisstance at delivery	0.861	0.031	402	308	1.501	0.037	0.798	0.924
Had diarrhoea in the last 2 weeks	0.149	0.021	389	298	1.137	0.144	0.106	0.192
Treated with oral rehydration salts (ORS)	0.627	0.066	61	44	1.013	0.106	0.495	0.759
Taken to health provider	0.576	0.063	61	44	0.947	0.110	0.449	0.702
Having health card, seen	0.769	0.051	81	63	1.091	0.067	0.666	0.871
Received BCG vaccination	0.991	0.009	81	63	0.886	0.009	0.972	1.010
Received DPT vaccination (3 doses)	0.935	0.028	81	63	1.033	0.030	0.879	0.992
Received polio vaccination (3 doses)	0.835	0.044	81	63	1.070	0.053	0.747	0.923
Received measles vaccination	0.909	0.040	81	63	1.135	0.044	0.828	0.990
Fully immunised	0.776	0.055	81	63	1.137	0.071	0.666	0.885
Height-for-age (below -2SD)	0.201	0.034	183	147	1.085	0.171	0.132	0.269
Weight-for-height (below -2SD)	0.043	0.018	183	147	1.151	0.407	0.008	0.079
Weight-for-age (below -2SD)	0.065	0.024	183	147	1.334	0.365	0.018	0.113
Anaemia children	0.538	0.043	197	159	1.148	0.080	0.452	0.625
Anaemia women	0.191	0.026	324	249	1.187	0.136	0.139	0.243
BMI <18.5	0.133	0.024	303	233	1.242	0.183	0.085	0.182
Had 2+ sexual partners in past 12 months	0.021	0.007	699	540	1.379	0.359	0.006	0.036
Condom use at last sex	0.875	0.109	13	11	1.125	0.124	0.658	1.092
Abstinence among never-married youth (never had sex)	0.457	0.036	186	145	0.995	0.080	0.384	0.530
Sexually active in past 12 months among never-married youth	0.399	0.033	186	145	0.923	0.083	0.333	0.466
Had an HIV test and received results in past 12 months	0.443	0.020	699	540	1.060	0.045	0.403	0.483
Accepting attitudes towards people with HIV	0.221	0.026	687	532	1.639	0.118	0.169	0.273
Total fertility rate (3 years)	4.148	0.231	1,968	1,519	0.940	0.056	3.686	4.611
Neonatal mortality rate (last 0-9 years)	15.386	4.461	754	574	0.997	0.290	6.465	24.307
Post-neonatal mortality rate (last 0-9 years)	14.140	4.149	751	571	0.948	0.293	5.842	22.439
Infant mortality rate (last 0-9 years)	29.526	6.338	754	574	1.037	0.215	16.850	42.203
Child mortality rate (last 0-9 years)	22.014	5.809	712	540	0.982	0.264	10.396	33.632
Under-five mortality rate (last 0-9 years)	50.891	9.050	757	577	1.086	0.178	32.791	68.991
HIV prevalence (women 15-49)	0.142	0.019	316	231	0.980	0.136	0.103	0.180
HIV prevalence (women 50-64)	0.125	0.037	69	51	0.915	0.293	0.052	0.198
HIV prevalence for youth (women 15-24)	0.046	0.025	117	86	1.268	0.540	0.000	0.095
MEN								
Urban residence	0.694	0.030	309	241	1.142	0.043	0.634	0.754
Literacy	0.886	0.021	309	241	1.143	0.023	0.845	0.928
No education	0.117	0.018	309	241	1.000	0.156	0.080	0.154
Secondary or higher education	0.696	0.032	309	241	1.238	0.047	0.631	0.761
Never married (never in union)	0.494	0.029	309	241	1.019	0.059	0.436	0.552
Currently married (in union)	0.486	0.028	309	241	0.996	0.058	0.429	0.543
Want no more children	0.360	0.048	153	117	1.240	0.134	0.263	0.456
Want to delay next birth at least 2 years	0.108	0.035	153	117	1.386	0.323	0.038	0.179
Ideal number of children	3.856	0.212	301	235	1.291	0.055	3.432	4.281
Had 2+ sexual partners in past 12 months	0.046	0.014	309	241	1.168	0.303	0.018	0.074
Condom use at last sex	0.775	0.111	14	11	0.959	0.143	0.553	0.996
Abstinence among never-married youth (never had sex)	0.416	0.076	95	78	1.492	0.183	0.264	0.569
Sexually active in past 12 months among never-married youth	0.428	0.069	95	78	1.342	0.161	0.290	0.565
Paid for sexual intercourse in past 12 months	0.003	0.003	309	241	1.033	1.009	0.000	0.010
Had an HIV test and received results in past 12 months	0.399	0.027	309	241	0.957	0.067	0.346	0.452
Accepting attitudes towards people with HIV	0.121	0.028	299	234	1.456	0.228	0.066	0.176
HIV prevalence (men 15-49)	0.097	0.019	281	223	1.061	0.193	0.060	0.135
HIV prevalence (men 50-64)	0.133	0.045	54	45	0.963	0.338	0.043	0.222
HIV prevalence for youth (men 15-24)	0.030	0.016	102	86	0.965	0.543	0.000	0.063
MEN AND WOMEN								
HIV prevalence (men and women 15-49)	0.120	0.014	597	454	1.018	0.113	0.093	0.147
HIV prevalence (men and women 50-64)	0.129	0.026	123	96	0.869	0.205	0.076	0.181
HIV prevalence for youth (men and women 15-24)	0.038	0.015	219	172	1.168	0.398	0.008	0.068

Table B. 18 Sampling errors for adult and maternal mortality rates, Namibia 2013

Variable	Value (R)	$\begin{aligned} & \text { Standard } \\ & \text { error } \\ & \text { (SE) } \end{aligned}$	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
15-19	1.560	0.318	18,392	18,880	1.074	0.204	0.923	2.197
20-24	2.285	0.403	21,033	21,473	1.190	0.176	1.480	3.091
25-29	4.707	0.666	20,181	20,435	1.383	0.141	3.376	6.038
30-34	6.740	0.800	17,546	17,652	1.279	0.119	5.141	8.340
35-39	7.714	0.871	13,726	13,437	1.146	0.113	5.971	9.456
40-44	6.465	0.946	8,935	8,656	1.068	0.146	4.573	8.358
45-49	6.438	1.354	6,206	5,849	1.295	0.210	3.731	9.145
Female adult mortality rate (last 0-6 years)	4.534	0.290	106,020	106,383	1.212	0.064	3.954	5.115
Female ${ }_{35} \mathrm{Q}_{15}$ (last 0-6 years)	164	10.043	106,020	106,383	1.440	0.061	144	185
Female ${ }_{35} \mathrm{Q}_{15}$ (last 0-6 years) (2006-07)	318	12.841	121,828	120,922	1.643	0.040	292	344
15-19	0.185	0.135	18,392	18,880	1.359	0.727	0.000	0.455
20-24	0.271	0.109	21,033	21,473	0.974	0.403	0.052	0.489
25-29	0.415	0.212	20,181	20,435	1.490	0.512	0.000	0.840
30-34	0.650	0.207	17,546	17,652	1.079	0.318	0.236	1.063
35-39	1.064	0.390	13,726	13,437	1.391	0.367	0.283	1.844
40-44	0.054	0.054	8,935	8,656	0.683	1.000	0.000	0.161
45-49	0.352	0.351	6,206	5,849	1.431	0.997	0.000	1.055
Maternal mortality rate (last 0-6 years)	0.409	0.078	106,020	106,383	1.297	0.192	0.252	0.566
Maternal mortality ratio (last 0-6 years)	358	68.256	106,020	106,383	1.297	0.191	222	495
Maternal mortality ratio (last 0-6 years) (2006-07)	508	75.570	121,828	120,922	1.193	0.149	357	659
15-19	1.857	0.398	18,001	18,201	1.207	0.214	1.061	2.652
20-24	3.099	0.438	20,212	20,758	1.118	0.141	2.224	3.975
25-29	5.784	0.740	19,752	20,052	1.377	0.128	4.304	7.265
30-34	7.973	0.797	17,508	17,787	1.194	0.100	6.379	9.567
35-39	10.971	1.163	13,560	13,474	1.263	0.106	8.645	13.296
40-44	12.955	1.368	8,794	8,436	1.106	0.106	10.218	15.691
45-49	13.153	1.994	5,223	4,956	1.181	0.152	9.165	17.140
Male adult mortality rate (last 0-6 years)	6.659	0.372	103,051	103,665	1.201	0.056	5.915	7.403
Male ${ }_{35} \mathrm{Q}_{15}$ (last 0-6 years)	244	12.474	103,051	103,665	1.449	0.051	219	269
Male ${ }_{35} \mathrm{Q}_{15}$ (last 0-6 years) (2006-07)	404	15.363	112,704	111,786	1.760	0.038	373	435

Table C. 1 Household age distribution
Single-year age distribution of the de facto household population by sex (weighted), Namibia 2013

Age	Male		Female		Age	Male		Female	
	Number	Percent	Number	Percent		Number	Percent	Number	Percent
0	589	2.7	602	3.1	36	266	1.2	228	1.2
1	618	2.8	512	2.6	37	262	1.2	218	1.1
2	623	2.9	552	2.8	38	253	1.2	222	1.1
3	534	2.5	608	3.1	39	235	1.1	219	1.1
4	555	2.5	518	2.6	40	256	1.2	215	1.1
5	522	2.4	575	2.9	41	204	0.9	173	0.9
6	548	2.5	537	2.7	42	214	1.0	193	1.0
7	555	2.6	516	2.6	43	185	0.8	190	1.0
8	511	2.3	518	2.6	44	196	0.9	162	0.8
9	497	2.3	463	2.4	45	171	0.8	169	0.9
10	479	2.2	487	2.5	46	157	0.7	156	0.8
11	459	2.1	447	2.3	47	163	0.8	173	0.9
12	455	2.1	479	2.4	48	170	0.8	115	0.6
13	491	2.3	548	2.8	49	159	0.7	134	0.7
14	597	2.7	465	2.4	50	215	1.0	122	0.6
15	402	1.8	444	2.3	51	161	0.7	119	0.6
16	419	1.9	436	2.2	52	139	0.6	94	0.5
17	383	1.8	429	2.2	53	155	0.7	113	0.6
18	463	2.1	386	2.0	54	155	0.7	90	0.5
19	481	2.2	415	2.1	55	120	0.5	81	0.4
20	433	2.0	398	2.0	56	106	0.5	59	0.3
21	429	2.0	380	1.9	57	123	0.6	79	0.4
22	427	2.0	353	1.8	58	109	0.5	66	0.3
23	431	2.0	408	2.1	59	87	0.4	79	0.4
24	332	1.5	354	1.8	60	111	0.5	78	0.4
25	364	1.7	353	1.8	61	90	0.4	66	0.3
26	354	1.6	275	1.4	62	95	0.4	48	0.2
27	368	1.7	315	1.6	63	81	0.4	86	0.4
28	323	1.5	317	1.6	64	97	0.4	55	0.3
29	315	1.4	266	1.4	65	103	0.5	69	0.4
30	320	1.5	325	1.7	66	59	0.3	56	0.3
31	267	1.2	221	1.1	67	83	0.4	64	0.3
32	310	1.4	269	1.4	68	78	0.4	57	0.3
33	286	1.3	255	1.3	69	57	0.3	47	0.2
34	271	1.2	271	1.4		951	4.4	542	2.8
35	282	1.3	273	1.4	Don't know/ missing	13	0.1	16	0.1
					Total	21,774	100.0	19,621	100.0

Note: The de facto population includes all residents and nonresidents who stayed in the household the night before the interview.

Table C.2.1 Age distribution of eligible and interviewed women
De facto household population of women age 10-54, interviewed women age 15-49; and percent distribution and percentage of eligible women who were interviewed (weighted), by five-year age groups, Namibia 2013

	Household population of women age 10-54	Interviewed women age 15-49	Percentage of eligible women interviewed	
	Age group	2,481	Number	Percentage

Note: The de facto population includes all residents and nonresidents who stayed in the household the night before the interview. Weights for both household population of women and interviewed women are household weights. Age is based on the household questionnaire.
na = Not applicable

Table C.2.2 Age distribution of eligible and interviewed men
De facto household population of men age 10-69, interviewed men age 15-64 and percent of eligible men who were interviewed (weighted), by five-year age groups, Namibia 2013
$\begin{array}{lccrr}\hline & \begin{array}{c}\text { Household } \\ \text { population of } \\ \text { men age 10-69 }\end{array} & & \text { Number } & \text { Percentage }\end{array}$ Interviewed men age 15-64 $\left.\begin{array}{c}\text { Percentage of } \\ \text { eligible men } \\ \text { interviewed }\end{array}\right]$

Note: The de facto population includes all residents and nonresidents who stayed in the household the night before the interview. Weights for both household population of men and interviewed men are household weights. Age is based on the household questionnaire.
na $=$ Not applicable

Table C. 3 Completeness of reporting
Percentage of observations missing information for selected demographic and health questions (weighted), Namibia 2013

Subject	Reference group	Percentage with information missing	Number of cases
Birth date	Births in the 15 years preceding the survey		
Month Only		0.31	12,152
Month and Year		0.31	12,152
Age at Death	Deceased children born in the 15 years preceding the survey	0.47	719
Age/date at first union ${ }^{1}$	Ever married women age 15-49	1.58	3,718
Age/date at first union	Ever married men age 15-49	1.47	1,687
Respondent's education	All women age 15-49	0.04	9,176
Respondent's education	All men age 15-64	0.15	4,481
Diarrhoea in last 2 weeks	Living children 0-59 months	8.48	4,588
Anthropometry of children	Living children age 0-59 months from the Household Questionnaire		
Height		5.42	2,840
Weight		6.40	2,840
Height or weight		6.69	2,840
Anthropometry of women	Women age 15-64 from the household questionnaire		
Height		12.02	6,210
Weight		11.95	6,210
Height or weight		12.15	6,210
Anthropometry of men	Men age 15-64 from the household questionnaire		
Height		20.70	5,319
Weight		20.65	5,319
Height or weight		20.93	5,319
Anaemia	Living children age 6-59 months from the Household Questionnaire		
Children		9.71	2,544
Women	All women from the Household Questionnaire	13.01	6,210
Men	All men from the Household Questionnaire	22.98	5,319
${ }^{1}$ Both year and age missing			

Table C. 4 Births by calendar years

Number of births, percentage with complete birth date, sex ratio at birth, and calendar year ratio by calendar year, according to living (L), dead (D), and total (T) children (weighted), Namibia 2013

Calendar year	Number of births			Percentage with complete birth date ${ }^{1}$			Sex ratio at birth ${ }^{2}$			Calendar year ratio ${ }^{3}$		
	L	D	T	L	D	T	L	D	T	L	D	T
2013	591	19	609	100.0	100.0	100.0	93.0	241.2	95.6	na	na	na
2012	987	35	1,022	100.0	100.0	100.0	94.1	61.4	92.8	na	na	na
2011	918	38	957	100.0	100.0	100.0	96.9	126.9	97.9	94.6	90.7	94.4
2010	955	49	1,005	100.0	100.0	100.0	98.9	99.4	98.9	109.5	101.9	109.1
2009	825	59	884	99.9	100.0	99.9	98.3	88.7	97.6	95.9	129.8	97.6
2008	767	41	808	99.8	98.1	99.7	91.5	126.9	93.1	88.7	78.1	88.1
2007	903	47	950	99.1	92.6	98.8	105.0	74.8	103.3	117.9	103.3	117.1
2006	765	49	815	99.3	89.4	98.7	94.5	153.1	97.3	95.7	87.0	95.2
2005	695	67	762	99.5	94.3	99.1	87.1	125.0	89.9	91.3	140.9	94.2
2004	759	45	804	99.5	95.4	99.3	92.7	125.2	94.3	113.6	80.7	111.1
2009-2013	4,277	200	4,476	100.0	100.0	100.0	96.4	100.3	96.6	na	na	na
2004-2008	3,889	249	4,139	99.4	93.8	99.1	94.5	118.4	95.8	na	na	na
1999-2003	3,030	257	3,287	99.2	95.2	98.9	102.4	129.3	104.3	na	na	na
1994-1998	2,380	164	2,544	98.9	95.2	98.7	87.6	85.5	87.5	na	na	na
<1994	2,298	228	2,526	99.2	94.1	98.7	93.2	129.4	95.9	na	na	na
All	15,874	1,097	16,971	99.4	95.5	99.2	95.2	113.7	96.3	na	na	na

[^31]Table C. 5 Reporting of age at death in days
Distribution of reported deaths under one month of age by age at death in days and the percentage of neonatal deaths reported to occur at ages 0-6 days, for five-year periods of birth preceding the survey (weighted), Namibia 2013

	Number of years preceding the survey				
Age at death (days)	$0-4$	$5-9$	$10-14$	$15-19$	Total 0-19
<1	26	16	25	11	78
1	35	29	23	15	101
2	7	8	2	5	23
3	5	4	4	2	15
4	2	2	3	0	7
5	2	1	1	0	4
6	0	0	1	1	3
7	4	3	11	6	25
8	0	0	3	1	4
9	1	0	0	2	4
10	1	0	0	0	1
12	1	0	1	0	2
14	4	4	7	0	15
15	0	1	0	1	2
18	1	0	0	0	1
21	3	2	2	0	7
25	1	0	0	0	1
30	0	1	0	0	1
Total 0-30	94	71	83	45	293
Percentage early neonatal ${ }^{1}$	81.6	85.9	71.9	75.6	79.0

${ }^{1} 0-6$ days

Table C. 6 Reporting of age at death in months
Distribution of reported deaths under two years of age by age at death in months and the percentage of infant deaths reported to occur at age under one month, for five-year periods of birth preceding the survey, Namibia 2013

	Number of years preceding the survey				
Age at death (months)	$0-4$	$5-9$	$10-14$	$15-19$	Total 0-19
$<1^{\text {a }}$	94	71	83	45	293
1	13	19	11	6	49
2	12	13	10	9	44
3	11	11	15	1	38
4	5	14	8	5	33
5	6	10	7	2	24
6	3	8	6	5	21
7	13	2	8	0	23
8	2	7	4	10	24
9	7	11	4	7	30
10	2	5	2	0	9
11	6	1	1	1	9
12	20	21	23	17	80
13	0	0	0	1	1
14	0	0	2	0	2
15	0	0	1	0	1
16	0	1	0	0	1
17	2	1	0	0	3
18	0	1	1	0	2
19	1	0	0	0	1
21	0	0	2	0	3
22	0	0	1	0	1
23	0	0	0	0	0
1 Year	1	4	4	0	8
Total 0-11	174	171	159	92	596
Percentage neonatal ${ }^{1}$	54.1	41.5	52.2	49.0	49.2

[^32]Table C. 7 Nutritional status of children based on the NCHS/CDC/WHO International Reference Population
Percentage of children under five years classified as malnourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by background characteristics, based on the NCHS/CDC/WHO International Reference Population, Namibia 2013

Continued...

Table C. 7 Nutritional status of children based on the NCHS/CDC/WHO International Reference Population—Continued

Background characteristic	Height-for-age ${ }^{1}$			Weight-for-height				Weight-for-age				Number of children
	Percentage below -3 SD	Percentage below -2 S^{2}	$\begin{gathered} \text { Mean Z- } \\ \text { score (SD) } \end{gathered}$	Percentage below-3 SD	Percentage below -2 S^{2}	Percentage above +2 SD	$\begin{gathered} \text { Mean Z- } \\ \text { score (SD) } \end{gathered}$	Percentage below-3 SD	Percentage below -2 S^{2}	Percentage above +2 SD	$\begin{gathered} \text { Mean Z- } \\ \text { score (SD) } \end{gathered}$	
Mother's education												
No education	6.9	26.3	(1.1)	4.5	14.8	1.7	(0.7)	6.7	29.6	0.5	(1.3)	141
Primary	6.1	23.3	(1.2)	0.8	6.7	2.2	(0.6)	4.5	22.7	0.4	(1.2)	434
Secondary	3.9	14.8	(0.9)	1.1	7.1	3.3	(0.6)	2.2	14.5	1.5	(1.0)	1,215
More than secondary	3.6	6.8	(0.5)	0.4	0.8	3.1	(0.2)	0.5	5.7	3.1	(0.3)	104
Missing	*	*	*	*	*	*	*	*	*	*	*	3
Wealth quintile												
Lowest	8.4	24.9	(1.3)	0.9	9.4	1.2	(0.8)	4.7	23.6	0.7	(1.3)	649
Second	8.1	24.6	(1.2)	0.7	5.1	2.3	(0.5)	2.4	18.8	0.5	(1.1)	576
Middle	3.6	18.8	(1.1)	1.1	8.1	2.4	(0.6)	3.4	17.9	0.8	(1.1)	529
Fourth	1.7	11.8	(0.8)	1.2	4.1	4.3	(0.5)	1.6	12.0	1.3	(0.8)	531
Highest	1.9	5.5	(0.9)	0.7	3.7	3.5	(0.7)	1.0	7.5	4.3	(0.9)	314
Total	5.2	18.6	(1.1)	1.0	6.4	2.6	(0.6)	2.8	17.0	1.2	(1.1)	2,599

Note: Table is based on children who slept in the household the night before the interview. Each of the indices is expressed in standard deviation units (SD) from the median of the NCHS/CDC/WHO International Reference Population. Table is based on children with valid dates of birth (month and year) and valid measurement of both height and weight.
${ }^{1}$ Recumbent length is measured for children under age 2 , or in the few cases when the age of the child is unknown and the child is less than 85 cm ; standing height is measured for "all other children" to be consistent with table 11.1.1
${ }^{2}$ Includes children who are below -3 standard deviations (SD) from the International Reference Population median
${ }^{3}$ Excludes children whose mothers were not interviewed
${ }^{4}$ First born twins (triplets, etc.) are counted as first births because they do not have a previous birth interval
${ }^{5}$ Includes children whose mothers are deceased
${ }^{6}$ Excludes children whose mothers were not interviewed, children whose mothers were not weighed and measured, and children whose mothers are pregnant or gave birth within the preceding 2 months. Mother's nutritional status in terms of BMI (Body Mass Index) is presented in Table 11.10.1
${ }^{7}$ For women who are not interviewed, information is taken from the Household Questionnaire. Excludes children whose mothers are not listed in the Household Questionnaire.

Table C. 8 Completeness of information on siblings
Completeness of data on survival status of sisters and brothers reported by interviewed women, age of living siblings and age at death (AD) and years since death (YSD) of dead siblings (unweighted), Country 2011

	Sisters		Brothers		All siblings	
	Number	Percent	Number	Percent	Number	Percent
All siblings	22,372	100.0	22,433	100.0	44,805	100.0
Living	19,597	87.6	19,086	85.1	38,683	86.3
Dead	2,758	12.3	3,324	14.8	6,082	13.6
Survival status unknown	17	0.1	23	0.1	40	0.1
Living siblings	19,597	100.0	19,086	100.0	38,683	100.0
Age reported	19,013	97.0	18,473	96.8	37,486	96.9
Age missing	584	3.0	613	3.2	1,197	3.1
Dead siblings	2,758	100.0	3,324	100.0	6,082	100.0
AD and YSD reported	2,429	88.1	2,842	85.5	5,271	86.7
Missing only AD	80	2.9	150	4.5	230	3.8
Missing only YSD	34	1.2	50	1.5	84	1.4
Missing AD and YSD	215	7.8	282	8.5	497	8.2

Table C. 9 Sibship size and sex ratio of siblings
Mean sibship size and sex ratio of siblings at birth, Country 2011

Age of respondents	Mean sibship size 1	Sex ratio of siblings at birth
$15-19$	5.0	98.2
$20-24$	5.5	99.6
$25-29$	5.9	101.0
$30-34$	6.4	103.7
$35-39$	6.6	100.4
$40-44$	6.8	98.8
$45-49$	6.7	103.3
Total	5.9	100.5

1
${ }^{1}$ Includes the respondent
${ }^{2}$ Excludes the respondent

PROJECT MANAGEMENT TEAM

Survey Director
Bertha Katjivena
Survey Deputy Director
Thomas Mbeeli
Project Technical Coordinator
Hilma Nangombe
Assistant Project Coordinators
Ester Shaama
Tuwilika Kakili
Matengu Simasiku
Data Processing Supervisors
Brian Tjiramba
Liswani Kamwi
Joseph Sagarias
Tuli Amutenya
\section*{Trainers}
Hilma Nangombe
Ester Shaama
Tuwilika Kakili
Matengu Simasiku
Obert Mutabani
Sophia Nicodemus
Tommy Harris
National Supervisors
Bertha Katjivena
Thomas Mbeeli
Hilma Nangombe
Ester Shaama
Tuwilika Kakili
Matengu Simasiku
Helvi Ndongo
Obert Mutabani
Tommy Harris
Sophia Nicodemus
Regional Supervisors
Samuel Hambira
Petrus Mbangu
Elton Imene
Elton Koeseb
Brenda Oarum
Irmina Van Der Westhuizen
Blasius Chief Murorua

ADMINISTRATIVE SUPPORT STAFF

Survey Administrator

Gerson Kambatuku

Survey Assistant Accountant
Eric Masule Kaela

DATA ANALYSIS AND REPORT-WRITING CORE GROUP

Analysis Workshop Participants	
Bertha Katjivena	Sadhna Patel
Hilma Nangombe	Thomas Mbeeli
Tomas Zapata	Ester Shaama
Leena Haidula	Pauline Enkono
Francina Rusberg	Foibe M.Shoopala
Hilde Nashandi	Padelia Ngenokesho
Simon Iilonga	Milner Siboleka
Helen Mouton	Iitula S.Iitula
Frieda Taapopi	Neia Prata Menezes
Ojijo Odhiambo	Adam Wolkon
Asteria A.Evard	Jennifer Kandjavera
	(Support staff)

FIELD TEAMS

Erongo Region

Team 1

Markus Kambinda	Supervisor
Adelheid Nuugulu	Editor
Cornelia Beukes	Nurses
Beverly Kahingunga	Interviewer
Elina Nependa	Interviewer
Kamukwena H.Kwedhi	Interviewer
Gift Jeja	Interviewer
M. Juuso	Driver

Team 2

Lawrence Hoveka	Supervisor
Klothilde Shirungu	Editor
Sakaria Shiimi	Nurses
Magdalena Kazapua	Interviewer
Saimi Nangolo	Interviewer
Gabriella Olibile	Interviewer
Abia Kahuva	Interviewer
E. Candangongo	Driver

Team 3

Rudolfine Kaaronda	Supervisor
Bartholomeus Kauahuma	Editor
Isabella Awarab	Nurse
Otilie Tjiurutue	Interviewer
Lucia Nekongo	Interviewer
Martha K. Mbangu	Interviewer
Deon Uiseb	Interviewer
S. Muraranganda	Driver

Hardap Region

Team 4

Randy Philander	Supervisor
Florence Matomola	Editor
Audrey Tobong	Nurse
Jacqueline Uri-Kos	Interviewer
Chresta Aroxas	Interviewer
Rodger Ui-nuseb	Interviewer
Hermina Geingos	Interviewer
L. Alugongo	Driver

Team 5

Zorro Malaula	Supervisor
Vaino Mupetami	Editor
Scholastica Garises	Nurse
Ingrid Hoebes	Interviewer
Natali Stephanus	Interviewer
Ronald Haradoeb	Interviewer
J. Horohua	Driver

Team 6

Festus Nuule	Supervisor
Hilma Axakhoes	Editor
Morita Katjikuru	Nurse
Emma Huisemas	Interviewer
Claudette B. Hoabes	Interviewer
Eugene Goraeb	Interviewer
Emerencia Awases	Interviewer
J. Kakende	Driver

Team 7

Abraham Kapembe	Supervisor
Sophia Haingura	Editor
Juliana Mouton	Nurse
Estelle Blockestin	Interviewer
Lovisa Shikongo	Interviewer
Christophina Tjunda	Interviewer
Michael Goaseb	Interviewer
E. Nguena	Driver

Kavango Region

Team 8

Romanus Sitarara	Supervisor
Cordelia Mahoto	Editor
Annastasia Shilomboleni	Nurse
Irene Ambinga	Interviewer
Lavinia Ihemba	Interviewer
Sirongo Nangura	Interviewer
Martin Kasure	Interviewer
S. Scholtz	Driver

Khomas Region
Team 10

Asnath Mbai	Supervisor
Deovanni Van Zyl	Editor
Gabriel Agustine	Nurse
Gerson Tjatindi	Interviewer
Hilaria Afrikaner	Interviewer
Linea Mupetami	Interviewer
Isabella Kambazembi	Interviewer
J. Mouton	Driver

Team 9

Thomas Van Rooyen	Supervisor
Fransina Harases	Editor
Gabriel Vasconleltto	Nurse
Loide I.N. Shinene	Interviewer
Veronica Siyemo	Interviewer
Victoria Kavara	Interviewer
Murapo Manghundu	Interviewer
P. Kamberipa	Driver

Team 11

John Kooper	Supervisor
Tjavanga Hengari	Editor
Pendapala Kuliwoye	Nurse
Valery Afrikaaner	Interviewer
Selma N. Amukwaya	Interviewer
Andreas Shigwedha	Interviewer
Iron Dickson	Interviewer
S. Karongee	Driver

Team 12

Olavi J.L. Naikaku	Supervisor
Mathias Ndavelofi	Editor
Rusuvero Ndjizera	Nurse
Lovisa Amutenya	Interviewer
Precious Mulonda	Interviewer
Esgiel Nanuseb	Interviewer
Johanna Beukes	Interviewer
A. Tjambiru	Driver

Kunene Region

Team 13
Team14

Cornelia Hindjou	Supervisor	Godhart Kuare	Supervisor
Waren Kamwi	Editor	Mukwa Sikwana	Editor
Kiiyala Kiiyala	Nurse	Martha Mujoro	Nurse
Yvondia Kaihiva	Interviewer	Grace Hikuama	Interviewer
Elias H. Katjotjo.	Interviewer	Melissa Jaftha	Interviewer
Veriuka Ndjavera	Interviewer	Mujame Kavandara	Interviewer
Idda Nuunyango	Interviewer	Rimunika Humu	Interviewer
I. Semba	Driver	A. Van Rooi	Driver

Ohangwena Region

Team 15
Team 16

Liina Nghifinwa	Supervisor	Sonja Shigwedha	Supervisor
Seblon Silas	Editor	Erasmus Muanauawa	Editor
Hilka Shambwila	Nurse	Frieda Nangolo	Nurse
Theodensia Nakale	Interviewer	Albertina Ndapuka	Interviewer
Venacius Shuudifonya	Interviewer	Linekela Kashaka	Interviewer
Hendrina Shikongo	Interviewer	Paulina Immanuel	Interviewer
Ruth Halweendo	Interviewer	Kaarina Matti	Interviewer
M. Haufiku	Driver	T. Nangolo	Driver

Omaheke Region

Team 17

Sam Kuzatjike	Supervisor
Rudolphine Tjeriko	Editor
Tjiusasanee Ndenura	Nurse
Fabiola Nguatjiya	Interviewer
Ottilie Kandjibi	Interviewer
Justina Mikka	Interviewer
A. Lansberg	Driver

Team 18
Redney Ouseb Supervisor Justincia Toromba Editor Festus Shithigona Nurse Helga Kandjii Naomi Tjitau Cynthia Murangi D. Ngolo

Interviewer Interviewer Interviewer Driver

Omusati Region

Team 19
Team 20

Paulus Mwetulundila	Supervisor	Brenda Oarum	Supervisor
Secilia T. Amesho	Nurse	Tulonga Nampala	Editor
Epifania Kaundjwa	Interviewer	Silas Haindongo	Nurse
Andreas S. Neshuku	Interviewer	Loti Mulilo	Interviewer
Lydia Muundjua	Interviewer	Thomas Nandjembo	Interviewer
Kaarina Shikambe	Interviewer	Fredrika Keendjele	Interviewer
F. Kavari	Driver	Aune Nakashona	Interviewer
		J. Mukwaipe	Driver

Oshana Region

Team 21

Elise Hasholo	Supervisor
Kerttu Maria Jeremia	Editor
Gelasius Shatimwene	Nurse
Elise N Mwatanhele	Interviewer
Julia Neshila	Interviewer
Martin Joseph Max	Interviewer
Penoshinge Kakunde	Interviewer
E. Shapwa	Driver

Team 22

Lahja Uugwanga	Supervisor
Elingaus Kuume	Editor
Hilma Eelu	Nurse
Peinge Valombola	Interviewer
Setson Iyambo	Interviewer
Albertina Henghali	Interviewer
Ruth Katombela	Interviewer
J. Shalulile	Driver

Oshikoto Region

Team 23
Team 24

Judith Lungameni	Supervisor	Feni Shikongo	Supervisor
Paulus Kauluma	Editor	Theofilus Mulunga	Editor
Isak Nakashwa	Nurse	Emilia Hamushila	Nurse
Emilia Naambo Hofni	Interviewer	Victor Natanel	Interviewer
Marceline Shilongo	Interviewer	Alli Mbwalala	Interviewer
Loide A.K. Aiyambo	Interviewer	Indileni Kakololo	Interviewer
Ruben Egumbo	Interviewer	Rauha Shaanika	Interviewer
J. Tjihuno	Driver	B. Paulus	Driver

Otjozondjupa Region

Team 25
Team 26
$\left.\begin{array}{llll}\text { Stella Karamata } & \text { Supervisor } & \begin{array}{l}\text { Dickson Kahuva } \\ \text { Lukas Fikunawa }\end{array} & \text { Editor }\end{array} \begin{array}{l}\text { Supervisor } \\ \text { Eviakere }\end{array}\right]$ Editor

Zambezi Region

Team 27

Gregory Manyando	Supervisor
Seu Gowases	Editor
Divine Mundia	Nurse
Helvic Sakuwa	Interviewer
Sinvula E. Mwaka	Interviewer
Amanda Sipiso	Interviewer
Berneth Chilinda	Interviewer
S. Natanga	Driver

Team 28

Thelma Lupalezwi	Supervisor
Veii Muraranganda	Editor
Grace Satheba	Nurse
Fransina Nyambe	Interviewer
Selma Shiinda	Interviewer
Matota Tseko	Interviewer
Vincent Khutze	Interviewer
F. Kashindi	Driver

DATA PROCESSING STAFF

Office Editors

Letuvene Tyapa
Asnath Mbai
Secondary Data Editors
Martha N. Naholo
Lukas Ndafoluma

Data Entry Clerks

Vilho Nghipandwa
Festus Hanghome
Fillipus Mwaala
Naftal Kayuhwa
Salufu Limbo
Salomo Shoombe
Shalonga Tjipangandjara
Wilhelm Hepito
Esra Nghipunduka
Martin Siyamana
Julius Ndikwetepo

Jailus Kashile
Israel Hainana
Erica Kubwima
Eineleg Immanuel
Willem. B. Beukes

Additional Data Entry Clerks

Samuel Hambira
Paulus Kauluma
Francina Nyambe
Peinge Valombola
Paulus Mwetulundila
Hilaria Afrikaner
Rimunika Agnes Humu
Vincent Kutze

NAMIBIA INSTITUTE OF PATHOLOGY HIV TESTING STAFF

Wilhelmina Shalimba, Supervisor
Hubert Shitaleni, Staff Technologist
Ludmilla Jafta, Staff Technologist
Elizabeth Kanyanga, Staff Technologist
Zucky Bauleth, Intern

TECHNICAL SUPPORT: ICF INTERNATIONAL

Zhuzhi Moore, Country Manager
Pav Govindasamy, Technical Consultant
Dean Garrett, Biomarker Specialist
Ruilin Ren, Sampling Specialist
Blake Zachary, Country Manager
Sara Head, Country Manager
Mianmian Yu, Data Processing Specialist
Guillermo Rojas, Data Processing Specialist
Noureddine Abderrahim, Data Processing Specialist Nancy Johnson, Editor
Greg Edmondson, Editor (Consultant)
Chris Gramer, Report Production Specialist
Natalie La Roche, Report Production Specialist

MINISTRY OF HEALTH AND SOCIAL SERVICES
2013 NAMIBIA DEMOGRAPHIC AND HEALTH SURVEY HOUSEHOLD QUESTIONNAIRE

THIS PAGE IS INTENTIONALLY BLANK

Hello. My name is \qquad . I am working with the Ministry of Health and Social Services. We are conducting a survey about health all over Namibia. The information we collect will help the government to plan health services. Your household was selected for the survey. I would like to ask you some questions about your household. The questions usually take about 15 to 20 minutes. All of the answers you give will be confidential, are protected by the statistics law, and will not be shared with anyone other than members of our survey team. You don't have to be in the survey, participation is voluntary, but we hope you will agree to answer the questions since your views are important. If I ask you any question you don't want to answer, just let me know and I will go on to the next question or you can stop the interview at any time.
In case you need more information about the survey, you may contact the person(s) listed on this card.

GIVE CARD WITH CONTACT INFORMATION

Do you have any questions?
May I begin the interview now?

SIGNATURE OF INTERVIEWER:
DATE: \qquad

RESPONDENT AGREES TO BE INTERVIEWED . . 1 RESPONDENT DOES NOT AGREE TO BE INTERVIEWED . . $2 \rightarrow$ END
\downarrow

HOUSEHOLD SCHEDULE

							IF AGE 15 OR OLDER	IF AGE 0-17 YEARS			
LINE NO.	USUAL RESIDENTS AND VISITORS	RELATIONSHIP TO HEAD OF HOUSEHOLD	SEX	RESIDENCE		AGE	MARITAL STATUS	SURVIVORSHIP AND RESIDENCE OF BIOLOGICAL PARENTS			
1	2	3	4	5	6	7	8	9	10	11	12
	Please give me the names of the persons who usually live in your household and guests of the household who stayed here last night, starting with the head of the household. AFTER LISTING THE NAMES AND RECORDING THE RELATIONSHIP AND SEX FOR EACH PERSON, ASK QUESTIONS 2A-2C TO BE SURE THAT THE LISTING IS COMPLETE. THEN ASK APPROPRIATE QUESTIONS IN COLUMNS 5-24 FOR EACH PERSON.	What is the relationship of (NAME) to the head of the household? SEE CODES BELOW.	Is (NAME) male or female?	Does (NAME) usually live here?	Did (NAME) stay here last night?	How old is (NAME)? IF 95 OR MORE, RECORD '95'.	What is (NAME)'s current marital status? $1=$ MARRIED OR LIVING TOGETHER 2 = DIVORCED/ SEPARATED 3 = WIDOWED 4 = NEVER- MARRIED AND NEVER LIVED TOGETHER	Is (NAME)'s natural mother alive?	Does (NAME)'s natural mother usually live in this household or was she a guest last night? IF YES: What is her name? RECORD MOTHER'S LINE NUMBER. IF NO, RECORD '00'.	Is (NAME)'s natural father alive?	Does (NAME)'s natural father usually live in this household or was he a guest last night? IF YES: What is his name? RECORD FATHER'S LINE NUMBER. IF NO, RECORD '00'.
01			$\begin{array}{cc} M & F \\ 1 & 2 \end{array}$	$\begin{array}{ll} Y & N \\ 1 & 2 \end{array}$	$\begin{array}{ll} \mathrm{Y} & \mathrm{~N} \\ 1 & 2 \end{array}$	IN YEARS		$\begin{array}{llr} Y & N & \text { DK } \\ 1 & 2 & 8 \\ & \text { GO TO } 11 \end{array}$			
02			12	12	12		\square	1		1	
03			12	12	12			$\begin{array}{lll} 1 & 2 \mp^{\square} 8 \\ & \text { GO TO } 11 \end{array}$		$\begin{array}{cc}1 & 2 \prod^{\square} 8 \\ & 8 \text { TO } 13\end{array}$	
04			12	12	12		\square	1		1	
05			12	12	12		\square	$\begin{array}{rrr} 1 & 2 \mp^{2} 8 \\ & 8 \text { TO } 11 \end{array}$		$\begin{array}{cc}1 & 2 \prod^{2} 8 \\ & \text { GO TO } 13\end{array}$	
06			12	12	12		\square	1 $\begin{gathered} 2 \mp_{\square}^{\square} 8 \\ \text { GO TO } 11 \end{gathered}$		$\begin{array}{ccc}1 & 2 \prod^{7} 8 \\ & 8 O \text { TO } 13\end{array}$	
07			12	12	12		\square	$\begin{array}{rl} 1 & 2 \text { T } \\ & 8 \\ \text { GO TO } 11 \end{array}$		$\begin{array}{ccc}1 & 2 \prod^{2} & 8 \\ & \text { GO TO } 13\end{array}$	
08			12	12	12			$\begin{array}{rl} 1 & 2 \text { T } \\ & 8 \\ \text { GO TO } 11 \end{array}$		$\begin{array}{rrrr}1 & 2 & 8 \\ & \text { GO TO } 13\end{array}$	
09			12	12	12			$\begin{array}{lll} 1 & 2 \text { T } \\ & 8 \\ \text { GO TO } 11 \end{array}$		$\begin{array}{ccc}1 & 2 \prod^{2} & 8 \\ & \text { GO TO } 13\end{array}$	
10			12	12	12		\square	1		1	

CODES FOR Q. 3: RELATIONSHIP TO HEAD OF HOUSEHOLD

01 = HEAD
02 =WIFE/HUSBAND/PARTNER
03 = SON OR DAUGHTER
04 = SON-IN-LAW OR
DAUGHTER-IN-LAW
$05=$ GRANDCHILD
$06=$ PARENT
$07=$ PARENT-IN-LAW

08 = BROTHER OR SISTER
09 = OTHER RELATIVE 10 = ADOPTED/FOSTER/

STEPCHILD
11 = NOT RELATED
$98=$ DON'T KNOW

	IF AGE 5 YEARS OR OLDER		IF AGE 5-24 YEARS		IF AGE 0-4 YEARS	ELIGIBILITY						
LINE NO.	EVER ATTENDED SCHOOL		CURRENT/RECENT SCHOOL ATTENDANCE		BIRTH REGIS- TRATION	WOMEN	IF HOUSEHOLD SELECTED FOR MAN'S SURVEY					
	13	14	15	16	17	18	19	20	21	22	23	24
	Has (NAME) ever attended school?	What is the highest level of school (NAME) has attended? SEE CODES BELOW. What is the highest grade (NAME) completed at that level? SEE CODES BELOW.	Did (NAME) attend school at any time during the 2013 school year?	During this school year, what level and grade is (NAME) attending? BELOW.	Does (NAME) have a birth certificate? IF NO, PROBE: Has (NAME)'s birth ever been registered with the civil authority? $1=$ HAS CERTIFICATE 2 = REGISTERED 3 = HAS ONLY HOSPITAL CARD 4 = NEITHER CERTIFICATE NOR REGISTERED $8=\text { DON'T }$ KNOW	CIRCLE LINE NUMBER OF ALL WOMEN AGE 15-49	CIRCLE LINE NUMBER OF ALL WOMEN AGE 15-64	CIRCLE LINE NUMBER OF ALL WOMEN AGE 35-64	CIRCLE LINE NUMBER OF ALL MEN AGE 15-49	CIRCLE LINE NUMBER OF ALL MEN AGE 15-64	CIRCLE LINE NUMBER OF ALL MEN AGE 35-64	CIRCLE LINE NUMBER OF ALL CHILDREN AGE 0-5 YEARS
01	$\begin{array}{cc} \text { Y } & \mathrm{N} \\ 1 & 2 \\ & \downarrow \\ \text { GO TO } & 18 \end{array}$	LEVEL GRADE	$\begin{array}{cc} \mathrm{Y} & \mathrm{~N} \\ 1 & 2 \\ & \downarrow \\ \mathrm{GO} & \downarrow \mathrm{TO} \\ 18 \end{array}$	LEVEL GRADE		01	01	01	01	01	01	01
02						02	02	02	02	02	02	02
03						03	03	03	03	03	03	03
04						04	04	04	04	04	04	04
05						05	05	05	05	05	05	05
06						06	06	06	06	06	06	06
07						07	07	07	07	07	07	07
08						08	08	08	08	08	08	08
09						09	09	09	09	09	09	09
10						10	10	10	10	10	10	10

CODES FOR Qs. 14 AND 16: EDUCATION

LEVEL	GRADE
$1=$ PRIMARY	$00=$ LESS THAN 1 YEAR COMPLETED
$2=$ SECONDARY	(USE '00' FOR Q. 14 ONLY.
$3=$ HIGHER	THIS CODE IS NOT ALLOWED
$6=$ PRE-PRIMARY	FOR Q. 16)
$8=$ DON'T KNOW	$98=$ DON'T KNOW

							IF AGE 15 OR OLDER	IF AGE 0-17 YEARS			
LINE NO.	USUAL RESIDENTS AND VISITORS	RELATIONSHIP TO HEAD OF HOUSEHOLD	SEX	RESIDENCE		AGE	MARITAL STATUS	SURVIVORSHIP AND RESIDENCE OF BIOLOGICAL PARENTS			
1	2	3	4	5	6	7	8	9	10	11	12
	Please give me the names of the persons who usually live in your household and guests of the household who stayed here last night, starting with the head of the household. AFTER LISTING THE NAMES AND RECORDING THE RELATIONSHIP AND SEX FOR EACH PERSON, ASK QUESTIONS 2A-2C TO BE SURE THAT THE LISTING IS COMPLETE. THEN ASK APPROPRIATE QUESTIONS IN COLUMNS 5-24 FOR EACH PERSON.	What is the relationship of (NAME) to the head of the household? SEE CODES BELOW.	Is (NAME) male or female?	Does (NAME) usually live here?	Did (NAME) stay here last night?	How old is (NAME)? IF 95 OR MORE, RECORD '95'.	What is (NAME)'s current marital status? 1 = MARRIED OR LIVING TOGETHER 2 = DIVORCED/ SEPARATED 3 = WIDOWED 4 = NEVERMARRIED AND NEVER LIVED TOGETHER	Is (NAME)'s natural mother alive?	Does (NAME)'s natural mother usually live in this household or was she a guest last night? IF YES: What is her name? RECORD MOTHER'S LINE NUMBER. IF NO, RECORD '00'.	Is (NAME)'s natural father alive?	Does (NAME)'s natural father usually live in this household or was he a guest last night? IF YES: What is his name? RECORD FATHER'S LINE NUMBER. IF NO, RECORD '00'.
11			$\begin{array}{cc} M & F \\ 1 & 2 \end{array}$	$\begin{array}{ll} \mathrm{Y} & \mathrm{~N} \\ 1 & 2 \end{array}$	$\begin{array}{ll} Y & N \\ 1 & 2 \end{array}$	IN YEARS		$\begin{array}{llr} Y & \text { N } & \text { DK } \\ 1 & 2 & T^{2} \\ & \text { GO TO } 11 \end{array}$			
12			12	12	12	1	\square	1 $2 \tau_{\text {GO TO }} 11$		1	
13			12	12	12		\square	$\begin{array}{lll} 1 & 2 \mp^{\circ} 8 \\ & \text { GO TO } 11 \end{array}$		$\begin{array}{rrrr}1 & 2 \prod^{\downarrow} & 8 \\ & \text { GO TO } 13\end{array}$	
14			12	12	12		\square	$\begin{array}{ll} 1 & 2 \mp^{\square} 8 \\ & \text { GO TO } 11 \end{array}$		1	
15			12	12	12		\square	1		1	
16			12	12	12			1		1	
17			12	12	12			1		1	\square
18			12	12	12		\square	1		1	
19			12	12	12		\square	$\begin{array}{ll} 1 & 2 \mp_{\text {GO TO }}^{11} \end{array}$		$\begin{array}{ccc}1 & 2 \prod^{7} 8 \\ & \\ & \text { GO TO } 13\end{array}$	\square
20			12	12	12		\square	$\begin{array}{rrr} 1 & 2 \mp_{\text {GO TO }}^{\square} & 8 \\ & 11 \end{array}$		$\begin{array}{ccc}1 & 2 \prod^{\square} 8 \\ & \text { GO TO } 13\end{array}$	1

tick here if Continuation sheet user
2A) Just to make sure that I have a complete listing: are there any other persons such as small children or infants hat we have not listed?

2B) Are there any other people who may not be members of your family, such as domestic servants, lodgers, or friends who usually live here?

2C) Are there any guests or temporary visitors staying here, or anyone else who stayed here ast night, who have not been listed?

CODES FOR Q. 3: RELATIONSHIP TO HEAD OF HOUSEHOLD

01 = HEAD

02 =WIFE/HUSBAND/PARTNER
03 = SON OR DAUGHTER
$04=$ SON-IN-LAW OR DAUGHTER-IN-LAW
$05=$ GRANDCHILD
$06=$ PARENT
$07=$ PARENT-IN-LAW
$08=$ BROTHER OR SISTER
09 = OTHER RELATIVE
$10=$ ADOPTED/FOSTER
STEPCHILD
11 = NOT RELATED 98 = DON'T KNOW

CODES FOR Qs. 14 AND 16: EDUCATION
LEVEL
1 = PRIMARY
2 = SECONDARY
3 = HIGHER
$6=$ PRE-PRIMARY
8 = DON'T KNOW
$00=$ LESS THAN 1 YEAR COMPLETED
(USE '00' FOR Q. 14 ONLY.
THIS CODE IS NOT ALLOWED
FOR Q. 16)
$98=$ DON'T KNOW

HOUSEHOLD CHARACTERISTICS

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
101	How often does anyone smoke inside your house? Would you say daily, weekly, monthly, less than monthly, or never?		
102	What is the main source of drinking water for members of your household?		105 $\longmapsto 105$
103	Where is that water source located?		105
104	How long does it take to go there, get water, and come back?		
105	Do you do anything to the water to make it safer to drink?	YES . 8	$\xrightarrow{\longrightarrow} 107$
106	What do you usually do to make the water safer to drink? Anything else? RECORD ALL MENTIONED.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
107	What kind of toilet facility do members of your household usually use?	FLUSH OR POUR FLUSH TOILET FLUSH TO PIPED SEWER SYSTEM 11 FLUSH TO SEPTIC TANK 12 FLUSH TO PIT LATRINE 13 FLUSH TO SOMEWHERE ELSE 14 FLUSH, DON'T KNOW WHERE 15 PIT LATRINE VENTILATED IMPROVED PIT LATRINE 21 PIT LATRINE WITH SLAB 22 PIT LATRINE WITHOUT SLAB/ OPEN PIT 23 COMPOSTING TOILET 31 BUCKET TOILET HANGING TOILET/HANGING LATRINE . 51 NO FACILITY/BUSH/FIELD 61 OTHER \qquad	$\rightarrow 110$
108	Do you share this toilet facility with other households?		$\rightarrow 110$
109	How many households use this toilet facility?		
110	Does your household have: Electricity? A radio? A television? A cell phone? A landline/telephone? A refrigerator/freezer? A computer/laptop? A stove? A microwave? Home internet connectivity? A wardrobe? A sofa? A bed? A table and chairs? Windows with glass?		
111	What type of fuel does your household mainly use for cooking?		$\rightarrow 114$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
112	Is the cooking usually done in the house, in a separate building, or outdoors?		114
113	Do you have a separate room which is used as a kitchen?		
114	MAIN MATERIAL OF THE FLOOR. RECORD OBSERVATION.		
115	MAIN MATERIAL OF THE ROOF. RECORD OBSERVATION.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
123	Does any member of this household have an active bank account?	YES .	
123A	Have you ever heard of an illness called malaria?		$\longrightarrow 124$
123B	What are the signs of malaria? PROBE: Any other signs? RECORD ALL MENTIONED.		
123C	What causes malaria? PROBE: Any other causes? RECORD ALL MENTIONED.		
123D	What would you do if you suspected that you have malaria?		
123E	What do you do to prevent getting malaria? Anything else? RECORD ALL MENTIONED.		
124	At any time in the past 12 months, has anyone come into your dwelling to spray the interior walls against mosquitoes?	YES . 8	$\longrightarrow 126$
125	Who sprayed the dwelling?		
126	Does your household have any mosquito nets that can be used while sleeping?	$\begin{aligned} & \text { YES . } \\ & \text { NO } \end{aligned}$	$\longrightarrow 137$
127	How many mosquito nets does your household have? IF 7 OR MORE NETS, RECORD '7'.	NUMBER OF NETS	

		NET \#1	NET \#2	NET \#3
128	ASK THE RESPONDENT TO SHOW YOU ALL THE NETS IN THE HOUSEHOLD IF MORE THAN 3 NETS, USE ADDITIONAL QUESTIONNAIRE(S)	OBSERVED 1 NOT OBSERVED . . 2	OBSERVED $\ldots . .$. 1 NOT OBSERVED . . 2	OBSERVED 1 NOT OBSERVED . . 2
129	How many months ago did your household get the mosquito net? IF LESS THAN ONE MONTH AGO, RECORD '00'.	MONTHS AGO MORE THAN 36 MONTHS AGO . . . 95 NOT SURE \qquad 98	MONTHS AGO MORE THAN 36 MONTHS AGO . . . 95 NOT SURE	MONTHS AGO MORE THAN 36 MONTHS AGO . . . 95 NOT SURE 98
130	OBSERVE OR ASK THE BRAND/ TYPE OF MOSQUITO NET. IF BRAND IS UNKNOWN AND YOU CANNOT OBSERVE THE NET, SHOW PICTURES OF TYPICAL NET TYPES/BRANDS TO RESPONDENT.			
131	When you got the net, was it already treated with an insecticide to kill or repel mosquitoes?	YES $\quad \ldots \ldots \ldots$ $\ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 NOT SURE 8	YES \ldots. 1 NO \ldots. 2 NOT SURE 8	YES \quad. 1 NO \ldots. 2 NOT SURE 8
132	Since you got the net, was it ever soaked or dipped in a liquid to kill or repel mosquitoes?			YES $\ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots$ $\ldots \ldots$ 2 $\ldots \ldots$ \ldots
133	How many months ago was the net last soaked or dipped? IF LESS THAN ONE MONTH AGO, RECORD '00'.	MONTHS AGO MORE THAN 24 MONTHS AGO . . . 95 NOT SURE \qquad 98	MONTHS AGO MORE THAN 24 MONTHS AGO . . . 95 NOT SURE	MONTHS AGO MORE THAN 24 MONTHS AGO . . . 95 NOT SURE 98
134	Did anyone sleep under this mosquito net last night?			

HEALTH EXPENDITURES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
148	What is the name of the household member who last received care from a health provider, a pharmacy, or a traditional healer without staying overnight? RECORD NAME AND LINE NUMBER FROM COLS 1 AND 2 IN THE HOUSEHOLD SCHEDULE.	LINE NUMBER NAME \qquad	
149	Now I would like to ask some questions about (NAME in 148), who consulted a provider for health care in the last four weeks, without having stayed overnight. From what type of health provider did (NAME in 148) get care most recently without staying overnight?		
150	How much money was spent by your household on (NAME in 148)'s treatment and services received from (NAME OF PROVIDER IN 149)? Please include the consulting fee and any expenses for other items including drugs and tests.		
151	What was the main reason for (NAME in 148) to seek care this most recent time?		
152	In total, how many times did (NAME in 148) get care from a health provider in the last four weeks, without staying overnight?	NUMBER OF OUTPATIENT VISITS DON'T KNOW	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
153	How many times in the last four weeks was money spent by your household for care (NAME in 148) received (without staying overnight)?	NUMBER OF OUTPATIENT VISITS FOR WHICH MONEY WAS SPENT DON'T KNOW	
154	ASK RESPONDENT FOR A TEASPOONFUL OF COOKING SALT. EXPLAIN THAT YOU WILL TEST SALT FOR IODINE, AN IMPORTANT MICRONUTRIENT. TEST SALT FOR IODINE.	IODINE PRESENT NO IODINE NO SALT IN HOUSEHOLD SALT NOT TESTED	$\begin{array}{cc} \ldots . & 1 \tag{98}\\ \ldots & 2 \\ \ldots & 3 \\ & 6 \end{array}$

TABLE FOR SELECTION OF WOMEN FOR THE DOMESTIC VIOLENCE QUESTIONS

HOUSEHOLD SELECTED FOR MAN'S SURVEY?
NO

YES

NEXT SECTION

LOOK AT THE LAST DIGIT OF THE HOUSEHOLD QUESTIONNAIRE SERIAL NUMBER ON THE COVER PAGE. THIS IS THE ROW NUMBER YOU SHOULD GO TO. CHECK THE TOTAL NUMBER OF ELIGIBLE WOMEN (COLUMN 18) IN THE HOUSEHOLD SCHEDULE. THIS IS THE COLUMN NUMBER YOU SHOULD GO TO. FOLLOW THE SELECTED ROW AND COLUMN TO THE CELL WHERE THEY MEET AND CIRCLE THE NUMBER IN THE CELL. THIS IS THE NUMBER OF THE WOMAN SELECTED FOR THE DOMESTIC VIOLENCE QUESTIONS FROM THE LIST OF ELIGIBLE WOMEN IN COLUMN 18 OF THE HOUSEHOLD SCHEDULE. WRITE THE NAME AND LINE NUMBER OF THE SELECTED WOMAN IN THE SPACE BELOW THE TABLE.

EXAMPLE: THE HOUSEHOLD QUESTIONNAIRE SERIAL NUMBER IS ‘716’ AND THE HOUSEHOLD SCHEDULE COLUMN 18 SHOWS THAT THERE ARE THREE ELIGIBLE WOMEN AGE 15-49 IN THE HOUSEHOLD (LINE NUMBERS 02, 04, AND 05). SINCE THE LAST DIGIT OF THE HOUSEHOLD SERIAL NUMBER IS '6' GO TO ROW '6' AND SINCE THERE ARE THREE ELIGIBLE WOMEN IN THE HOUSEHOLD, GO TO COLUMN '3'. FOLLOW THE ROW AND COLUMN AND FIND THE NUMBER IN THE CELL WHERE THEY MEET ('2') AND CIRCLE THE NUMBER. NOW GO TO THE HOUSEHOLD SCHEDULE AND FIND THE SECOND WOMAN WHO IS ELIGIBLE FOR THE WOMAN'S INTERVIEW (LINE NUMBER '04' IN THIS EXAMPLE). WRITE HER NAME AND LINE NUMBER IN THE SPACE BELOW THE TABLE.

LAST DIGIT OF THE HOUSEHOLD QUESTIONNAIRE SERIAL NUMBER	TOTAL NUMBER OF ELIGIBLE WOMEN AGE 15-49 IN HOUSEHOLD SCHEDULE COLUMN 18							
	1	2	3	4	5	6	7	8
0	1	2	2	4	3	6	5	4
1	1	1	3	1	4	1	6	5
2	1	2	1	2	5	2	7	6
3	1	1	2	3	1	3	1	7
4	1	2	3	4	2	4	2	8
5	1	1	1	1	3	5	3	1
6	1	2	2	2	4	6	4	2
7	1	1	3	3	5	1	5	3
8	1	2	1	4	1	2	6	4
9	1	1	2	1	2	3	7	5
NAME OF SELECTED WOMAN 15-49								
		H L	US	EC	AN			

LOOK AT THE LAST DIGIT OF THE HOUSEHOLD QUESTIONNAIRE SERIAL NUMBER ON THE COVER PAGE. THIS IS THE ROW NUMBER YOU SHOULD GO TO. CHECK THE TOTAL NUMBER OF ELIGIBLE MEN (COLUMN 21) IN THE HOUSEHOLD SCHEDULE. THIS IS THE COLUMN NUMBER YOU SHOULD GO TO. FOLLOW THE SELECTED ROW AND COLUMN TO THE CELL WHERE THEY MEET AND CIRCLE THE NUMBER IN THE CELL. THIS IS THE NUMBER OF THE MAN SELECTED FOR THE DOMESTIC VIOLENCE QUESTIONS FROM THE LIST OF ELIGIBLE MEN IN COLUMN 21 OF THE HOUSEHOLD SCHEDULE. WRITE THE NAME AND LINE NUMBER OF THE SELECTED MAN IN THE SPACE BELOW THE TABLE.

EXAMPLE: THE HOUSEHOLD QUESTIONNAIRE SERIAL NUMBER IS ‘716’ AND THE HOUSEHOLD SCHEDULE COLUMN 21 SHOWS THAT THERE ARE THREE ELIGIBLE MEN AGE 15-49 IN THE HOUSEHOLD (LINE NUMBERS 02, 04, AND 05). SINCE THE LAST DIGIT OF THE HOUSEHOLD SERIAL NUMBER IS '6' GO TO ROW '6' AND SINCE THERE ARE three eligible men in the household, go to column ' 3 '. Follow the row and column and find the NUMBER IN THE CELL WHERE THEY MEET ('2') AND CIRCLE THE NUMBER. NOW GO TO THE HOUSEHOLD SCHEDULE AND FIND THE SECOND MAN WHO IS ELIGIBLE FOR THE MAN'S INTERVIEW (LINE NUMBER '04' IN THIS EXAMPLE). WRITE HIS NAME AND LINE NUMBER IN THE SPACE BELOW THE TABLE.

WEIGHT, HEIGHT AND HAEMOGLOBIN MEASUREMENT FOR CHILDREN AGE 0-5 YEARS

HOUSEHOLD SELECTED FOR MAN'S SURVEY? YES 1					END
201	CHECK COLUMN 24 IN HOUSEHOLD SCHEDULE. RECORD THE LINE NUMBER AND NAME FOR ALL ELIGIBLE CHILDREN 0-5 YEARS IN QUESTION 202. IF MORE THAN SIX CHILDREN, USE ADDITIONAL QUESTIONNAIRE(S).				
		CHILD 1	CHILD 2	CHILD 3	
202	LINE NUMBER FROM COLUMN 24 NAME FROM COLUMN 2	LINE NUMBER \square NAME \qquad	LINE NUMBER NAME \qquad	LINE NUMBER NAME \qquad	
203	IF MOTHER INTERVIEWED, COPY MONTH AND YEAR OF BIRTH FROM BIRTH HISTORY AND ASK DAY; IF MOTHER NOT INTERVIEWED, ASK: What is (NAME)'s birth date?			DAY . MONTH YEAR	-1
204	CHECK 203: CHILD BORN IN JANUARY 2008 OR LATER?	YES $\ldots \ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots \ldots$(GO TO 203 FOR NEXTCHILD OR, IF NO MORE CHILDREN, GO TO 300)Gl	YES $\ldots \ldots \ldots \ldots \ldots \ldots$ NO $\ldots \ldots \ldots \ldots \ldots$ (GO TO 203 FOR NEXT CHILD OR, IF NO MORE CHILDREN, GO TO 300)	YES NO (GO TO 2 CHILD OR MORE CH GO TO 30	$\begin{aligned} & \ldots \ldots \ldots \\ & \ldots \ldots \ldots \\ & \cdots \\ & \text { R NEXT } \\ & \text { NO } \\ & \text { EN, } \end{aligned}$
205	WEIGHT IN KILOGRAMS			KG. \square NOT PRE REFUSED OTHER	
206	HEIGHT IN CENTIMETERS			CM. \square NOT PRES REFUSED OTHER	\square. \square .. 9994 9995 9996
207	MEASURED LYING DOWN OR STANDING UP?	$\begin{array}{llll} \text { LYING DOWN } \ldots \ldots . . & 1 \\ \text { STANDING UP } & 2 \\ \text { NOT MEASURED } & 3 \end{array}$	$\begin{array}{llll}\text { LYING DOWN } \ldots \ldots \ldots & 1 \\ \text { STANDING UP } & 2 \\ \text { NOT MEASURED } & 3\end{array}$	LYING DOW STANDING NOT MEAS	$\begin{array}{ccc} & \ldots \ldots & 1 \\ \ldots \ldots \ldots & 2 \\ D \ldots \ldots & 3 \end{array}$
208	CHECK 203: IS CHILD AGE 0-5 MONTHS, I.E., WAS CHILD BORN IN MONTH OF INTERVIEW OR FIVE PREVIOUS MONTHS?	O-5 MONTHS (GO TO 203 FOR NEXT CHILD OR, IF NO MORE CHILDREN, GO TO 300) OLDER O		0-5 MONTH (GO TO 2 CHILD OR MORE CH GO TO 30 OLDER	
209	LINE NUMBER OF PARENT/ OTHER ADULT RESPONSIBLE FOR THE CHILD (FROM COLUMN 1 OF HOUSEHOLD SCHEDULE). RECORD 'OO' IF NOT LISTED.	LINE NUMBER \square	LINE NUMBER \square	LINE NUMBER	7
210	ASK CONSENT FOR ANAEMIA TEST FROM PARENT/OTHER ADULT IDENTIFIED IN 209 AS RESPONSIBLE FOR CHILD.	As part of this survey, we are asking people all over the country to take an anaemia test. Anaemia is a serious health problem that usually results from poor nutrition, infection, or chronic disease. This survey will assist the government to develop programs to prevent and treat anemia. We ask that all children born in 2008 or later take part in anaemia testing in this survey and give a few drops of blood from a finger or heel. The equipment used to take the blood is clean and completely safe. It has never been used before and will be thrown away after each test. SHOW UNOPENED PACKAGE. The blood will be tested for anaemia immediately, and the result will be told to you right away for further follow up, if necessary. The result will be kept strictly confidential and will not be shared with anyone other than members of our survey team. You can say yes to the test, or you can say no. It is up to you to decide. Do you have any questions? If you have any questions about the procedure at any time, please ask me. For more information about the procedure, you may contact the person(s) listed on this card. Will you allow (NAME OF CHILD) to participate in the anaemia test?			
211	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.			GRANTED \qquad (SI REFUSED	$\left.\ldots\right\|_{2} ^{\ldots \ldots \ldots}{ }_{2}^{1}$
212	RECORD HAEMOGLOBIN LEVEL HERE AND IN THE ANAEMIA PAMPHLET.			G/DL NOT PRES REFUSED OTHER	\square $\begin{array}{r} \text {. . . . } 994 \\ \ldots995 \\ \ldots996 \end{array}$
213	GO BACK TO 203 IN NEXT COLUMN OF THIS QUESTIONNAIRE OR IN THE FIRST COLUMN OF THE NEXT PAGE; IF NO MORE CHILDREN, GO TO 300.				

WEIGHT, HEIGHT AND HAEMOGLOBIN MEASUREMENT FOR CHILDREN AGE 0-5 YEARS

		CHILD 4	CHILD 5	CHILD 6
202	LINE NUMBER FROM COLUMN 24 NAME FROM COLUMN 2	LINE NUMBER \square NAME \qquad	LINE NUMBER \square NAME \qquad	LINE NUMBER \qquad \square NAME \qquad
203	IF MOTHER INTERVIEWED, COPY MONTH AND YEAR OF BIRTH FROM BIRTH HISTORY AND ASK DAY; IF MOTHER NOT INTERVIEWED, ASK: What is (NAME)'s birth date?			
204	CHECK 203: CHILD BORN IN JANUARY 2008 OR LATER?	YES $\ldots \ldots \ldots \ldots \ldots \ldots$ NO (GO TO 203 FOR NEXT CHILD OR, IF NO MORE CHILDREN, GO TO 300)	YES $\ldots \ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots \ldots$(GO TO 203 FOR NEXTCHILD OR, IF NO MORE CHILDREN, GO TO 300)	
205	WEIGHT IN KILOGRAMS			
206	HEIGHT IN CENTIMETERS			
207	MEASURED LYING DOWN OR STANDING UP?	LYING DOWN 1 STANDING UP 2 NOT MEASURED . . . 3	LYING DOWN 1 STANDING UP 2 NOT MEASURED . . . 3	LYING DOWN 1 STANDING UP 2 NOT MEASURED . . . 3
208	CHECK 203: IS CHILD AGE 0-5 MONTHS, I.E., WAS CHILD BORN IN MONTH OF INTERVIEW OR FIVE PREVIOUS MONTHS?	O-5 MONTHS $\begin{aligned} & 1 \\ & \text { (GO TO 203 FOR NEXT } \\ & \text { CHILD OR, IF NO } \\ & \text { MORE CHILDREN, } \\ & \text { GO TO 300) } \\ & \text { OLDER } 2\end{aligned}{ }^{2}$	0-5 MONTHS 1 (GO TO 203 FOR NEXT CHILD OR, IF NO MORE CHILDREN, GO TO 300) OLDER \qquad	O-5 MONTHS 1 (GO TO 203 FOR NEXT CHILD OR, IF NO MORE CHILDREN, GO TO 300) OLDER 2
209	LINE NUMBER OF PARENT/ OTHER ADULT RESPONSIBLE FOR THE CHILD (FROM COLUMN 1 OF HOUSEHOLD SCHEDULE). RECORD '00' IF NOT LISTED.	LINE NUMBER	LINE NUMBER	LINE NUMBER
210	ASK CONSENT FOR ANAEMIA TEST FROM PARENT/OTHER ADULT IDENTIFIED IN 209 AS RESPONSIBLE FOR CHILD.	As part of this survey, we are asking people all over the country to take an anaemia test. Anaemia is a serious health problem that usually results from poor nutrition, infection, or chronic disease. This survey will assist the government to develop programs to prevent and treat anemia. We ask that all children born in 2008 or later take part in anaemia testing in this survey and give a few drops of blood from a finger or heel. The equipment used to take the blood is clean and completely safe. It has never been used before and will be thrown away after each test. SHOW UNOPENED PACKAGE. The blood will be tested for anaemia immediately, and the result will be told to you right away for further follow up, if necessary. The result will be kept strictly confidential and will not be shared with anyone other than members of our survey team. You can say yes to the test, or you can say no. It is up to you to decide. Do you have any questions? If you have any questions about the procedure at any time, please ask me. For more information about the procedure, you may contact the person(s) listed on this card. Will you allow (NAME OF CHILD) to participate in the anaemia test?		
211	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.			
212	RECORD HAEMOGLOBIN LEVEL HERE AND IN THE ANAEMIA PAMPHLET.			
213	GO BACK TO 203 IN NEXT COLUMN OF THIS QUESTIONNAIRE OR IN THE FIRST COLUMN OF THE NEXT PAGE; IF NO MORE CHILDREN, GO TO 300.			

BLOOD PRESSURE AND BLOOD GLUCOSE FOR WOMEN AGE 35-64

	HOUSEHOLD SELECTED FOR M	YRVEY? YES $\begin{aligned} & 1 \\ & \\ & \\ & \\ & \\ & \end{aligned}$		END
300	CHECK COLUMN 20 IN HOUSEHOLD SCHEDULE. RECORD THE LINE NUMBER AND NAME OF ALL ELIGIBLE WOMEN AGE 35-64 FOR BLOOD GLUCOSE AND BLOOD PRESSURE MEASUREMENTS. IF THERE ARE MORE THAN THREE WOMEN, USE ADDITIONAL QUESTIONNAIRE(S).			
		WOMAN 1	WOMAN 2	WOMAN 3
301	LINE NUMBER FROM COLUMN 20 NAME FROM COLUMN 2.	LINE NUMBER NAME	LINE NUMBER NAME	LINE \qquad NAME
301A	PREGNANCY STATUS: CHECK 226 IN WOMAN'S QUESTIONNAIRE OR ASK: Are you pregnant?	YES $\ldots \ldots \ldots \ldots$ \ldots NO . 1 DK . 2	YES . NO . DK . 2	
302	Now I am going to ask you to participate in several physical measurements or tests. I will explain each measurement or test before starting the procedure. You will be free to say yes or no to each one. Before taking the measurements, I am going to ask a few questions about yourself.			
303	AGE How old were you at your last birthday?	YEARS	YEARS	YEARS
304	MARITAL STATUS What is your current marital status?	CURRENTLY IN UNION \ldots. 1 DIVORCED/SEPARATED \ldots 2 WIDOWED $\ldots \ldots \ldots \ldots$ 3 NEVER MARRIED/ NEVER IN UNION $\ldots .$. 4	CURRENTLY IN UNION \ldots. 1 DIVORCEDISEPARATED \ldots 2 WIDOWED 3 NEVER MARRIED/ NEVER IN UNION $\ldots .$. 4	CURRENTLY IN UNION \ldots. 1 DIVORCED/SEPARATED \ldots 2 WIDOWED $\ldots \ldots . . \ldots$. 3 NEVER MARRIED/ NEVER IN UNION $\ldots . .$. 4
305	EDUCATION Have you ever attended school?	YES . NO (GO TO 307)		YES . (GO TO 307)
306	What is the highest level of school you attended: primary, secondary, or higher?			
307	WORK Are you currently working?			
308	What is your occupation, that is what is the kind of work you mainly do?		\qquad	
309	ASK CONSENT FOR BLOOD PRESSURE MEASUREMENT I would like to measure your blood pressure. This will be done three times during the interview and it will take about ten minutes for each measurement. This is a harmless procedure. It is used to find out if a person has high blood pressure. If it is not treated, high blood pressure may eventually cause serious damage to the heart and may lead to stroke and death. The results of this blood pressure measurement will be given to you after the measurement process is completed for further follow up if necessary. I will explain the meaning of your blood pressure numbers. If your blood pressure is high, we will suggest that you consult a health facility or doctor since we cannot provide any further testing or treatment during the survey. The result will be kept strictly confidential and will not be shared with anyone other than members of our survey team. You can say yes or no to having the blood pressure measurement now. You can also decide at anytime not to participate in the blood pressure measures. Do you have any questions about the blood pressure measurement so far? If you have any questions about the procedure at any time, please ask me. For more information, you may also contact the person(s) on the card that was given out at the beginning. Will you undergo the blood pressure measurements?			
310	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME. (IF 'NOT PRESENT' MAKE 2 MORE CALL BACKS TO FIND THE RESPONDENT)	GRANTEDREFUSED (SIGN AND GO TO 317)SIGN RESP. NOT PRESENT (GO TO 365)(G)		

HOUSEHOLD SELECTED FOR MALE SURVEY? YES $\ldots \ldots \ldots \stackrel{1}{\downarrow}{ }^{\downarrow}$						
337	CHECK COLUMN 19 IN HOUSEHOLD SCHEDULE. RECORD THE LINE NUMBER AND NAME FOR ALL ELIGIBLE WOMEN AGE 15-64 IN 215. IF THERE ARE MORE THAN THREE WOMEN, USE ADDITIONAL QUESTIONNAIRE(S).					
		WOMAN 1	WOMAN		WOMAN 3	
338	LINE NUMBER FROM COLUMN 19 NAME FROM COLUMN 2	LINE NUMBER NAME	LINE NUMBER NAME		LINE NUMBER NAME	
339	WEIGHT IN KILOGRAMS					
340	HEIGHT IN CENTIMETERS	CM. \square NOT PRESENT REFUSED OTHER	CM. NOT PRESENT REFUSED OTHER	. \qquad 9994 9995 9996	CM. \square NOT PRESENT REFUSED OTHER	$\begin{aligned} & 7 . \\ & \\ & \ldots 9994 \\ & \text { ․ } 9995 \\ & \text { ․ } 9996 \end{aligned}$
341	AGE: CHECK COLUMN 7.	15-17 YEARS 18-64 YEARS	15-17 YEARS 18-64 YEARS	$\begin{array}{ll} \ldots \ldots & 1 \\ \ldots \ldots & 2 \\ 346) \end{array}$	15-17 YEARS 18-64 YEARS	$\begin{array}{ll} \ldots & 1 \\ \ldots & 2 \\ 6 \end{array}$
342	MARITAL STATUS: CHECK COLUMN 8.	CODE 4 (NEVER IN UN OTHER	CODE 4 (NEVER IN UN OTHER	$\begin{array}{rr} \ldots & 1 \\ \ldots . & 2 \\ 346) \end{array}$	CODE 4 (NEVER IN UNI OTHER	$\begin{array}{cc} \ldots & 1 \\ \ldots & 2 \\ 46) \end{array}$
343	RECORD LINE NUMBER OF PARENT/OTHER ADULT RESPONSIBLE FOR ADOLESCENT. RECORD '00' IF NOT LISTED.	LINE NUMBER OF PARENT OR OTHER RESPONSIBLE ADULT	LINE NUMBER OF PARENT OR OTHER RESPONSIBLE ADULT		LINE NUMBER OF PARENT OR OTHER RESPONSIBLE ADULT	
344	ASK CONSENT FOR ANAEMIA TEST FROM PARENT/ OTHER ADULT IDENTIFIED IN 343 AS RESPONSIBLE FOR NEVER IN UNION WOMEN AGE 15-17.	As part of this survey, w usually results from poor and treat anaemia. For the anaemia testing, safe. It has never been result will be told to you confidential and will not b SHOW UNOPENED PA You can say yes to the t Do you have any questio may also contact the per Will you allow (NAME O	ll over the country to take chronic disease. This s ops of blood from a finge be thrown away after each ESCENT) right away for other than members of OLESCENT), or you can questions about the proce at was given out at the be ake the anaemia test?	anaemia tes y will assist he equipmen t. The blood her follow up survey team. no. It is up to at any time ning.	naemia is a serious health overnment to develop pro d to take the blood is clea be tested for anaemia imm ecessary. The result will be to decide. ase ask me. For more info	m that to preve complet ly, and th strictly n, you
345	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.	GRANTED PARENT/OTHER RESP ADULT REFUSED .. (SIGN) (IF REFUSED,	GRANTED PARENT/OTHER RESP ADULT REFUSED . (SIGN) (IF REFUSED,	SIBLE 2 \qquad O 351)	GRANTED PARENT/OTHER RESP ADULT REFUSED \qquad (SIGN) (IF REFUSED, G	LE 2 351)
346	ASK CONSENT FOR ANAEMIA TEST FROM RESPONDENT.	As part of this survey, we are asking people all over the country to take an anaemia test. anaemia is a serious health problem that usually results from poor nutrition, infection, or chronic disease. This survey will assist the government to develop programs to prevent and treat anaemia. For the anaemia testing, we will need a few drops of blood from a finger. The equipment used to take the blood is clean and completely safe. It has never been used before and will be thrown away after each test. The blood will be tested for anaemia immediately, and the result will be told to you right away for further follow up, if necessary. The result will be kept strictly confidential and will not be shared with anyone other than members of our survey team. SHOW UNOPENED PACKAGE. You can say yes or no to the test. It is up to you to decide. Do you have any questions? If you have any questions about the procedure at any time, please ask me. For more information, you may also contact the person(s) on the card that was given out at the beginning. Will you take the anaemia test?				

		WOMAN 1	WOMAN 2	WOMAN 3
	NAME FROM COLUMN 2	NAME	NAME	NAME
347	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.		 (IF REFUSED, GO TO 349)	
348	PREGNANCY STATUS: CHECK 226 IN WOMAN'S QUESTIONNAIRE OR ASK: Are you pregnant?			
349	AGE: CHECK COLUMN 7.	$\begin{array}{rrr}\text { 15-17 YEARS } & \ldots \ldots \ldots \ldots & 1 \\ \text { 18-64 YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & & \text { (GO TO 353) }\end{array}$	$\begin{array}{cc}\text { 15-17 YEARS } & \ldots \ldots \ldots \ldots \ldots \\ \text { 18-64 YEARS } & \ldots \ldots \ldots \ldots \ldots \\ & \\ & \text { (GO TO 353) }\end{array}$	$\begin{array}{rcc}\text { 15-17 YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & & (\text { GO TO 353) }\end{array}$
350	MARITAL STATUS: CHECK COLUMN 8.			
351	ASK CONSENT FOR DBS COLLECTION FROM PARENT/ OTHER ADULT IDENTIFIED IN 343 AS RESPONSIBLE FOR NEVER IN UNION WOMEN AGE 15-17.	As part of the survey we also are asking people all over the country to take an HIV test. HIV is the virus that causes AIDS. AIDS is a very serious illness. The HIV test is being done to determine the HIV prevalence in Namibia. For the HIV test, we need to collect a few (more) drops of blood from a finger to be tested later at a lab for HIV. The equipment used to take the blood is clean and completely safe. It has never been used before and will be thrown away after each test. No names will be attached so we will not be able to tell you the test results. No one else will be able to know (NAME OF ADOLESCENT)'s test results either. If (NAME OF ADOLESCENT) wants to know her HIV status, I can provide a list of [nearby] facilities offering counseling and testing for HIV. I will also give her a voucher for free services that can be used at any of these facilities. You can say yes to the test for (NAME OF ADOLESCENT), or you can say no. It is up to you to decide. Do you have any questions? If you have any questions about the procedure at any time, please ask me. For more information, you may also contact the person(s) on the card that was given out at the beginning. Will you allow (NAME OF ADOLESCENT) to take the HIV test?		
352	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.	GRANTED $\ldots \ldots \ldots \ldots \ldots$PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$(IF REFUSED, GO TO 362)	GRANTED $\ldots \ldots \ldots \ldots \ldots$ PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$$\left.\frac{1}{} \begin{array}{l}\text { (SIGN) } \\ \text { (IF REFUSED, GO TO 362) }\end{array}\right]$	GRANTED $\ldots \ldots \ldots \ldots \ldots \ldots$PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$$\frac{1}{}$(IF REFUSED, GO TO 362)
353	ASK CONSENT FOR DBS COLLECTION FROM RESPONDENT.	As part of the survey we also are asking pe very serious illness. The HIV test is being d For the HIV test, we need a few (more) dro safe. It has never been used before and will you the test results. No one else will be able you with a list of [nearby] facilities offering for your partner if you want) that you can us You can say yes or no to the test. It is up to Do you have any questions? If you have any also contact the person(s) on the card that Will you take the HIV test?	ple all over the country to take an HIV test. HIV ne to determine the HIV prevalence in Namib s blood from a finger. The equipment used be thrown away after each test. No names will to know your test results either. If you want to unseling and testing for HIV. I will also give at any of these facilities. you to decide. questions about the procedure at any time, p as given out at the beginning.	is the virus that causes AIDS. AIDS is a take the blood is clean and completely be attached so we will not be able to tell now whether you have HIV, I can provide a voucher for free services for you (and ase ask me. For more information, you may
354	CIRCLE THE APPROPRIATE CODE, SIGN YOUR NAME, AND ENTER YOUR INTERVIEWER NUMBER.			

		WOMAN 1	WOMAN 2	WOMAN 3
	NAME FROM COLUMN 2	NAME	NAME	NAME
355	AGE: CHECK COLUMN 7.	$\begin{array}{rrr}\text { 15-17 YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ \text { 18-64 YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & \text { (GO TO 359) }\end{array}$	$\begin{aligned} \text { 15-17 YEARS } & \ldots \ldots \ldots \ldots \ldots \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \\ & \\ & \text { (GO TO 359) }\end{aligned}$	$\begin{aligned} 15-17 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \\ & \\ & \text { (GO TO 359) }\end{aligned}$
356	MARITAL STATUS: CHECK COLUMN 8.			
357	ASK CONSENT FOR ADDITIONAL TESTING FROM PARENT/OTHER ADULT IDENTIFIED IN 343 AS RESPONSIBLE FOR NEVER IN UNION WOMEN AGE 15-17.	We ask you to allow the Ministry of Health and Social Services to store part of the blood sample at the laboratory for additional tests or research. You can say yes or no to storing the blood of (NAME OF ADOLESCENT) for additional testing. The blood sample will not have any name or other data attached that could identify (NAME OF ADOLESCENT). You do not have to agree. If you do not want the blood sample stored for additional testing (NAME OF ADOLESCENT) can still participate in the HIV testing in this survey. Will you allow us to keep the blood sample stored for additional testing?		
358	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.	(SIGN)GRANTED $\ldots \ldots \ldots \ldots \ldots$ PADENT/OTHER RESPONSIBLE (IF REFUSED, GO TO 361)	GRANTED $\ldots \ldots \ldots \ldots \ldots \ldots$ PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$ (SIGN) (IF REFUSED, GO TO 361)	GRANTED $\ldots \ldots \ldots \ldots \ldots \ldots$PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$$\frac{1}{}$(IIGN)(IF REFUSED, GO TO 361)
359	ASK CONSENT FOR ADDITIONAL TESTING FROM RESPONDENT.	We ask you to allow the Ministry of Health and Social Services to store part of the blood sample at the laboratory for additional tests or research. We are not certain about what additional tests might be done. You can say yes or no to storing your blood for additional testing. The blood sample will not have any name or other data attached that could identify you. You do not have to agree. If you do not want the blood sample stored for additional testing, you can still participate in the HIV testing in this survey. Will you allow us to keep the blood sample stored for additional testing?		
360	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.			
361	ADDITIONAL TESTS	CHECK 358 AND 360: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.	CHECK 358 AND 360: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.	CHECK 358 AND 360: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.
362	PREPARE EQUIPMENT AND SUPPLIES ONLY FOR THE TEST(S) FOR WHICH CONSENT HAS BEEN OBTAINED AND PROCEED WITH THE TEST(S).			
363	RECORD HAEMO- GLOBIN LEVEL HERE AND IN ANAEMIA PAMPHLET			
364	BAR CODE LABEL			
365	GO BACK TO 300 IN NEXT COLUMN OF THIS QUESTIONNAIRE OR IN THE FIRST COLUMN OF AN ADDITIONAL QUESTIONNAIRE; IF NO MORE WOMEN, GO TO 400.			

BLOOD PRESSURE AND BLOOD GLUCOSE FOR MEN AGE 35-64

	HOUSEHOLD SELECTED FOR M	URVEY? YES $\ldots \ldots . . \begin{gathered}1 \\ \\ \\ \end{gathered}$	NO	END
400	CHECK COLUMN 23 IN HOUSEHOLD SCHEDULE. RECORD THE LINE NUMBER AND NAME OF ALL ELIGIBLE MEN AGE 35-64 FOR BLOOD GLUCOSE AND BLOOD PRESSURE MEASUREMENTS. IF THERE ARE MORE THAN THREE MEN, USE ADDITIONAL QUESTIONNAIRE(S).			
		MAN 1	MAN 2	MAN 3
401	LINE NUMBER FROM COLUMN 23 NAME FROM COLUMN 2.	LINE NUMBER NAME \qquad	LINE \qquad NAME \qquad	LINE NUMBER NAME \qquad
402	Now I am going to ask you to participate in several physical measurements or tests. I will explain each measurement or test before starting the procedure. You will be free to say yes or no to each one. Before taking the measurements, I am going to ask a few questions about yourself.			
403	AGE How old were you at your last birthday?	YEARS \square	YEARS $\quad \square$	YEARS
404	MARITAL STATUS What is your current marital status?	CURRENTLY IN UNION \ldots. 1 DIVORCED/SEPARATED \ldots 2 WIDOWED 3 NEVER MARRIED/ NEVER IN UNION $\ldots . .$. 4	CURRENTLY IN UNION \ldots. 1 DIVORCED/SEPARATED \ldots 2 WIDOWED 3 NEVER MARRIED/ NEVER IN UNION $\ldots .$. 4	CURRENTLY IN UNION \ldots. 1 DIVORCED/SEPARATED . 2 WIDOWED $\ldots \ldots$. 3 NEVER MARRIED/ NEVER IN UNION $\ldots .$. 4
405	EDUCATION Have you ever attended school?		$\begin{array}{ll}\text { YES } & \text {. } \\ \text { NO } & 1 \\ & \end{array}$	YES . NO TO 407) (GO TO
406	What is the highest level of school you attended: primary, secondary, or higher?			
407	WORK Are you currently working?			
408	What is your occupation, that is what is the kind of work you mainly do?			
409	ASK CONSENT FOR BLOOD PRESSURE MEASUREMENT I would like to measure your blood pressure. This will be done three times during the interview and it will take about ten minutes for each measurement. This is a harmless procedure. It is used to find out if a person has high blood pressure. If it is not treated, high blood pressure may eventually cause serious damage to the heart and may lead to stroke and death. The results of this blood pressure measurement will be given to you after the measurement process is completed for further follow up if necessary. I will explain the meaning of your blood pressure numbers. If your blood pressure is high, we will suggest that you consult a health facility or doctor since we cannot provide any further testing or treatment during the survey. The result will be kept strictly confidential and will not be shared with anyone other than members of our survey team. You can say yes or no to having the blood pressure measurement now. You can also decide at anytime not to participate in the blood pressure measures. Do you have any questions about the blood pressure measurement so far? If you have any questions about the procedure at any time, please ask me. For more information, you may also contact the person(s) on the card that was given out at the beginning. Will you undergo the blood pressure measurements?			
410	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME. (IF 'NOT PRESENT' MAKE 2 MORE CALL BACKS TO FIND THE RESPONDENT)	GRANTED REFUSED (SIGN AND GO TO 417) SIGN RESP. NOT PRESENT (GO TO 465)		

WEIGHT, HEIGHT, HAEMOGLOBIN MEASUREMENT AND HIV TESTING FOR MEN AGE 15-64

		MAN 1	MAN 2	MAN 3
	NAME FROM COLUMN 2	NAME	NAME	NAME
447	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.	(IF REFUSED, GO TO 449)	(IF REFUSED, GO TO 449)	
449	AGE: CHECK COLUMN 7.	$\begin{array}{ccc}\text { 15-17 YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & \text { (GO TO 453) }\end{array}$	$\begin{array}{rrr}15-17 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & \text { (GO TO 453) }\end{array}$	$\begin{array}{rrr}15-17 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 2 \\ & (\text { GO TO 453) }\end{array}$
450	MARITAL STATUS: CHECK COLUMN 8.			CODE 4 (NEVER IN UNION) \ldots. OTHER
451	ASK CONSENT FOR DBS COLLECTION FROM PARENT/ OTHER ADULT IDENTIFIED IN 343 AS RESPONSIBLE FOR NEVER IN UNION MEN AGE 15-17.	As part of the survey we also are asking people all over the country to take an HIV test. HIV is the virus that causes AIDS. AIDS is a very serious illness. The HIV test is being done to determine the HIV prevalence in Namibia. For the HIV test, we need a few (more) drops of blood from a finger. The equipment used to take the blood is clean and completely safe. It has never been used before and will be thrown away after each test. No names will be attached so we will not be able to tell you the test results. No one else will be able to know (NAME OF ADOLESCENT)'s test results either. If (NAME OF ADOLESCENT) wants to know her HIV status, I can provide a list of [nearby] facilities offering counseling and testing for HIV. I will also give her a voucher for free services that can be used at any of these facilities. You can say yes to the test for (NAME OF ADOLESCENT), or you can say no. It is up to you to decide. Do you have any questions? If you have any questions about the procedure at any time, please ask me. For more information, you may also contact the person(s) on the card that was given out at the beginning. Will you allow (NAME OF ADOLESCENT) to take the HIV test?		
452	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.		GRANTED $\ldots \ldots \ldots \ldots \ldots$ PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$ (SIGN) (IF REFUSED, GO TO 462)	GRANTED $\ldots \ldots \ldots \ldots \ldots$PARENT/OTHER RESPONSIBLE ADULT REFUSED $\ldots \ldots \ldots \ldots$$\frac{1}{}$(IF REFUSED, GO TO 462)
453	ASK CONSENT FOR DBS COLLECTION FROM RESPONDENT.	As part of the survey we also are asking pe very serious illness. The HIV test is being don For the HIV test, we need a few (more) dro safe. It has never been used before and wil you the test results. No one else will be able you with a list of [nearby] facilities offering for your partner if you want) that you can us You can say yes or no to the test. It is up to Do you have any questions? If you have any also contact the person(s) on the card that Will you take the HIV test?	ple all over the country to take an HIV test. HIV ne to determine the HIV prevalence in Namib s of blood from a finger. The equipment used be thrown away after each test. No names w to know your test results either. If you want to unseling and testing for HIV. I will also give at any of these facilities. you to decide. questions about the procedure at any time, p as given out at the beginning.	is the virus that causes AIDS. AIDS is a take the blood is clean and completely be attached so we will not be able to tell now whether you have HIV, I can provide a voucher for free services for you (and ase ask me. For more information, you may
454	CIRCLE THE APPROPRIATE CODE, SIGN YOUR NAME, AND ENTER YOUR INTERVIEWER NUMBER.		(IF REFUSED, GO TO 462)	(IF REFUSED, GO TO 462)

		MAN 1	MAN 2	MAN 3
	NAME FROM COLUMN 2	NAME	NAME	NAME
		MAN 1	MAN 2	MAN 3
	NAME FROM COLUMN 2	NAME	NAME	NAME
455	AGE: CHECK COLUMN 7.	$\begin{array}{rc}15-17 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \\ & \\ & \text { (GO TO 459) }\end{array}$	15-17 YEARS $\ldots \ldots \ldots \ldots \ldots$ $18-64$ YEARS $\ldots \ldots \ldots \ldots \ldots$ (GO TO 459)	$\begin{array}{rrr}15-17 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots & 1 \\ 18-64 \text { YEARS } & \ldots \ldots \ldots \ldots \ldots \ldots \\ & & (\text { GO TO 459) }\end{array}$
456	MARITAL STATUS: CHECK COLUMN 8.	CODE 4 (NEVER IN UNION) 1 OTHER $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (GO TO 459)		
457	ASK CONSENT FOR ADDITIONAL TESTING FROM PARENT/OTHER ADULT IDENTIFIED IN 443 AS RESPONSIBLE FOR NEVER IN UNION MEN AGE 15-17.	We ask you to allow the Ministry of Health and Social Services to store part of the blood sample at the laboratory for additional tests or research. You can say yes or no to storing the blood of (NAME OF ADOLESCENT) for additional testing. The blood sample will not have any name or other data attached that could identify (NAME OF ADOLESCENT). You do not have to agree. If you do not want the blood sample stored for additional testing (NAME OF ADOLESCENT) can still participate in the HIV testing in this survey. Will you allow us to keep the blood sample stored for additional testing?		
458	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.			
459	ASK CONSENT FOR ADDITIONAL TESTING FROM RESPONDENT.	We ask you to allow the Ministry of Health and Social Services to store part of the blood sample at the laboratory for additional tests or research. You can say yes or no to storing your blood for additional testing. The blood sample will not have any name or other data attached that could identify you. You do not have to agree. If you do not want the blood sample stored for additional testing, you can still participate in the HIV testing in this survey. Will you allow us to keep the blood sample stored for additional testing?		
460	CIRCLE THE APPROPRIATE CODE AND SIGN YOUR NAME.			
461	ADDItional tests	CHECK 458 AND 460: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.	CHECK 458 AND 460: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.	CHECK 458 AND 460: IF CONSENT HAS NOT BEEN GRANTED WRITE "NO ADDITIONAL TEST" ON THE FILTER PAPER.
462	PREPARE EQUIPMENT AND SUPPLIES ONLY FOR THE TEST(S) FOR WHICH CONSENT HAS BEEN OBTAINED AND PROCEED WITH THE TEST(S).			
463	RECORD HAEMO- GLOBIN LEVEL HERE AND IN ANAEMIA PAMPHLET			
464	bar code label			
465	GO BACK TO 400 IN NEXT COLUMN OF THIS QUESTIONNAIRE OR IN THE FIRST COLUMN OF AN ADDITIONAL QUESTIONNAIRE; IF NO MORE MEN, END INTERVIEW.			

MINISTRY OF HEALTH AND SOCIAL SERVICES

INFORMED CONSENT

Hello. My name is \qquad . I am working with the Ministry of Health and Social Services. We are conducting a survey about health all over Namibia. The information we collect will help the government to plan health services. Your household was selected for the survey. The questions usually take about 30 to 60 minutes. All of the answers you give will be confidential and will not be shared with anyone other than members of our survey team. You don't have to be in the survey, but we hope you will agree to answer the questions since your views are important. If I ask you any question you don't want to answer, just let me know and I will go on to the next question or you can stop the interview at any time.

In case you need more information about the survey, you may contact the person listed on the card that has already been given to your household.
Do you have any questions? May I begin the interview now?
SIGNATURE OF INTERVIEWER: \qquad DATE: \qquad

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
108	Now I would like you to read this sentence to me. SHOW CARD TO RESPONDENT. IF RESPONDENT CANNOT READ WHOLE SENTENCE, PROBE: Can you read any part of the sentence to me?		
108A	Have you ever participated in a literacy program or any other program that involves learning to read or write (not including primary school)?	YES . 2	
109	CHECK 108: CODE '2', '3' CODE '1' OR '5' OR '4' CIRCLED \square CIRCLED		$\rightarrow 111$
110	Do you read a newspaper or magazine at least once a week, less than once a week or not at all?		
111	Do you listen to the radio at least once a week, less than once a week or not at all?	AT LEAST ONCE A WEEK 1 LESS THAN ONCE A WEEK $\ldots .$. 2 NOT AT ALL \quad. 3	
112	Do you watch television at least once a week, less than once a week or not at all?	AT LEAST ONCE A WEEK 1 LESS THAN ONCE A WEEK $\ldots . .$. 2 NOT AT ALL 3	
113	What is your religion?		
114	What is the main language spoken in your home?		
115	In the last 12 months, how many times have you been away from home for one or more nights?	NUMBER OF TIMES \square NONE	\rightarrow 201A
116	In the last 12 months, have you been away from home for more than one month at a time?	YES . 2	

SECTION 2. REPRODUCTION

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
201A	CHECK COVER PAGE: HOUSEHOLD SELECTED HOUSEHOLD NOT SELECTE FOR MAN'S SURVEY FOR MAN'S SURVE		$\rightarrow 201$
201B	CHECK 103: WOMAN AGE 15-49 WOMAN AGE 50-		$\rightarrow 601$
201	Now I would like to ask about all the births you have had during your life. Have you ever given birth?	YES . 2	$\rightarrow 206$
202	Do you have any sons or daughters to whom you have given birth who are now living with you?	YES . 2	$\rightarrow 204$
203	How many sons live with you? And how many daughters live with you? IF NONE, RECORD '00'.	SONS AT HOME DAUGHTERS AT HOME	
204	Do you have any sons or daughters to whom you have given birth who are alive but do not live with you?	YES . 2	$\longrightarrow 206$
205	How many sons are alive but do not live with you? And how many daughters are alive but do not live with you? IF NONE, RECORD '00'.	SONS ELSEWHERE DAUGHTERS ELSEWHERE	
206	Have you ever given birth to a boy or girl who was born alive but later died? IF NO, PROBE: Any baby who cried or showed signs of life but did not survive?	YES . 2	$\longrightarrow 208$
207	How many boys have died? And how many girls have died? IF NONE, RECORD '00'.	BOYS DEAD GIRLS DEAD	
208	SUM ANSWERS TO 203, 205, AND 207, AND ENTER TOTAL. IF NONE, RECORD '00'.	TOTAL BIRTHS	
209	CHECK 208: Just to make sure that I have this right: you have had in TOTAL \qquad births during your life. Is that correct? PROBE AND YES CORRECT 201-208 AS NECESSARY.		
210	CHECK 208: ONE OR MORE NO BIRTHS BIRTHS		$\longrightarrow 226$

211 Now I would like to record the names of all your births, whether still alive or not, starting with the first one you had.
RECORD NAMES OF ALL THE BIRTHS IN 212. RECORD TWINS/TRIPLETS/MULTIPLES ON SEPARATE ROWS.
(IF THERE ARE MORE THAN 12 BIRTHS, USE AN ADDITIONAL QUESTIONNAIRE, STARTING WITH THE SECOND ROW).

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
238	When did your last menstrual period start? (DATE, IF GIVEN)	 IN MENOPAUSE/	
239	From one menstrual period to the next, are there certain days when a woman is more likely to become pregnant?	YES . 8	$\xrightarrow{\longrightarrow} 301$
240	Is this time just before her period begins, during her period, right after her period has ended, or halfway between two periods?		

SECTION 3. CONTRACEPTION

301	Now I would like to talk about family planning - the various ways or methods that a couple can use to delay or avoid a pregnancy. Have you ever heard of (METHOD)?		
01	Female Sterilization. PROBE: Women can have an operation to avoid having any more children.		
02	Male Sterilization. PROBE: Men can have an operation to avoid having any more children.		
03	IUD. PROBE: Women can have a loop or coil placed inside them by a doctor or a nurse.		
04	Injectables. PROBE: Women can have an injection by a health provider that stops them from becoming pregnant for one or more months.		
05	Implants. PROBE: Women can have one or more small rods placed in their upper arm by a doctor or nurse which can prevent pregnancy for one or more years.		
06	Pill. PROBE: Women can take a pill every day to avoid becoming pregnant.		
07	Contraceptive Patch (Evra). PROBE: Women can have a transdermal patch applied to their skin that releases synthetic estrogen and progestin hormones to prevent pregnancy.		
08	Condom. PROBE: Men can put a rubber sheath on their penis before sexual intercourse.		
09	Female Condom. PROBE: Women can place a sheath in their vagina before sexual intercourse.		
10	Lactational Amenorrhea Method (LAM).		
11	Rhythm Method. PROBE: To avoid pregnancy, women do not have sexual intercourse on the days of the month they think they can get pregnant.		
12	Withdrawal. PROBE: Men can be careful and pull out before climax or ejaculation.		
13	Emergency Contraception. PROBE: As an emergency measure, within three days after they have unprotected sexual intercourse, women can take special pills to prevent pregnancy.		
14	Have you heard of any other ways or methods that women or men can use to avoid pregnancy?		
302	CHECK 226: NOT PREGNANT PREGNANT OR UNSURE		$\longrightarrow 311$
303	Are you currently doing something or using any method to delay or avoid getting pregnant?		$\longrightarrow 311$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
304	Which method are you using? CIRCLE ALL MENTIONED. IF MORE THAN ONE METHOD MENTIONED, FOLLOW SKIP INSTRUCTION FOR HIGHEST METHOD IN LIST.		
305	What is the brand name of the pills you are using? IF DON'T KNOW THE BRAND, ASK TO SEE THE PACKAGE.		$\rightarrow 308 \mathrm{~A}$
306	What is the brand name of the condoms you are using? IF DON'T KNOW THE BRAND, ASK TO SEE THE PACKAGE.		$\rightarrow \rightarrow 308 \mathrm{~A}$
307	In what facility did the sterilization take place? PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE. (NAME OF PLACE)	```PUBLIC SECTOR GOVT. HOSPITAL }1 GOVT. HEALTH CENTER 12 OTHER PUBLIC SECTOR (SPECIFY) PRIVATE HOSPITAL 21 PRIVATE CLINIC }2 PRIVATE DOCTOR'S OFFICE 23 OTHER PRIVATE MEDICAL SECTOR``` \qquad ```None \\ OTHER ``` \qquad ```NoneNone ``` \qquad ```None ```	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIE	SKIP
	In what month and year was the sterilization performed? Since what month and year have you been using (CURRENT METHOD) without stopping? PROBE: For how long have you been using (CURRENT METHOD) now without stopping?	MONTH YEAR	
309	CHECK 308/308A, 215 AND 231: ANY BIRTH OR PREGNANCY TERMINATION AFTER MONTH AND YEAR OF START OF USE OF CONTRACEPTION IN 308/308A GO BACK TO 308/308A, PROBE AND RECORD MONTH AND YEA USE OF CURRENT METHOD (MUST BE AFTER LAST BIRTH OR	YES AT START OF CONTINUOUS REGNANCY TERMINATION).	
310	CHECK 308/308A: YEAR IS 2008 OR LATER ENTER CODE FOR METHOD USED IN MONTH OF INTERVIEW IN THE CALENDAR AND IN EACH MONTH BACK TO THE DATE STARTED USING.	EAR IS 2007 OR EARLIER ENTER CODE FOR METHO INTERVIEW IN THE CALEN EACH MONTH BACK TO JA N SKIP TO	NTH OF
311	I would like to ask you some questions about the times you or your partner may have used a method to avoid getting pregnant during the last few years. USE CALENDAR TO PROBE FOR EARLIER PERIODS OF USE AND NONUSE, STARTING WITH MOST RECENT USE, BACK TO JANUARY 2008. USE NAMES OF CHILDREN, DATES OF BIRTH, AND PERIODS OF PREGNANCY AS REFERENCE POINTS. IN COLUMN 1, ENTER METHOD USE CODE OR '0' FOR NONUSE IN EACH BLANK MONTH. ILLUSTRATIVE QUESTIONS: * When was the last time you used a method? Which method was that? * When did you start using that method? How long after the birth of (NAME)? * How long did you use the method then? IN COLUMN 2, ENTER CODES FOR DISCONTINUATION NEXT TO THE LAST MONTH OF USE. NUMBER OF CODES IN COLUMN 2 MUST BE SAME AS NUMBER OF INTERRUPTIONS OF METHOD USE IN COLUMN 1. ASK WHY SHE STOPPED USING THE METHOD. IF A PREGNANCY FOLLOWED, ASK WHETHER SHE BECAME PREGNANT UNINTENTIONALLY WHILE USING THE METHOD OR DELIBERATELY STOPPED TO GET PREGNANT. ILLUSTRATIVE QUESTIONS: * Why did you stop using the (METHOD)? Did you become pregnant while using (METHOD), or did you stop to get pregnant, or did you stop for some other reason? * IF DELIBERATELY STOPPED TO BECOME PREGNANT, ASK: How many months did it take you to get pregnant after you stopped using (METHOD)? AND ENTER '0' IN EACH SUCH MONTH IN COLUMN 1.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
312	CHECK THE CALENDAR FOR USE OF ANY CONTRACEPTIVE M NO METHOD USED ANY METHOD USED \square	HOD IN ANY MONTH	31
313	Have you ever used anything or tried in any way to delay or avoid getting pregnant?	YES . 1 NO	$\longrightarrow 324$
314	CHECK 304: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 304, CIRCLE CODE FOR HIGHEST METHOD IN LIST.		$\begin{aligned} & \longrightarrow 324 \\ & \longrightarrow 317 \mathrm{~A} \\ & \longrightarrow 326 \end{aligned}$ 315A 326
315	You first started using (CURRENT METHOD) in (DATE FROM 308/308A). Where did you get it at that time?	```PUBLIC SECTOR GOVT. HOSPITAL }1 GOVT. HEALTH CENTER 12 GVT. PRIMARY HEALTH CARE CLINIC }1 OUTREACH POINT }1 FIELDWORKER/COMMUNITY HEALTH CARE PROVIDER 15 OTHER PUBLIC SECTORNone```	
315A	Where did you learn how to use the rhythm/lactational amenorrhea method?	PRIVATE MEDICAL SECTOR PRIVATE HOSPITAL PRIVATE CLINIC 22 PHARMACY 23 PRIVATE DOCTOR 24 OTHER PRIVATE MEDICAL SECTOR \qquad 26	
	PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE. (NAME OF PLACE)	OTHER SOURCE SHOP .	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
316	CHECK 304: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 304, CIRCLE CODE FOR HIGHEST METHOD IN LIST.		
317	At that time, were you told about side effects or problems you might have with the method? When you got sterilized, were you told about side effects or problems you might have with the method?	YES . 2	$\longrightarrow 319$
318	Were you ever told by a health or family planning worker about side effects or problems you might have with the method?	YES . 2	$\rightarrow 320$
319	Were you told what to do if you experienced side effects or problems?	YES . 2	
320	CHECK 317:	YES . 2	$\longrightarrow 322$
321	Were you ever told by a health or family planning worker about other methods of family planning that you could use?	YES . 2	
322	CHECK 304: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 304, CIRCLE CODE FOR HIGHEST METHOD IN LIST.	FEMALE STERILIZATION \ldots \ldots \ldots 01 MALE STERILIZATION \ldots \ldots \ldots .	326

No.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
323	Where did you obtain (CURRENT METHOD) the last time? PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		$\rightarrow 326$
324	Do you know of a place where you can obtain a method of family planning?		$\rightarrow 326$
325	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
326	In the last 12 months, were you visited by a fieldworker/community health worker/health promoter who talked to you about family planning?	YES 1 NO 2	
327	In the last 12 months, have you visited a health facility for care for yourself (or your children)?	YES . 1 NO	$\rightarrow 401$
328	Did any staff member at the health facility speak to you about family planning methods?	YES . 1 NO	

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
410	Where did you receive antenatal care for this pregnancy? Anywhere else? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.	```HOME YOUR HOME ... A OTHER HOME . . . B PUBLIC SECTOR GOVT. HOSPITAL C GOVT. HEALTH CENTER D GOVT. HEALTH CARE CLINIC .. E OUTREACH POINT F OTHER PUBLIC SECTOR - G (SPECIFY) PRIVATE MED. SECTOR PVT. HOSPITAL .. H PVT. CLINIC..... I OTHER PRIVATE MED. SECTOR``` \qquad ```(SPECIFY) \\ OTHER``` \qquad ```(SPECIFY)```		
410A	Did your husband/partner attend (any of) your antenatal care visit(s) for this pregnancy?	YES 1 NO 2		
411	How many months pregnant were you when you first received antenatal care for this pregnancy?	MONTHS . . . \square DON'T KNOW 98		
412	How many times did you receive antenatal care during this pregnancy?	NUMBER OF TIMES \square DON'T KNOW \qquad		
413	As part of your antenatal care during this pregnancy, were any of the following done at least once: Was your blood pressure measured? Did you give a urine sample? Did you give a blood sample?	YES NO BP $\ldots \ldots$ 1 2 URINE $\ldots .$. 1 2 BLOOD \ldots 1 2		
414	During (any of) your antenatal care visit(s), were you told about things to look out for that might suggest problems with the pregnancy?	YES $\ldots \ldots \ldots$ \ldots \ldots NO $\ldots \ldots . .$. 2 DON'T KNOW 8		
415	During this pregnancy, were you given an injection in the arm to prevent the baby from getting tetanus, that is, convulsions after birth?			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
416	During this pregnancy, how many times did you get a tetanus injection?	TIMES \square DON'T KNOW 8		
417	CHECK 416:			
418	At any time before this pregnancy, did you receive any tetanus injections?			
419	Before this pregnancy, how many times did you receive a tetanus injection? IF 7 OR MORE TIMES, RECORD '7'.	TIMES \square DON'T KNOW		
420	How many years ago did you receive the last tetanus injection before this pregnancy?	YEARS AGO		
421	During this pregnancy, were you given or did you buy any iron tablets? SHOW TABLETS.			
422	During the whole pregnancy, for how many days did you take the tablets? IF ANSWER IS NOT NUMERIC, PROBE FOR APPROXIMATE NUMBER OF DAYS.	DAYS \square DON'T KNOW ... 998		
423	During this pregnancy, did you take any drug for intestinal worms?	YES $\ldots \ldots \ldots$ \ldots \ldots NO $\ldots \ldots . .$. 2 DON'T KNOW 8		
424	During this pregnancy, did you take any drugs to keep you from getting malaria?			
425	What drugs did you take? RECORD ALL MENTIONED. IF TYPE OF DRUG IS NOT DETERMINED, SHOW TYPICAL ANTIMALARIAL DRUGS TO RESPONDENT.	SP/FANSIDAR A DON'T KNOW Z		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
426	CHECK 425: SP/FANSIDAR TAKEN FOR MALARIA PREVENTION.			
427	How many times did you take (SP/Fansidar) during this pregnancy?	TIMES \square		
428	CHECK 409: ANTENATAL CARE FROM HEALTH PERSONNEL DURING THIS PREGNANCY	CODE 'A', OTHER 'B' OR 'C' CIRCLED (SKIP TO 430)		
429	Did you get the (SP/Fansidar) during any antenatal care visit, during another visit to a health facility or from another source?	ANTENATAL VISIT ... 1 ANOTHER FACILITY VISIT OTHER SOURCE		
430	When (NAME) was born, was he/she very large, larger than average, average, smaller than average, or very small?	VERY LARGE 1 LARGER THAN AVERAGE 2 AVERAGE 3 SMALLER THAN AVERAGE $\ldots .$. 4 VERY SMALL \ldots. 5 DON'T KNOW $\ldots .$. 8	VERY LARGE 1 LARGER THAN AVERAGE 2 AVERAGE 3 SMALLER THAN AVERAGE 4 VERY SMALL $4 . .$. 5 DON'T KNOW 8	
431	Was (NAME) weighed at birth?	$\begin{aligned} & \text { YES } \\ & \\ & \text { NO } \\ & \begin{array}{l} 1 \\ \text { (SKIP TO 433) } \end{array} \\ & \text { DON'T KNOW } \end{aligned}$	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \\ & \text { NO } \\ & \begin{array}{l} 1 \\ \\ \text { (SKIP TO 433) } \\ \text { DON'T KNOW } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \\ & \text { NO } \\ & \text { (SKIP TO 433) } \\ & \text { (SIP } \\ & \text { DON'T KNOW } \\ & 8 \end{aligned}$
432	How much did (NAME) weigh? RECORD WEIGHT IN KILOGRAMS FROM HEALTH CARD, IF AVAILABLE.	KG FROM CARD 1 \square KG FROM RECALL 2 \square \square 99998	KG FROM CARD 1 KG FROM RECALL	KG FROM CARD 1 KG FROM RECALL 2 \square \square
433	Who assisted with the delivery of (NAME)? Anyone else? PROBE FOR THE TYPE(S) OF PERSON(S) AND RECORD ALL MENTIONED. IF RESPONDENT SAYS NO ONE ASSISTED, PROBE TO DETERMINE WHETHER ANY ADULTS WERE PRESENT AT THE DELIVERY.		$\begin{aligned} & \text { HEALTH PERSONNEL } \\ & \text { DOCTOR . . . A A } \\ & \text { NURSE/MIDWIFE } \quad \text { B } \\ & \text { OTHER PERSON } \\ & \text { TRADITIONAL BIRTH } \\ & \text { ATTENDANT .. C } \\ & \text { RELATIVE/FRIEND D } \\ & \text { OTHER } \\ & \frac{\mathrm{X}}{\text { NO ONE ASSISTED }} \begin{array}{l} \text { (SPECIFY) } \end{array} \\ & \text { Y } \end{aligned}$	

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
444	Who checked on (NAME)'s health at that time? PROBE FOR MOST QUALIFIED PERSON.	HEALTH PERSONNEL DOCTOR 11 NURSE/MIDWIFE 12 OTHER PERSON TRADITIONAL BIRTH ATTENDANT 21 COMMUNITY HEALTH CARE PROVID . . 22 OTHER \qquad 96 (SPECIFY)		
445	Where did this first check of (NAME) take place? PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE. (NAME OF PLACE)			
446	In the first two months after delivery, did you receive a vitamin A dose like this? SHOW CAPSULE.			
447	Has your menstrual period returned since the birth of (NAME)?			
448	Did your period return between the birth of (NAME) and your next pregnancy?			YES NO NO (SKIP TO 452)
449	For how many months after the birth of (NAME) did you not have a period?	MONTHS . . . DON'T KNOW	MONTHS ... DON'T KNOW	MONTHS ... DON'T KNOW
450	CHECK 226: IS RESPONDENT PREGNANT?	NOT PREGNANT PREG- OR NANT UNSURE (SKIP TO 452)		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
451	Have you had sexual intercourse since the birth of (NAME)?			
452	For how many months after the birth of (NAME) did you not have sexual intercourse?	MONTHS \square DON'T KNOW \qquad 98	MONTHS \square DON'T KNOW \qquad	MONTHS \square DON'T KNOW 98
453	Did you ever breastfeed (NAME)?	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \begin{array}{l} \text { (SKIP TO 455) } \\ \text { NO } \ldots \ldots \ldots \ldots \ldots . \end{array} \end{aligned}$		
454	CHECK 404: IS CHILD LIVING?			
455	How long after birth did you first put (NAME) to the breast? IF LESS THAN 1 HOUR, RECORD '00' HOURS. IF LESS THAN 24 HOURS, RECORD HOURS. OTHERWISE, RECORD DAYS.	IMMEDIATELY ... 000 HOURS 1 DAYS		
456	In the first three days after delivery, was (NAME) given anything to drink other than breast milk?			
457	What was (NAME) given to drink? Anything else? RECORD ALL LIQUIDS MENTIONED.			
458	CHECK 404: IS CHILD LIVING?			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
459	Are you still breastfeeding (NAME)?			
460	Did (NAME) drink anything from a bottle with a nipple yesterday or last night?	YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW 8		YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO 2 DON'T KNOW 8
461		GO BACK TO 405 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 501.	GO BACK TO 405 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 501.	GO BACK TO 405 IN NEXT-TO-LAST COLUMN OF NEW QUESTIONNAIRE; OR, IF NO MORE BIRTHS, GO TO 501.

SECTION 5. CHILD IMMUNIZATION, HEALTH AND NUTRITION

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
508	Has (NAME) had any vaccinations that are not recorded on this card, including vaccinations given in a national immunization day campaign? RECORD 'YES' ONLY IF THE RESPONDENT MENTIONS AT LEAST ONE OF THE VACCINATIONS IN 506 THAT ARE NOT RECORDED AS HAVING BEEN GIVEN.			YES................. 1 (PROBE FOR VACCINATIONS AND WRITE '66' IN THE CORRESPONDING DAY COLUMN IN 506) (SKIP TO 511) NO DON'T KNOW \qquad
509	Did (NAME) ever have any vaccinations to prevent him/her from getting diseases, including vaccinations received in a national immunization day campaign?	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \text { NO } \ldots \ldots \ldots \ldots \\ & \begin{array}{c} 1 \\ \text { (SKIP TO } 511) \end{array} \\ & \text { DON'T KNOW } \ldots \ldots \end{aligned}$	YES $\ldots \ldots \ldots \ldots \ldots$ NO $\ldots \ldots \ldots \ldots$ $\begin{aligned} & \text { (SKIP TO } 511)\end{aligned}$ DON'T KNOW \ldots.	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots (SKIP TO 511$)$ DON'T KNOW $\ldots \ldots$
510	Please tell me if (NAME) had any of the following vaccinations: A BCG vaccination against tuberculosis, that is, an injection in the arm or shoulder that usually causes a scar?	YES $\ldots \ldots \ldots \ldots$ \ldots NO 2 DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO 2 DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO 2 DON'T KNOW 8
510B	Polio vaccine, that is, drops in the mouth?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 510E) DON'T KNOW \ldots. 8	YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 510E) DON'T KNOW 8	
510C	Was the first polio vaccine given in the first two weeks after birth or later?	FIRST 2 WEEKS ... 1 LATER 2	$\begin{aligned} & \text { FIRST } 2 \text { WEEKS ... } 1 \\ & \text { LATER } \\ & 2 \end{aligned}$	FIRST 2 WEEKS ... 1 LATER 2
510D	How many times was the polio vaccine given?	NUMBER OF TIMES \square	NUMBER OF TIMES \square	NUMBER OF TIMES
510E	A DPT/Pentavalent vaccination, that is, an injection given in the thigh or buttocks, sometimes at the same time as polio drops?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 510G) DON'T KNOW \ldots. 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 SKIP TO 510G) 4 DON'T KNOW \ldots. 8	
510F	How many times was the DPT/Pentavalent vaccination given?	NUMBER OF TIMES \square	NUMBER OF TIMES \square	$\begin{array}{lll}\text { NUMBER } & & \square \\ \text { OF TIMES } & \ldots . . & \square\end{array}$
510G	A measles injection or an MMR injection - that is, a shot in the arm at the age of 9 months or older - to prevent him/her from getting measles?	YES $\ldots \ldots \ldots \ldots$ \ldots 1 NO 2 DON'T KNOW 8		YES $\ldots \ldots \ldots \ldots$ \ldots 1 NO 2 DON'T KNOW 8

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
511	Within the last six months, was (NAME) given a vitamin A dose like this? SHOW CAPSULE.	YES 1 NO 2 DON'T KNOW 8	YES 1 NO 2 DON'T KNOW 8	YES 1 NO 2 DON'T KNOW 8
513	Was (NAME) given any medication for intestinal worms in the last six months?	YES $\ldots \ldots \ldots \ldots$ $\ldots \ldots$ NO $\ldots \ldots \ldots$ 1 DON'T KNOW 8		YES $\ldots \ldots \ldots \ldots$ \ldots NO $\ldots \ldots \ldots .$. 2 DON'T KNOW 8
514	Has (NAME) had diarrhoea in the last 2 weeks?			
515	Was there any blood in the stools?	YES 1 NO 2 DON'T KNOW 8	YES 1 NO 2 DON'T KNOW 8	YES 1 NO 2 DON'T KNOW 8
516	Now I would like to know how much (NAME) was given to drink during the diarrhoea (including breastmilk). Was he/she given less than usual to drink, about the same amount, or more than usual to drink? IF LESS, PROBE: Was he/she given much less than usual to drink or somewhat less?	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8
517	When (NAME) had diarrhoea, was he/she given less than usual to eat, about the same amount, more than usual, or nothing to eat? IF LESS, PROBE: Was he/she given much less than usual to eat or somewhat less?	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8
518	Did you seek advice or treatment for the diarrhoea from any source?	YES $\ldots \ldots \ldots \ldots$ NO		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
519	Where did you seek advice or treatment? Anywhere else? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.			
520	CHECK 519:			
521	Where did you first seek advice or treatment? USE LETTER CODE FROM 519.	FIRST PLACE . . \square	FIRST PLACE . .	FIRST PLACE . . \square
522	Was he/she given any of the following to drink at any time since he/she started having the diarrhoea: a) A fluid made from a special packet called ORS? b) Salt-sugar homemade solution?	YES NO DK FLUID FROM ORS PKT 1 2 8 HOMEMADE SOLUTION 1 2 8	YES NO DK FLUID FROM ORS PKT 1 2 8 HOMEMADE SOLUTION 1 2 8	YES NO DK FLUID FROM ORS PKT 1428 HOMEMADE SOLUTION 1228

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
523	Was anything (else) given to treat the diarrhoea?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 525) DON'T KNOW $\ldots .$. 8	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots 1 \\ & \text { NO } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ & \begin{array}{r} \text { (SKIP TO } 525) \end{array} \\ & \text { DON'T KNOW } \ldots \ldots 8 \end{aligned}$	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots (SKIP TO 525$)$ DON'T KNOW $\ldots \ldots$ 1
524	What (else) was given to treat the diarrhoea? Anything else? RECORD ALL TREATMENTS GIVEN.			
525	Has (NAME) been ill with a fever at any time in the last 2 weeks?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 527$)$ DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 527) 4 DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 $\left.\begin{array}{rl}\text { (SKIP TO } 527) & 4 \\ \text { DON'T KNOW } \ldots \ldots & 8\end{array}\right)$
526	At any time during the illness, did (NAME) have blood taken from his/her finger or heel for testing for malaria?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW $\ldots \ldots$ 8	$\begin{gathered} \text { YES } \ldots \ldots \\ \text { NO } \\ \hline \end{gathered}$	
527	Has (NAME) had an illness with a cough at any time in the last 2 weeks?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 530$)$ DON'T KNOW \ldots. 8		
528	When (NAME) had an illness with a cough, did he/she breathe faster than usual with short, rapid breaths or have difficulty breathing?			YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots (SKIP TO 531$)$ DON'T KNOW $\ldots \ldots$ 8
529	Was the fast or difficult breathing due to a problem in the chest or to a blocked or runny nose?			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
530	CHECK 525: HAD FEVER?	NO OR DK (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553)	NO OR DK (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553)	
531	Now I would like to know how much (NAME) was given to drink (including breastmilk) during the illness with a (fever/cough). Was he/she given less than usual to drink, about the same amount, or more than usual to drink? IF LESS, PROBE: Was he/she given much less than usual to drink or somewhat less?	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS $\ldots .$. 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8
532	When (NAME) had a (fever/cough), was he/she given less than usual to eat, about the same amount, more than usual, or nothing to eat? IF LESS, PROBE: Was he/she given much less than usual to eat or somewhat less?	MUCH LESS 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS $\ldots \ldots$ 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS 1 SOMEWHAT LESS 2 ABOUT THE SAME 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8
533	Did you seek advice or treatment for the illness from any source?			
534	Where did you seek advice or treatment? Anywhere else? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.	```PUBLIC SECTOR GOVT HOSPITAL A GOVT HEALTH CENTER B GOVT HEALTH CARE CLINIC .. C OUTREACH POINT D OTHER PUBLIC SECTOR E (SPECIFY) PRIVATE MEDICAL SECTOR PVT. HOSPITAL . . F PVT. CLINIC...... . G PHARMACY ... H PVT DOCTOR ... I OTHER PRIVATE MED. SECTOR``` \qquad ```NoneNone ``` \qquad ```XNone```		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME
535	CHECK 534:			
536	Where did you first seek advice or treatment? USE LETTER CODE FROM 534.	FIRST PLACE . . \square	FIRST PLACE . . \square	FIRST PLACE
537	At any time during the illness, did (NAME) take any medications for the illness?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553) DON'T KNOW $\ldots \ldots$	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553) DON'T KNOW $\ldots \ldots$	
538	What medications did (NAME) take? Any other medications? RECORD ALL MENTIONED.	ANTIMALARIALS QUININE A ARTEMETHER LUMEFANTRINE B OTHER ANTIMALARIAL \qquad ANTIBIOTICS PILL/SYRUP ... D INJECTION ... E OTHER MEDICATIONS ASPIRIN F ACETAMINOPHEN ... G IBUPROFEN ... I OTHER \qquad X (SPECIFY) DON'T KNOW \qquad	ANTIMALARIALS QUININE A ARTEMETHER LUMEFANTRINE B OTHER ANTI- \qquad ANTIBIOTICS PILL/SYRUP ... D INJECTION ... E OTHER MEDICATIONS ASPIRIN F ACETA- MINOPHEN ... G IBUPROFEN ... I \qquad	ANTIMALARIALS QUININE A ARTEMETHER LUMEFANTRINE B OTHER ANTI- MALARIAL \qquad ANTIBIOTICS PILL/SYRUP ... D INJECTION ... E OTHER MEDICATIONS ASPIRIN F ACETA- MINOPHEN ... G IBUPROFEN ... I OTHER \qquad x
539	CHECK 538: ANY CODE A-C CIRCLED?	YES $\begin{array}{rr}\text { Y }\end{array}$		
546	CHECK 538: QUININE ('A') GIVEN			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
547	How long after the fever started did (NAME) first take quinine?	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER 2 THREE OR MORE DAYS AFTER FEVER DON'T KNOW \ldots 8	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER 2 THREE OR MORE DAYS AFTER FEVER 3 DON'T KNOW \ldots. 8	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER $\ldots \ldots .$. 2 THREE OR MORE DAYS AFTER FEVER 3 DON'T KNOW \ldots. 8
548	CHECK 538: ARTEMETHER LUMEFANTRINE ('B') GIVEN			
549	How long after the fever started did (NAME) first take Artemether Lumefantrine (AL)?	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER $\ldots \ldots$. 2 THREE OR MORE DAYS AFTER FEVER 3 DON'T KNOW \ldots. 8	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots \ldots$ 1 TWO DAYS AFTER FEVER 2 THREE OR MORE DAYS AFTER FEVER DON'T KNOW \ldots 8	SAME DAY $\ldots \ldots$. NEXT DAY $\ldots \ldots$. TWO DAYS AFTER FEVER $\ldots \ldots$. THREE OR MORE DAYS AFTER FEVER $\ldots \ldots .$. DON'T KNOW
550	CHECK 538: OTHER ANTIMALARIAL ('C') GIVEN			
551	How long after the fever started did (NAME) first take (OTHER ANTIMALARIAL)?	SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER $\ldots \ldots$. 2 THREE OR MORE DAYS AFTER FEVER 3 DON'T KNOW		SAME DAY $\ldots \ldots$. 0 NEXT DAY $\ldots \ldots$. 1 TWO DAYS AFTER FEVER 2 THREE OR MORE DAYS AFTER FEVER 3 DON'T KNOW \ldots 8
552		GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553.	GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 553.	GO TO 503 IN NEXT-TO-LAST COLUMN OF NEW QUESTIONNAIRE; OR, IF NO MORE BIRTHS, GO TO 553.

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
553	CHECK 215 AND 218, ALL ROWS: NUMBER OF CHILDREN BORN IN 2008 OR LATER LIVING WITH ONE OR MORE NONE RECORD NAME OF YOUNGEST CHILD LIVING WITH HER AND CONTINUE WITH 554 (NAME)	HE RESPONDENT	$\rightarrow 556$
554	The last time (NAME FROM 553) passed stools, what was done to dispose of the stools?	CHILD USED TOILET OR LATRINE . . . 01 PUT/RINSED INTO TOILET OR LATRINE 02 PUT/RINSED INTO DRAIN OR DITCH 03 THROWN INTO GARBAGE 04 BURIED 05 LEFT IN THE OPEN 06 OTHER \qquad 96 (SPECIFY)	
555	CHECK 522(a), ALL COLUMNS: NO CHILD ANY CHIL RECEIVED FLUID RECEIVED FROM ORS PACKET FROM O	FLUID \square PACKET	- 557
556	Have you ever heard of a special product called ORS you can get for the treatment of diarrhea?	YES .	
557	CHECK 215 AND 218, ALL ROWS: NUMBER OF CHILDREN BORN IN 2011 OR LATER LIVING WITH ONE OR MORE RECORD NAME OF YOUNGEST CHILD LIVING WITH HER AND CONTINUE WITH 558	HE RESPONDENT	$\rightarrow 601$

| NO. | QUESTIONS AND FILTERS | CODING CATEGORIES |
| :--- | :--- | :--- | :--- |

SECTION 6. MARRIAGE AND SEXUAL ACTIVITY

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
601	Are you currently married or living together with a man as if married?	YES, CURRENTLY MARRIED $\ldots . .$. 1 YES, LIVING WITH A MAN 2 NO, NOT IN UNION 3	$\xrightarrow{\longrightarrow} 604$
602	Have you ever been married or lived together with a man as if married?	YES, FORMERLY MARRIED $\ldots . .$. 1 YES, LIVED WITH A MAN \ldots . .. NO . 2	$\rightarrow 612$
603	What is your marital status now: are you widowed, divorced, or separated?	WIDOWED . 1 DIVORCED 3	$\longrightarrow 609$
604	Is your (husband/partner) living with you now or is he staying elsewhere?	LIVING WITH HER 1 STAYING ELSEWHERE 2	
605	RECORD THE HUSBAND'S/PARTNER'S NAME AND LINE NUMBER FROM THE HOUSEHOLD QUESTIONNAIRE. IF HE IS NOT LISTED IN THE HOUSEHOLD, RECORD ' 00 '.	NAME LINE NO.	
606	Does your (husband/partner) have other wives or does he live with other women as if married?	YES . 8	$\xrightarrow{\longrightarrow} 609$
607	Including yourself, in total, how many wives or live-in partners does he have?	TOTAL NUMBER OF WIVES AND LIVE-IN PARTNERS \qquad \square DON'T KNOW	
608	Are you the first, second, ... wife?	RANK	
609	Have you been married or lived with a man only once or more than once?	ONLY ONCE $\quad . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~$	
610	CHECK 609: In what month and year did you start living with your (husband/partner)? MARRIED/ LIVED WITH A MAN MORE THAN ONCE Now I would like to ask about your first (husband/partner). In what month and year did you start living with him?	MONTH DON'T KNOW MONTH \qquad YEAR DON'T KNOW YEAR 9998	$\longrightarrow 612$
611	How old were you when you first started living with him?	AGE	
612	CHECK FOR THE PRESENCE OF OTHERS. BEFORE CONTINUIN	MAKE EVERY EFFORT TO ENSURE PRIVA	
613	Now I would like to ask some questions about sexual activity in order to gain a better understanding of some important life issues. How old were you when you had sexual intercourse for the very first time?	NEVER HAD SEXUAL INTERCOURSE 00 AGE IN YEARS \qquad \square FIRST TIME WHEN STARTED LIVING WITH (FIRST) HUSBAND/PARTNER 95	$\longrightarrow 628$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
614	Now I would like to ask you some questions about your recent sexual activity. Let me assure you again that your answers are completely confidential and will not be told to anyone. If we should come to any question that you don't want to answer, just let me know and we will go to the next question.			
615	When was the last time you had sexual intercourse? IF LESS THAN 12 MONTHS, ANSWER MUST BE RECORDED IN DAYS, WEEKS OR MONTHS. IF 12 MONTHS (ONE YEAR) OR MORE, ANSWER MUST BE RECORDED IN YEARS.	DAYS AGO \ldots. 1 WEEKS AGO $\ldots . . .$. 2 MONTHS AGO $\ldots .$. 3 YEARS AGO $\ldots . . .$. 4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\rightarrow 627$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
627	In total, with how many different people have you had sexual intercourse in your lifetime? IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE. IF NUMBER OF PARTNERS IS 95 OR MORE, WRITE '95'.	NUMBER OF PARTNERS IN LIFETIME DON'T KNOW	
628	PRESENCE OF OTHERS DURING THIS SECTION	YES NO CHILDREN <10 $\ldots \ldots \ldots \ldots$ 1 2 MALE ADULTS $\ldots \ldots \ldots \ldots$ 1 2 FEMALE ADULTS $\ldots \ldots \ldots .$. 1 2	
629	Do you know of a place where a person can get condoms?	YES . 2	$\rightarrow 632$
630	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
631	If you wanted to, could you yourself get a condom?	YES . 1 NO 8	
632	Do you know of a place where a person can get female condoms?	YES .	$\rightarrow 701 \mathrm{~A}$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
633	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE. (NAME OF PLACE(S))		
634	If you wanted to, could you yourself get a female condom?	YES $\ldots \ldots \ldots$ NO $\ldots \ldots \ldots \ldots \ldots$ DON'T KNOW/UNSURE $\ldots \ldots \ldots \ldots$	

SECTION 7. FERTILITY PREFERENCES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
709	CHECK 704:	NOT MARRIED A FERTILITY-RELATED REASONS NOT HAVING SEX B INFREQUENT SEX C MENOPAUSAL/HYSTERECTOMY D CAN'T GET PREGNANT E NOT MENSTRUATED SINCE LAST BIRTH F BREASTFEEDING G UP TO GOD/FATALISTIC H OPPOSITION TO USE RESPONDENT OPPOSED I HUSBAND/PARTNER OPPOSED. . . J OTHERS OPPOSED K RELIGIOUS PROHIBITION L LACK OF KNOWLEDGE KNOWS NO METHOD M KNOWS NO SOURCE N METHOD-RELATED REASONS SIDE EFFECTS/HEALTH CONCERNS O LACK OF ACCESS/TOO FAR P COSTS TOO MUCH Q PREFERRED METHOD NOT AVAILABLE R NO METHOD AVAILABLE S INCONVENIENT TO USE T INTERFERES WITH BODY'S NORMAL PROCESSES U OTHER	
710	CHECK 303: USING A CONTRACEPTIVE METHOD? NOT ASKED NOT CURRENTLY USING \square CUR	YES, TLY USING	$\rightarrow 712$
711	Do you think you will use a contraceptive method to delay or avoid pregnancy at any time in the future?	YES . 8	
712	CHECK 216: HAS LIVING CHILDREN If you could go back to the time you did not have any children and could choose exactly the number of children to have in your whole life, how many would that be? NO LIVING CHILDREN If you could choose exactly the number of children to have in your whole life, how many would that be? PROBE FOR A NUMERIC RESPONSE.		$\longrightarrow 714$ $\rightarrow 714$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES				SKIP
713	How many of these children would you like to be boys, how many would you like to be girls and for how many would it not matter if it's a boy or a girl?	NUMBER OTHER	BOYS	ECIFY)	EITHER \qquad 96	
714	In the last few months have you: Heard about family planning on the radio? Seen anything about family planning on the television? Read about family planning in a newspaper or magazine?	RADIO.. TELEVISI NEWSPAP	OR	GAZINE	$\begin{array}{ccc} & \text { YES } & \text { NO } \\ \ldots & 1 & 2 \\ \ldots & 1 & 2 \\ \ldots & 1 & 2 \end{array}$	
716	CHECK 601:					$\rightarrow 801$
717						$\longrightarrow 720$
718	Would you say that using contraception is mainly your decision, mainly your (husband's/partner's) decision, or did you both decide together?	MAINLY R MAINLY H JOINT DE OTHER	SPONDE BAND/PA SION	TT ARTNER PECIFY)	$\begin{array}{ll} \ldots . . & 1 \\ \ldots . & 2 \\ \ldots . & 3 \\ & 6 \\ \hline \end{array}$	
719	CHECK 304: NEITHER HE OR SHE STERILIZED STERILIZED					$\rightarrow 801$
720	Does your (husband/partner) want the same number of children that you want, or does he want more or fewer than you want?	SAME NU MORE CHIL FEWER C DON'T KN	BR DREN LDREN W		$\begin{array}{ll} \ldots & . \\ \ldots & 1 \\ \ldots & 2 \\ \ldots & \\ \ldots & 3 \\ \ldots & 8 \end{array}$	

SECTION 8. HUSBAND'S BACKGROUND AND WOMAN'S WORK

NO.	QUESTIONS AND FILTERS	CODING CATEGORIE
801		NEVER MARRIED AND NEVER \square LIVED WITH A MAN
802	How old was your (husband/partner) on his last birthday?	AGE IN COMPLETED YEARS
803	Did your (last) (husband/partner) ever attend school?	YES NO
804	What was the highest level of school he attended: primary, secondary, or higher?	PRIMARY SECONDARY HIGHER DON'T KNOW
805	What was the highest (grade/year) he completed at that level? IF COMPLETED LESS THAN ONE YEAR AT THAT LEVEL, RECORD '00'.	GRADE/YEAR DON'T KNOW
806	CHECK 801:	
807	Aside from your own housework, have you done any work in the last seven days?	YES NO
808	As you know, some women take up jobs for which they are paid in cash or kind. Others sell things, have a small business or work on the family farm or in the family business. In the last seven days, have you done any of these things or any other work?	YES NO
809	Although you did not work in the last seven days, do you have any job or business from which you were absent for leave, illness, vacation, maternity leave, or any other such reason?	YES NO
810	Have you done any work in the last 12 months?	YES NO
811	What is your occupation, that is, what kind of work do you mainly do?	
812	Do you do this work for a member of your family, for someone else, or are you self-employed?	FOR FAMILY MEMBER FOR SOMEONE ELSE SELF-EMPLOYED

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
813	Do you usually work throughout the year, or do you work seasonally, or only once in a while?	THROUGHOUT THE YEAR 1 SEASONALLYIPART OF THE YEAR 2 ONCE IN A WHILE 3	
814	Are you paid in cash or kind for this work or are you not paid at all?	CASH ONLY . 2 CASH AND KIND 3 IN KIND ONLY 4	
815	CHECK 601: CURRENTLY MARRIED/LIVING NOT IN UNION WITH A MAN		$\rightarrow 823$
816	CHECK 814: CODE 1 OR 2 CIRCLED OTHER		$\rightarrow 819$
817	Who usually decides how the money you earn will be used: you, your (husband/partner), or you and your (husband/partner) jointly?		
818	Would you say that the money that you earn is more than what your (husband/partner) earns, less than what he earns, or about the same?	MORE THAN HIM 1 LESS THAN HIM 2 ABOUT THE SAME 3 HUSBAND/PARTNER HAS NO EARNINGS 4 DON'T KNOW 8	$\rightarrow 820$
819	Who usually decides how your (husband's/partner's) earnings will be used: you, your (husband/partner), or you and your (husband/partner) jointly?		
820	Who usually makes decisions about health care for yourself: you, your (husband/partner), you and your (husband/partner) jointly, or someone else?		
821	Who usually makes decisions about making major household purchases?		
822	Who usually makes decisions about visits to your family or relatives?	RESPONDENT.....................$~$ 1 HUSBAND/PARTNER 2 RESPONDENT AND HUSBAND/PARTNER JOINTLY \ldots 3 SOMEONE ELSE 4 OTHER 6	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
823	Do you own this or any other house either alone or jointly with someone else?	ALONE ONLY . JOINTLY ONLY	
824	Do you own any land either alone or jointly with someone else?		
825	PRESENCE OF OTHERS AT THIS POINT (PRESENT AND LISTENING, PRESENT BUT NOT LISTENING, OR NOT PRESENT)	PRES./ PRES./ NOT LISTEN. NOT LISTEN. PRES.	
826	In your opinion, is a husband justified in hitting or beating his wife in the following situations: If she goes out without telling him? If she neglects the children? If she argues with him? If she refuses to have sex with him? If she burns the food? If she is friendly with other men?	YES NO DK GOES OUT 1 2 8 NEGL. CHILDREN \ldots 1 2 8 ARGUES 1 2 8 REFUSES SEX $\ldots \ldots$. 1 2 8 BURNS FOOD 1 2 8 FRIENDLY WITH MEN . . 1 2 8	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
915	Were you offered a test for HIV as part of your antenatal care?		
916	Were you tested for HIV as part of your antenatal care?		\rightarrow 919A
917	Where was the test done? PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
918	Did you get the results of the test?		\rightarrow 919A
918A	Will you be willing to share the results with me?		$\rightarrow 918 \mathrm{C}$
918B	What was your HIV test result?		
918C	All women are supposed to receive counseling before and after being tested. Before and after you were tested, did you receive counseling?		
918D	Have you disclosed your result to your partner?		$\rightarrow 919 \mathrm{C}$
919A	Was your partner tested for HIV during any of the ANC visits for your last birth?	YES . 1 NO 2 DON'T KNOW 8	
919B	CHECK 916 TESTED DURING ANC: YES NO \square		$\rightarrow 920$
919C	CHECK 918, 918A, AND 918B FOR HIV TEST RESULTS: NEGATIVE/ \square POSITIVE NO RESULT \square		\rightarrow 923D

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
920	CHECK 434 FOR LAST BIRTH: ANY CODE OTHER 21-36 CIRCLED		\rightarrow 923D
921	Between the time you went for delivery but before (NAME) was born, were you offered a test for HIV?	YES . 2	
922	Were you tested for HIV at that time?	YES . 2	\longrightarrow 923D
923	Did you get the results of the test?	YES .	\longrightarrow 923D
923A	Will you be willing to share the results with me?	YES . 2	$\longrightarrow 923 C$
923B	What was your HIV test result?		
923C	Have you disclosed your result to your partner?		
923D	Was (NAME) tested for HIV during the first 8 weeks of his/her life?	YES . 2	\longrightarrow 923F
923E	Was (NAME) tested for HIV during the first 18 months of his/her life?	YES . 2	$\longrightarrow 923 \mathrm{M}$
923F	Was (NAME) tested for HIV more than once during the first 18 months of his/her life?		
923G	Did you get the results of the (last) HIV test for (NAME)?	YES .	$\longrightarrow 923 \mathrm{M}$
923H	Will you be willing to share the results with me?	YES . 2	$\longrightarrow 923 \mathrm{M}$
9231	What was (NAME)'S HIV test result?		$\longrightarrow 923 \mathrm{M}$
923J	CHECK 216 LAST ROW: IS CHILD LIVING? LIVING	EAD	\rightarrow 923M
923L	Is (NAME) currently taking ARVs daily?	YES . 2	
923M	CHECK 916 AND 922: WOMAN TESTED FOR HIV $\begin{array}{r} 916=\text { YES } \\ \text { OR } 922=\text { YES } \end{array}$	HER	$\longrightarrow 926$
924	Have you been tested for HIV since that time you were tested during your pregnancy?	YES . 2	$\longrightarrow 927$
925	How many months ago was your most recent HIV test?	MONTHS AGO TWO OR MORE YEARS	$\rightarrow 928 \mathrm{E}$
926	Have you ever been tested to see if you have HIV?	YES . 2	$\longrightarrow 930$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
927	How many months ago was your most recent HIV test?	MONTHS AGO \square TWO OR MORE YEARS	
927A	Where was the test done? PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
928	Did you get the results of the test?	YES . 2	\rightarrow 928E
928A	Will you be willing to share the results with me?	$\begin{aligned} & \text { YES . } \\ & \text { NO } \end{aligned}$	\rightarrow 928C
928B	What was your HIV test result?	$\begin{array}{lll} \text { POSITIVE } & \text {. } & 1 \\ \text { NEGATIVE } \end{array}$	
928C	All women are supposed to receive counseling before and after being tested. Before and after you were tested, did you receive counseling?	YES . 2	
928D	Have you disclosed your result to your partner?	YES . 2 NO	
928E	Did you receive HIV counseling and testing individually or as a couple?	INDIVIDUAL COUPLE	$\longrightarrow 928 \mathrm{H}$
928F	Would you consider HIV counseling and testing as a couple in the future?	YES . 2	$\longrightarrow 928 \mathrm{H}$
928G	What is the main reason you would not consider HIV counseling and testing as a couple in the future?	PARTNER REFUSES DISTANCE TO SERVICE DELIVERY . . 2 NO TIME \qquad SERVICE DELIVERY HOURS \qquad 3 4 OTHER \qquad 6 (SPECIFY)	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
928H	CHECK 918B, 923B, and 928B: HIV TEST RESULT ANY "POSITIVE" ALL ARE "N TEST RESULT	ATIVE" BLANK	932
9281	Are you currently taking ARVs daily?	YES . 2	$\longrightarrow 932$
928 J	What is the main reason for not taking ARVs daily?	TRANSPORTATION COST 1 RELIGIOUS REASONS 2 FOOD/NUTRITIONAL ISSUES 3 SIDE EFFECTS 4 FEAR OF BEING SEEN AT ARV CLINIC 5 OTHER \qquad 6 (SPECIFY)	
930	Do you know of a place where people can go to get tested for HIV?	YES . 2	$\longrightarrow 932$
931	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
932	Would you buy fresh vegetables from a shopkeeper or vendor if you knew that this person had HIV?	YES . 1 NO 8	
933	If a member of your family got infected with HIV, would you want it to remain a secret or not?	YES, REMAIN A SECRET \ldots. 1 NO . 2 DK/NOT SURE/DEPENDS $\ldots . . .$. 8	
934	If a member of your family became sick with AIDS, would you be willing to care for her or him in your own household?	YES . 1 NO 8	
935	In your opinion, if a female teacher has HIV but is not sick, should she be allowed to continue teaching in the school?	SHOULD BE ALLOWED 1 SHOULD NOT BE ALLOWED 2 DK/NOT SURE/DEPENDS 8	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
936	Should children age 12-14 be taught about using a condom to avoid getting AIDS?	YES . 1 NO 8	
937		YES . 2	
938	CHECK 613: HAS HAD SEXUAL NEVER HAD SEXUAL INTERCOURSE INTERCOURSE		$\rightarrow 946$
939	CHECK 937: HEARD ABOUT OTHER SEXUALLY TRANSMITTED YES	FECTIONS? NO	$\rightarrow 941$
940	Now I would like to ask you some questions about your health in the last 12 months. During the last 12 months, have you had a disease which you got through sexual contact?	YES . 8	
941	Sometimes women experience a bad-smelling abnormal genital discharge. During the last 12 months, have you had a bad-smelling abnormal genital discharge?	YES . 8	
942	Sometimes women have a genital sore or ulcer. During the last 12 months, have you had a genital sore or ulcer?	YES .	
943	CHECK 940, 941, AND 942: HAS HAD AN HAS NOT HAD AN INFECTION INFECTION OR (ANY 'YES') DOES NOT KNOW		$\rightarrow 946$
944	The last time you had (PROBLEM FROM 940/941/942), did you seek any kind of advice or treatment?	YES . 2	$\longrightarrow 946$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
945	Where did you go? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
946	If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in asking that they use a condom when they have sex?	YES . 8	
947	Is a wife justified in refusing to have sex with her husband when she knows he has sex with other women?	YES . 8	
948	CHECK 601: CURRENTLY MARRIED/ LIVING WITH A MAN NOT IN UNION		1000A
949	Can you say no to your (husband/partner) if you do not want to have sexual intercourse?	YES . 8	
950	Could you ask your (husband/partner) to use a condom if you wanted him to?	YES . 8	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1000A	Have you ever heard of an illness called tuberculosis or TB?	YES . 2 NO 2	$\rightarrow 1001$
1000B	How does tuberculosis spread from one person to another? PROBE: Any other ways? RECORD ALL MENTIONED.	THROUGH THE AIR WHEN COUGHING OR SNEEZING A THROUGH SHARING UTENSILS... B THROUGH TOUCHING A PERSON WITH TB......................... C THROUGH FOOD D THROUGH SEXUAL CONTAC E THROUGH MOSQUITO BITE؟ F OTHER \qquad X DON'T KNOW .	
1000C	What symptoms will a person with tuberculosis or TB have? Anything else? RECORD ALL MENTIONED.		
1000D	Can tuberculosis be cured?		
1000E	If a member of your family got tuberculosis, would you want it to remain a secret or not?	```YES, REMAIN A SECRET 1 NO 2 DON'T KNOW/NOT SURE/ DEPENDSNone```	
1001	Now I would like to ask you some other questions relating to health matters. Have you had an injection for any reason in the last 12 months? IF YES: How many injections have you had? IF NUMBER OF INJECTIONS IS 90 OR MORE, OR DAILY FOR 3 MONTHS OR MORE, RECORD ' 90 '. IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE	NUMBER OF INJECTION \square NONE \qquad 00	$\longrightarrow 1004$
1002	Among these injections, how many were administered by a doctor, a nurse, a pharmacist, a dentist, or any other health worker? IF NUMBER OF INJECTIONS IS 90 OR MORE, OR DAILY FOR 3 MONTHS OR MORE, RECORD ' 90 '. IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE.	NUMBER OF INJECTION NONE \qquad 00	$\rightarrow 1004$
1003	The last time you got an injection from a health worker, did he/she take the syringe and needle from a new, unopened package?	YES . 1 NO 2 DON'T KNOU................ . 8	
1004	Do you currently smoke cigarettes?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } 2 \end{aligned}$	$\longrightarrow 1006$
1005	In the last 24 hours, how many cigarettes did you smoke?	NUMBER OF CIGARETTE \square	
1006	Do you currently smoke or use any (other) type of tobacco?	YES .. 2	\rightarrow 1007C

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1007	What (other) type of tobacco do you currently smoke or use? RECORD ALL MENTIONED.		
1007A	Do you use or smoke tobacco products daily?	YES . 2	\rightarrow 1007C
1007B	How old were you when first started using any tobacco products daily?	AGE IN YEARS	
1007C	Have you ever consumed an alcoholic drink, such as beer, wine, spirits, or other home-brewed liquor?	YES .	$\longrightarrow 1008$
1007F	Have you consumed an alcoholic drink during the past two weeks?	YES .	$\longrightarrow 1008$
1007G	During the past two weeks, on how many days did you have at least one alcoholic drink?	NUMBER OF DAY \square DON'T KNOW/NOT SURE 98	$\longrightarrow 1008$
1007H	During the past two weeks, when you consumed alcohol, on average, how many bottles/glasses/tots of alcohol did you have per day?	NUMBER OF DRINK \square DON'T KNOW/NOT SURE 98	
1008	Many different factors can prevent women from getting medical advice or treatment for themselves. When you are sick and want to get medical advice or treatment, is each of the following a big problem or not? Getting permission to go to the doctor? Getting money needed for advice or treatment? The distance to the health facility? Not wanting to go alone?		
1009	Are you covered by any health insurance?	YES . 2	\rightarrow 1010A
1010	What type of health insurance are you covered by? RECORD ALL MENTIONED.	HEALTH INSURANCE THROUGH EMPLOYEF A SOCIAL SECURIT B OTHER PRIVATELY PURCHASED COMMERCIAL HEALTH INSURANI C OTHER \qquad X (SPECIFY)	
1010A	Now I am going to ask you some questions about physical activity. Are you involved in exercise that causes an increase in your heart rate for at least 10 minutes continuously? IF YES, ASK: At work? During other physical activities?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1010B	In the last 7 days, on how many days did you do exercise that lasted for at least 10 minutes each time? IF 'NONE' RECORD '0'	NUMBER OF DAYS \square DON'T KNOW/NOT SURE . \qquad 8	
1010E	Now I would like to ask you about liquids and foods that you consume. How many glasses of water do you drink in one day on averag IF 'NONE' RECORD '00'	NUMBER OF GLASSES	
1010F	In a typical week, on how many days do you eat fruits, such as apples, pears, oranges, bananas, mangoes, etc.? IF 'NONE' RECORD '0'	NUMBER OF DAYS \square DON'T KNOW/NOT SURE . \qquad	$\rightarrow 1010 \mathrm{H}$
1010G	On a day when you eat fruits, how many times do you eat on average? IF 'NONE' RECORD '00'	NUMBER OF TIMES DON'T KNOW/NOT SURE \qquad	
1010H	In a typical week, on how many days do you eat vegetables, such as tomatoes, carrots, cabbage, dark green leafy vegetables (e.g. spinach) pumpkin, squash, etc.? IF 'NONE' RECORD '0'	NUMBER OF DAYS DON'T KNOW/NOT SURE \qquad	$\rightarrow 1010 \mathrm{M}$
10101	On a day when you eat vegetables, how many times do you eat on average? IF 'NONE' RECORD '00'	NUMBER OF TIMES DON'T KNOW/NOT SURE	
1010M	In the past 30 days, when you were seated in a vehicle either as a driver or passenger, have you used a seatbelt always, sometimes or never?	ALWAYS . 1 SOMETIME . 3 NEVER 3 HAVE NOT BEEN IN VEHICLE IN PAST 30 DAYS 4 NO SEATBELT IN CAR 8 DON'T KNOW/NOT SURE 8	
1010N	Now I would like to ask you about women's health. Have you ever heard of cervical cancer?	$\begin{aligned} & \text { YES . } \end{aligned}$	\rightarrow 1010Q
10100	Have you ever had a test or exam to see if you have cervical cancer?	YES . 8	$\longrightarrow 1010 Q$
1010P	What type of exam did you have to see if you have cervical cancer?	PAP SMEAR A VISUAL INSPECTION WITH ACETIC ACID B DON'T KNOW/NOT SURE X	
1010Q	Have you ever examined your breasts to detect or check for breast cancer?	YES . 2	
1010R	Has a doctor or other health professional examined your breasts to detect or check for breast cancer?	YES . 8	
1010S	Now I would like to ask some questions about mental health. Are there times when you see or hear things that are actually not there?	YES .	
1010T	In the past 12 months, have you ever felt seriously worthless, hopeless, or wished you were dead?	$\begin{aligned} & \text { YES . } \\ & \text { NO } \end{aligned}$	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
$1010 \cup$	In the past two weeks, have you felt that you had little interest or pleasure in doing things? IF YES, ASK: How many days did you feel this way?		
1010V	In the past two weeks, have you felt very low in energy, been in a bad mood, or been sad all the time? IF YES, ASK: How many days did you feel this way?		
	CHECK 1010S, 1010T, 1010U, AND 1010V: NO/DK/NOT SURE TO ALL		\rightarrow 1101A
1010x	Did you seek any medical care?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } \end{aligned}$	

SECTION 11. MATERNAL MORTALITY

1104	What was the name given to your oldest (next oldest) brother or sister?	(7)	(8)	(9)	(10)	(11)	(12)
1105	Is (NAME) male or female?	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$	$\begin{array}{ll} \text { MALE } & 1 \\ \text { FEMALE } & 2 \end{array}$
1106	Is (NAME) still alive?	$\left.\begin{array}{lll} \text { YES } \ldots & 1 \\ \text { NO } \ldots . & 2 \\ \text { GO TO } & 1108 \\ \text { DK } & \ldots & 8 \\ \text { GO TO } & 8 \end{array}\right]$	$\left.\begin{array}{lll} \text { YES } \ldots & 1 \\ \text { NO } \ldots . & 2 \\ \text { GO TO 1108 } \\ \text { DK } & \ldots & 8 \\ \text { GO TO } & (9) & 4 \end{array}\right]$	$\left.\begin{array}{l}\text { YES } \ldots c \\ \text { NO } \ldots . \\ \text { GO TO } \\ \text { 1108」 } \\ \text { DK } \ldots \\ \text { GO TO } \\ \text { GO } \\ \hline\end{array}\right]$		$\left.\begin{array}{lll}\text { YES } \ldots & 1 \\ \text { NO } & \ldots & 2 \\ \text { GO TO } & 1108 \\ \text { DK } & \ldots & 8 \\ \text { GO TO (12) }\end{array}\right]$	$\left.\begin{array}{lll} \text { YES } \ldots . & 1 \\ \text { NO } & \ldots & 2 \\ \text { GO TO } & 1108 \\ \text { DK } & \ldots & 8 \\ \text { GO TO } & (13) \end{array}\right]$
1107	How old is (NAME)?						
1108	How many years ago did (NAME) die?						1
1109	How old was (NAME) when he/she died?	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (8)	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (9)	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (10)	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (11)	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (12)	IF MALE OR DIED BEFORE 12 YEARS OF AGE GO TO (13)
1110	Was (NAME) pregnant when she died?	$\left.\begin{array}{l} \text { YES ... } \\ \text { GO TO } 1113 \\ \text { NO } \ldots . \end{array}\right]$	$\begin{gathered} \text { YES ... } \\ \text { GO TO } 1113 \\ \text { NO } \ldots . . \\ \hline \end{gathered}$	$\begin{aligned} & \text { YES ... } \\ & \text { GO TO 1113 } \\ & \text { NO } \ldots . \\ & \text { NO } \end{aligned}$	$\left.\begin{array}{c} \text { YES ... } \\ \text { GO TO } 1113 \\ \text { NO } \ldots . . \end{array}\right]$	$\left.\begin{array}{ccc} \text { YES ... } & 1 \\ \text { GO TO } 1113 \\ \text { NO } & \ldots . & 2 \end{array}\right]$	$\left.\begin{array}{c} \text { YES ... } \\ \text { GO TO } 1113 \\ \text { NO } \ldots . \end{array}\right]$
1111	Did (NAME) die during childbirth?	$\left.\begin{array}{l} \text { YES ... } \\ \text { GO TO } 1113 \\ \text { NO } \ldots . \end{array}\right]$	$\begin{gathered} \text { YES ... } \\ \text { GO TO } \\ \text { 1113 } \\ \text { NO } \end{gathered} \ldots{ }^{2} .$	$\begin{aligned} & \text { YES ... } \\ & \text { GO TO } 1113 \\ & \text { NO } \ldots . \\ & \hline \end{aligned}$	$\begin{gathered} \text { YES ... } \\ \text { GO TO } \\ \text { GO } \\ \text { NO } \end{gathered} \ldots$	$\left.\begin{array}{ccc} \text { YES ... } & 1 \\ \text { GO TO } & 1113 \\ \text { NO } & \ldots & 2 \end{array}\right]$	$\left.\begin{array}{ccc} \text { YES ... } & 1 \\ \text { GO TO } & 1113 \\ \text { NO } & \ldots & 2 \end{array}\right]$
1112	Did (NAME) die within two months after the end of a pregnancy or childbirth?	$\begin{array}{lll} \text { YES ... } & 1 \\ \text { NO } \ldots . & 2 \end{array}$	$\begin{array}{lll} \text { YES ... } & 1 \\ \text { NO } \ldots . & 2 \end{array}$	$\begin{array}{lll} \text { YES ... } & 1 \\ \text { NO } & . . & 2 \end{array}$	$\begin{array}{lll} \text { YES ... } & 1 \\ \text { NO } & \ldots & 2 \end{array}$	$\begin{array}{lll} \text { YES } \ldots & 1 \\ \text { NO } & \ldots & 2 \end{array}$	$\begin{array}{lll} \text { YES ... } & 1 \\ \text { NO } & \ldots & 2 \end{array}$
1113	How many live born children did (NAME) give birth to during her lifetime?						
IF NO MORE BROTHERS OR SISTERS, GO TO 1201A							

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1209	Have you ever hit, slapped, kicked, or done anything else to physically hurt your (last) (husband/partner) at times when he was not already beating or physically hurting you?	YES . 2	$\rightarrow 1211$
1210	In the last 12 months, how often have you done this to your (last) (husband/partner): often, only sometimes, or not at all?	OFTEN . 1 SOMETIMES 2 NOT AT ALL . 3	
1211	Does (did) your (last) (husband/partner) drink alcohol?	YES . 2	$\rightarrow 1213$
1212	How often does (did) he get drunk: often, only sometimes, or never?		
1213	Are (Were) you afraid of your (last) (husband/partner): most of the time, sometimes, or never?	MOST OF THE TIME AFRAID 1 SOMETIMES AFRAID 2 NEVER AFRAID 3	
1214	CHECK 609: MARRIED MORE MARRIED ONLY THAN ONCE ONCE		$\rightarrow 1216$
1215	A So far we have been talking about the behavior of your (current/last) (husband/partner). Now I want to ask you about the behavior of any previous (husband/partner). a) Did any previous (husband/partner) ever hit, slap, kick, or do anything else to hurt you physically? b) Did any previous (husband/partner) physically force you to have intercourse or perform any other sexual acts against your will?	B How long ago did this last happen?	
1216	CHECK 601 AND 602:EVER MARRIED/EVER LIVED WITH A MANFrom the time you were 15 years Fron old has anyone other than (your/any) (husband/partner) hit LIVED WITH A MAN you, slapped you, kicked you, or done anything else to hurt you physically?\quadFrom the time you were 15 years old has anyone hit you, slapped you, kicked you, or done anything else to hurt you physically?	YES . 2 NO . 3	$\xrightarrow{\longrightarrow} 1219$
1217	Who has hurt you in this way? Anyone else? RECORD ALL MENTIONED.	MOTHER/STEP-MOTHER A FATHER/STEP-FATHER B SISTER/BROTHER C DAUGHTER/SON D OTHER RELATIVE E CURRENT BOYFRIEND F FORMER BOYFRIEND G MOTHER-IN-LAW H FATHER-IN-LAW OTHER IN-LAW J TEACHER K EMPLOYER/SOMEONE AT WORK L POLICE/SOLDIER M OTHER \qquad X	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1218	In the last 12 months, how often has (this person/have these persons) physically hurt you: often, only sometimes, or not at all?		
1219			$\longrightarrow 1222$
1220	Has any one ever hit, slapped, kicked, or done anything else to hurt you physically while you were pregnant?		$\rightarrow 1222$
1221	Who has done any of these things to physically hurt you while you were pregnant? Anyone else? RECORD ALL MENTIONED.		
1222	CHECK 601 AND 602: EVER MARRIED/EVER NEVER MARRIED/NEVER LIVED WITH A MAN LIVED WITH A MAN		12228
1222A	Now I want to ask you about things that may have been done to you by someone other than (your/any) (husband/partner). At any time in your life, as a child or as an adult, has anyone ever forced you in any way to have sexual intercourse or perform any other sexual acts when you did not want to?		
1222B	At any time in your life, as a child or as an adult, has anyone ever forced you in any way to have sexual intercourse or perform any other sexual acts when you did not want to?		
1223	Who was the person who was forcing you the first time this happened?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1224	CHECK 601 AND 602: EVER MARRIED/EVER LIVED WITH A MAN In the last 12 months, has anyone other than (your/any) (husband/partner) physically forced you to have sexual intercourse when you did not want to? NEVER MARRIED/NEVER \square LIVED WITH A MAN In the last 12 months has anyone physically forced you to have sexual intercourse when you did not want to?	YES . 2	$\xrightarrow{\longrightarrow} 1225$
1224A	CHECK 1205A (h-j) and 1215A(b) AT LEAST ONE \square NOT A 'YES' SINGLE 'YES' \square		$\rightarrow 1226$
1225	CHECK 601 AND 602: EVER MARRIED/EVER LIVED WITH A MAN How old were you the first time you were forced to have sexual intercourse or perform any other sexual acts by anyone, including (your/any) husband/partner? NEVER MARRIED/NEVER LIVED WITH A MAN How old were you the first time you were forced to have sexual intercourse or perform any other sexual acts?	AGE IN COMPLETED YEARS DON'T KNOW	
1226	CHECK 1205A (a-j), 1215A (a,b), 1216, 1220, 1222A, AND 1222B: AT LEAST ONE NOT A SINGLE 'YES' 'YES'		$\rightarrow 1230$
1227	Thinking about what you yourself have experienced among the different things we have been talking about, have you ever tried to seek help?	YES .	$\longrightarrow 1229$
1228	From whom have you sought help? Anyone else? RECORD ALL MENTIONED.	OWN FAMILY A HUSBAND'S/PARTNER'S FAMILY B CURRENT/FORMER HUSBAND/PARTNER C CURRENT/FORMER BOYFRIEND D FRIEND E NEIGHBOR . F RELIGIOUS LEADER G DOCTOR/MEDICAL PERSONNEL H POLICE I LAWYER . J SOCIAL SERVICE ORGANIZATION K OTHER \qquad X (SPECIFY)	
1229	Have you ever told any one about this?	YES .	
1230	As far as you know, did your father ever beat your mother?		

NO.	QUESTIONS AND FILTERS		ODING CATEGORIES		SKIP
	THANK THE RESPONDENT FOR HER COOPERATION AND REASSURE HER ABOUT THE CONFIDENTIALITY OF HER ANSWERS. FILL OUT THE QUESTIONS BELOW WITH REFERENCE TO THE DOMESTIC VIOLENCE MODULE ONLY. PROVIDE LIST OF REFERRAL PLACES TO RESPONDENT.				
1231	DID YOU HAVE TO INTERRUPT THE INTERVIEW BECAUSE SOME ADULT WAS TRYING TO LISTEN, OR CAME INTO THE ROOM, OR INTERFERED IN ANY OTHER WAY?	HUSBAND OTHER MALE ADULT FEMALE ADULT	YES YES, MORE ONCE THAN ONCE 1 2 1 2 1 2	$\begin{gathered} \mathrm{NO} \\ 3 \\ 3 \\ 3 \end{gathered}$	
1232	INTERVIEWER'S COMMENTS / EXPLANATION FOR NOT COMPLETING THE DOMESTIC VIOLENCE MODULE				
1233	RECORD THE TIME.	HOURS MINUTES			

INSTRUCTIONS:
ONLY ONE CODE SHOULD APPEAR IN ANY BOX. COLUMN 1 REQUIRES A CODE IN EVERY MONTH.

INFORMATION TO BE CODED FOR EACH COLUMN
COLUMN 1: BIRTHS, PREGNANCIES, CONTRACEPTIVE USE
B BIRTHS
P PREGNANCIES
T TERMINATIONS
0 NO METHOD
1 FEMALE STERILIZATION
2 MALE STERILIZATION
3 IUD
4 INJECTABLES
5 IMPLANTS
6 PILL
7 CONTRACEPTIVE PATCH
8 CONDOM
9 FEMALE CONDOM
10 DIAPHRAGM
J FOAM OR JELLY
K LACTATIONAL AMENORRHEA METHOD
L RHYTHM METHOD
M WITHDRAWAL
X OTHER MODERN METHOD
Y OTHER TRADITIONAL METHOD
COLUMN 2: DISCONTINUATION OF CONTRACEPTIVE USE
0 INFREQUENT SEX/HUSBAND AWAY
1 BECAME PREGNANT WHILE USING
2 WANTED TO BECOME PREGNANT
3 HUSBAND/PARTNER DISAPPROVED
4 WANTED MORE EFFECTIVE METHOD
5 SIDE EFFECTS/HEALTH CONCERNS
6 LACK OF ACCESS/TOO FAR
7 COSTS TOO MUCH
8 INCONVENIENT TO USE
F UP TO GOD/FATALISTIC
A DIFFICULT TO GET PREGNANT/MENOPAUSAL
D MARITAL DISSOLUTION/SEPARATION
X OTHER \qquad
z DON'T KNOW

TO BE FILLED IN AFTER COMPLETING INTERVIEW

COMMENTS ABOUT RESPONDENT:

COMMENTS ON SPECIFIC QUESTIONS:
\qquad
\qquad
\qquad
\qquad
\qquad

ANY OTHER COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad

SUPERVISOR'S OBSERVATIONS

NAME OF SUPERVISOR:
DATE: \qquad

EDITOR'S OBSERVATIONS

NAME OF EDITOR: \qquad DATE: \qquad

| LANGUAGE OF QUESTIONNAIRE: | $\mathbf{3}$ | LANGUAGE OF RESPONDENT: |
| :--- | :--- | :--- | :--- |
| LANGUAGE OF INTERVIEW** | \square | TRANSLATOR USED
 $(Y E S=1 ; ~ N O=2) ~$ |

LANGUAGE** CODES:			
1 AFRIKAANS	3 ENGLISH	5 RUKWANGALI	7 OSHIWAMBO
2 DAMARA/NAMA	4 OTJIHERERO	6 SILOZI	8 OTHER

Hello. My name is \qquad . I am working with the Ministry of Health and Social Services. We are conducting a survey about health all over Namibia. The information we collect will help the government to plan health services. Your household was selected for the survey. The questions usually take about 20 minutes. All of the answers you give will be confidential and will not be shared with anyone other than members of our survey team. You don't have to be in the survey, but we hope you will agree to answer the questions since your views are important. If I ask you any question you don't want to answer, just let me know and I will go on to the next question or you can stop the interview at any time.

In case you need more information about the survey, you may contact the person listed on the card that has already been given to your household.
Do you have any questions? May I begin the interview now?

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
107	CHECK 105: PRIMARY SECONDARY OR HIGHER		$\rightarrow 110$
108	Now I would like you to read this sentence to me. SHOW CARD TO RESPONDENT. IF RESPONDENT CANNOT READ WHOLE SENTENCE, PROBE: Can you read any part of the sentence to me?		
108A	Have you ever participated in a literacy program or any other program that involves learning to read or write (not including primary school)?	YES . 2	
109	CHECK 108: $\begin{array}{r} \text { CODE '2', '3' } \\ \text { OR '4' } \\ \text { CIRCLED } \end{array} \quad \begin{array}{r} \text { CODE '1' OR '5' } \\ \text { CIRCLED } \end{array}$		$\rightarrow 111$
110	Do you read a newspaper or magazine at least once a week, less than once a week or not at all?	AT LEAST ONCE A WEEK 1 LESS THAN ONCE A WEEK $\ldots . .$. 2 NOT AT ALL 3	
111	Do you listen to the radio at least once a week, less than once a week or not at all?	AT LEAST ONCE A WEEK 1 LESS THAN ONCE A WEEK 2 NOT AT ALL 3	
112	Do you watch television at least once a week, less than once a week or not at all?	AT LEAST ONCE A WEEK $\ldots . . .$. 1 LESS THAN ONCE A WEEK $\ldots . .$. 2 NOT AT ALL \quad. 3	
113	What is your religion?	ROMAN CATHOLIC 1 PROTESTANT/ANGLICAN $\ldots \ldots$ 2 ELCIN . 3 SEVENTH-DAY ADVENTIST $\ldots \ldots$. 4 NO RELIGION 5 OTHER 6	
114	What is the main language spoken in your home?		
115	In the last 12 months, how many times have you been away from home for one or more nights?	NUMBER OF TIMES \square NONE	\rightarrow 201A
116	In the last 12 months, have you been away from home for more than one month at a time?	YES . 1 NO	

SECTION 2. REPRODUCTION

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
201A	CHECK 103: MAN AGE 15-49 MAN AGE 50-6		$\rightarrow 401$
201	Now I would like to ask about any children you have had during your life. I am interested in all of the children that are biologically yours, even if they are not legally yours or do not have your last name. Have you ever fathered any children with any woman?	YES NO DON'T KNOW	$\longrightarrow 206$
202	Do you have any sons or daughters that you have fathered who are now living with you?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\longrightarrow 204$
203	How many sons live with you? And how many daughters live with you? IF NONE, RECORD '00'.	SONS AT HOME DAUGHTERS AT HOME	
204	Do you have any sons or daughters that you have fathered who are alive but do not live with you?	YES NO	$\longrightarrow 206$
205	How many sons are alive but do not live with you? And how many daughters are alive but do not live with you? IF NONE, RECORD '00'.	SONS ELSEWHERE DAUGHTERS ELSEWHERE...	
206	Have you ever fathered a son or a daughter who was born alive but later died? IF NO, PROBE: Any baby who cried or showed signs of life but did not survive?	YES NO DON'T KNOW	208
207	How many boys have died? And how many girls have died? IF NONE, RECORD '00'.	BOYS DEAD GIRLS DEAD	
208	SUM ANSWERS TO 203, 205, AND 207, AND ENTER TOTAL. IF NONE, RECORD '00'.	TOTAL CHILDREN	
209	CHECK 208:	$\begin{aligned} & \text { IAD } \\ & \text { REN } \end{aligned} \square$	$\begin{aligned} & \longrightarrow 212 \\ & \longrightarrow 301 \end{aligned}$
210	Did all of the children you have fathered have the same biological mother?	YES NO	$\longrightarrow 212$
211	In all, how many women have you fathered children with?	NUMBER OF WOMEN	
212	How old were you when your (first) child was born?	AGE IN YEARS	
213	CHECK 203 AND 205: AT LEAST ONE LIVING CHILD	NG \square EN	$\longrightarrow 301$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
214	How old is your (youngest) child?	AGE IN YEARS	
215	CHECK 214: (YOUNGEST) CHILD \square OTHER \square IS AGE 0-2 YEARS		$\rightarrow 301$
216	What is the name of your (youngest) child? WRITE NAME OF (YOUNGEST) CHILD (NAME OF (YOUNGEST) CHILD)		
217	When (NAME)'s mother was pregnant with (NAME), did she have any antenatal check-ups?		$\xrightarrow{\longrightarrow} 219$
218	Were you ever present during any of those antenatal check-ups?	PRESENT . 1 NOT PRESENT 2	$\longrightarrow 219$
218A	Were you tested for HIV in any of the antenatal check-ups you attended when your wife was pregnant with (NAME)?	YES . 2	
219	Was (NAME) born in a hospital or health facility?		$\longrightarrow 220$
219A	What was the main reason why (NAME)'s mother did not deliver in a hospital or health facility?		
220	When a child has diarrhea, how much should he or she be given to drink: more than usual, about the same as usual, less than usual, or nothing to drink at all?		

SECTION 3. CONTRACEPTION

301	Now I would like to talk about family planning - the various ways or methods that a couple can use to delay or avoid a pregnancy. Have you ever heard of (METHOD)?		
01	Female Sterilization. PROBE: Women can have an operation to avoid having any more children.	YES . 2	
02	Male Sterilization. PROBE: Men can have an operation to avoid having any more children.	YES . 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
03	IUD. PROBE: Women can have a loop or coil placed inside them by a doctor or a nurse.	YES . 2	1
04	Injectables. PROBE: Women can have an injection by a health provider that stops them from becoming pregnant for one or more months.	YES .	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
05	Implants. PROBE: Women can have one or more small rods placed in their upper arm by a doctor or nurse which can prevent pregnancy for one or more years.	YES . 1 NO 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
06	Pill. PROBE: Women can take a pill every day to avoid becoming pregnant.	YES .	1
07	Contraceptive Patch (Evra). PROBE: Women can have a transdermal patch applied to their skin that releases synthetic estrogen and progestin hormones to prevent pregnancy.	YES . 1 NO . 2	1 2
08	Condom. PROBE: Men can put a rubber sheath on their penis before sexual intercourse.	YES . 2	1
09	Female Condom. PROBE: Women can place a sheath in their vagina before sexual intercourse.	YES . 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
10	Lactational Amenorrhea Method (LAM).	YES . 1 NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
11	Rhythm Method. PROBE: To avoid pregnancy, women do not have sexual intercourse on the days of the month they think they can get pregnant.	YES . 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
12	Withdrawal. PROBE: Men can be careful and pull out before climax or ejaculation.	YES . 2	
13	Emergency Contraception. PROBE: As an emergency measure, within three days after they have unprotected sexual intercourse, women can take special pills to prevent pregnancy.	YES . 2	
14	Have you heard of any other ways or methods that women or men can use to avoid pregnancy?	(SPECIFY)YES . (SPECIFY) NO .	2

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
302	In the last few months have you: Heard about family planning on the radio? Seen anything about family planning on the television? Read about family planning in a newspaper or magazine?		
303	In the last few months, have you discussed family planning with a health worker or health professional?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	
304	Now I would like to ask you about a woman's risk of pregnancy. From one menstrual period to the next, are there certain days when a woman is more likely to become pregnant when she has sexual relations?	YES NO DON'T KNOW	$\xrightarrow{\longrightarrow} 306$
305	Is this time just before her period begins, during her period, right after her period has ended, or halfway between two periods?	JUST BEFORE HER PERIOD BEGINS DURING HER PERIOD RIGHT AFTER HER PERIOD HAS ENDED halfway between TWO PERIODS OTHER \qquad (SPECIFY) DON'T KNOW	
306	I will now read you some statements about contraception. Please tell me if you agree or disagree with each one. a) Contraception is a woman's business and a man should not have to worry about it. b) Women who use contraception may become promiscuous.	DIS- AGREE AGREE DK	
307	CHECK 301 (08): KNOWS MALE CONDOM YES NO \square		311
308	Do you know of a place where a person can get condoms?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\rightarrow 311$
309	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.	PUBLIC SECTOR GOVT. HOSPITAL GOVT. HEALTH CENTER GVT. PRIMARY HEALTH CARE CLINIC. OUTREACH POINT MOBILE CLINIC FIELDWORKER/COMMUNITY HEALTH CARE PROVIDER OTHER PUBLIC SECTOR PRIVATE MEDICAL SECTOR PRIVATE HOSPITAL PRIVATE CLINIC PHARMACY PRIVATE DOCTOR OTHER PRIVATE MEDICAL SECTOR \qquad OTHER SOURCE SHOP \qquad CHURCH \qquad FRIEND/RELATIVE SCHOOL \qquad OTHER \qquad (SPECIFY)	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
310	If you wanted to, could you yourself get a condom?		
311	CHECK 301 (09): KNOWS FEMALE CONDOM YES \square NO \square		$\rightarrow 401$
312	Do you know of a place where a person can get female condoms?		$\rightarrow 401$
313	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
314	If you wanted to, could you yourself get a female condom?		

SECTION 4. MARRIAGE AND SEXUAL ACTIVITY

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES			SKIP
401	Are you currently married or living together with a woman as if married?	YES, CURRENTLY MARRIED 1 YES, LIVING WITH A WOMAN ... 2 NO, NOT IN UNION 3			$\xrightarrow{\longrightarrow} 404$
402	Have you ever been married or lived together with a woman as if married?	YES, FORMERLY MARRIED 1 YES, LIVED WITH A WOMAN 1 NO . 2			$\rightarrow 413$
403	What is your marital status now: are you widowed, divorced, or separated?	WIDOWED . 1 DIVORCED 2			410
404	Is your (wife/partner) living with you now or is she staying elsewhere?	LIVING WITH HIM 1STAYING ELSEWHERE			
405	Do you have other wives or do you live with other women as if married?	$\begin{aligned} & \text { YES (MORE THAN ONE) } 1 \\ & \text { NO (ONLY ONE) } 2 \end{aligned}$			$\rightarrow 407$
406	Altogether, how many wives or live-in partners do you have?	TOTAL NUMBER OF WIVES AND LIVE-IN PARTNERS			
407	CHECK 405: ONE WIFE/ PARTNER Please tell me the name of (your wife/the woman you are living with as if married). MORE THAN ONE WIFE/ PARTNER Please tell me the name of each of your wives or each woman you are living with as if married. RECORD THE NAME AND THE LINE NUMBER FROM THE HOUSEHOLD QUESTIONNAIRE FOR EACH WIFE AND LIVE-IN PARTNER. IF A WOMAN IS NOT LISTED IN THE HOUSEHOLD, RECORD '00'. ASK 408 FOR EACH PERSON.	LINE$\qquad$$\qquad$$\qquad$		408 How old was (NAME) on her last birthday? AGE	
409	CHECK 407: MORE THAN ONE WIFE/ ONE WIFE/ PARTNER				$\rightarrow 411 \mathrm{~A}$
410	Have you been married or lived with a woman only once or more than once?	$\begin{array}{lrrr}\text { ONLY ONCE . } & 1 \\ \text { MORE THAN ONCE } & 2\end{array}$			$\rightarrow 411 \mathrm{~A}$

		LAST SEXUAL PARTNER	SECOND-TO-LAST SEXUAL PARTNER	THIRD-TO-LAST SEXUAL PARTNER
425	How old is this person?	AGE OF PARTNER DON'T KNOW \qquad	AGE OF PARTNER \square DON'T KNOW \qquad	AGE OF PARTNER DON'T KNOW \qquad
426	Apart from (this person/these two people), have you had sexual intercourse with any other person in the last 12 months?		YES $\ldots \ldots \ldots \ldots \ldots$ (GO BACK TO $417 \ldots$ IN NEXT COLUMN) NO (SKIP TO 428)	
427	In total, with how many different people have you had sexual intercourse in the last 12 months? IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE. IF NUMBER OF PARTNERS IS 95 OR MORE, WRITE '95'.			NUMBER OF PARTNERS LAST 12 MONTHS . . . DON'T KNOW ... 98

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
437	From where did you obtain the condom the last time? PROBE TO IDENTIFY TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
438	The last time you had sex did you or your partner use any method (other than a condom) to avoid or prevent a pregnancy?	YES . 8 NO	$\longrightarrow 501 \mathrm{~A}$
439	What method did you or your partner use? PROBE: Did you or your partner use any other method to prevent pregnancy? RECORD ALL MENTIONED.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES				SKIP
509	CHECK 203 AND 205: HAS LIVING CHILDREN NO LIVING CHILDREN If you could go back to the If you could choose exactly the time you did not have any number of children to have in children and could choose your whole life, how many would exactly the number of children that be? to have in your whole life, how many would that be? PROBE FOR A NUMERIC RESPONSE.	NONE .. NUMBER OTHER		ECIFY)	96	
510	How many of these children would you like to be boys, how many would you like to be girls and for how many would it not matter if it's a boy or a girl?	NUMBER OTHER	BOYS \square	GIRLS \square ECIFY)	\qquad 96	

SECTION 6. EMPLOYMENT AND GENDER ROLES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
601	Have you done any work in the last seven days?	YES . 2	$\rightarrow 604$
602	Although you did not work in the last seven days, do you have any job or business from which you were absent for leave, illness, vacation, or any other such reason?	YES . 2	$\rightarrow 604$
603	Have you done any work in the last 12 months?	YES . 2	$\rightarrow 607$
604	What is your occupation, that is, what kind of work do you mainly do?		
605	Do you usually work throughout the year, or do you work seasonally, or only once in a while?	THROUGHOUT THE YEAR 1 SEASONALLY/PART OF THE YEAR 2 ONCE IN A WHILE \ldots. 3	
606	Are you paid in cash or kind for this work or are you not paid at all?		
607	CHECK 401: CURRENTLY MARRIED OR NOT CURRENTLY LIVING WITH A PARTNER NOT LIVING WITH A P	RRIED AND \square RTNER	$\rightarrow 612$
608	CHECK 606: CODE 1 OR 2 OTHER \square CIRCLED		$\rightarrow 610$
609	Who usually decides how the money you earn will be used: you, your (wife/partner), or you and your (wife/partner) jointly?		
610	Who usually makes decisions about health care for yourself: you, your (wife/partner), you and your (wife/partner) jointly, or someone else?		
611	Who usually makes decisions about making major household purchases?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
612	Do you own this or any other house either alone or jointly with someone else?	ALONE ONLY JOINTLY ONLY BOTH ALONE AND JOINTLY DOES NOT OWN	$\begin{array}{cc} \ldots \ldots & 1 \\ \ldots \ldots & 2 \\ \ldots . & 3 \\ \ldots . & 4 \end{array}$	
613	Do you own any land either alone or jointly with someone else?	ALONE ONLY JOINTLY ONLY BOTH ALONE AND JOINTLY DOES NOT OWN	$\begin{array}{cc} \ldots \ldots & 1 \\ \ldots \ldots & 2 \\ \ldots . & 3 \\ \ldots \ldots & 4 \end{array}$	
614	In your opinion, is a husband justified in hitting or beating his wife in the following situations: If she goes out without telling him? If she neglects the children? If she argues with him? If she refuses to have sex with him? If she burns the food? If she is friendly with other men?	YES GOES OUT 1 NEGL. CHILDREN \ldots 1 ARGUES 1 REFUSES SEX $\ldots .$. 1 BURNS FOOD 1 FRIENDLY WITH MEN . . 1	NO DK 2 8	

SECTION 7. HIVIAIDS				
NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
701	Now I would like to talk about something else. Have you ever heard of HIVIAIDS?	YES NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\longrightarrow 723$
702	Can people reduce their chance of getting HIV by having just one uninfected sex partner who has no other sex partners?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
703	Can people get HIV from mosquito bites?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
704	Can people reduce their chance of getting HIV by using a condom every time they have sex?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
705	Can people get HIV by sharing food with a person who has AIDS?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
706	Can people get HIV because of witchcraft or other supernatural means?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
707	Is it possible for a healthy-looking person to have HIV?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
708	Can HIV be transmitted from a mother to her baby: During pregnancy? During delivery? By breastfeeding?	YES NO DURING PREG. 1 2 DURING DELIVERY . . 1 2 BREASTFEEDING \ldots 1 2	$\begin{gathered} \text { DK } \\ 8 \\ 8 \\ 8 \end{gathered}$	
709	CHECK 708: AT LEAST ONE 'YES'	R		$\rightarrow 711$
710	Are there any special drugs that a doctor or a nurse can give to a woman infected with HIV to reduce the risk of transmission to the baby?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	
711	CHECK FOR PRESENCE OF OTHERS. BEFORE CONTINUING,	KE EVERY EFFORT TO ENSURE PRIV		
712	Have you ever been tested to see if you have HIV?	YES NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\longrightarrow 716$
713	How many months ago was your most recent HIV test?	MONTHS AGO TWO OR MORE YEARS	$\begin{gathered} \\ \hline \\ 95 \end{gathered}$	
714	Did you get the results of the test?	YES NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\longrightarrow 715$
714A	Will you be willing to share the results with me?	YES NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\rightarrow 714 \mathrm{C}$
714B	What was your HIV test result?	POSITIVE NEGATIVE		
714C	All men are supposed to receive counseling before and after being tested. Before and after you were tested, did you receive counseling?	YES NO	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
714D	Have you disclosed your result to your partner?	YES NO NO PARTNER	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
715	Where was the test done? PROBE TO IDENTIFY THE TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
715A	Did you receive HIV counseling and testing individually or as a couple?	INDIVIDUAL . 2	$\rightarrow 715 \mathrm{D}$
715B	Would you consider HIV counseling and testing as a couple in the future?	YES . 1 NO	\longrightarrow 715D
715C	What is the main reason you would not consider HIV counseling and testing as a couple in the future?		
715D	CHECK 714B: HIV TEST RESULT	ATIVE BLANK	$\rightarrow 718$
715E	Are you currently taking ARVs daily?	YES . 2 NO	$\rightarrow 718$
715F	What is the main reason for not taking ARVs daily?	$\begin{array}{lrr}\text { TRANSPORTATION COS } & 1 \\ \text { RELIGIOUS REASONS } \ldots \ldots \ldots . & 2 \\ \text { FOOD/NUTRITIONAL ISSUES } & 3 \\ \text { SIDE EFFECTS } & \ldots & 4 \\ \text { FEAR OF BEING SEEN AT ARV CLINIC } & 5 \\ \text { OTHER } & \\ & \end{array}$	$\rightarrow 718$
716	Do you know of a place where people can go to get tested for HIV?	YES . 1 NO 2	$\longrightarrow 718$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
717	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
718	Would you buy fresh vegetables from a shopkeeper or vendor if you knew that this person had HIV?	YES . 8	
719	If a member of your family got infected with HIV, would you want it to remain a secret or not?		
720	If a member of your family became sick with AIDS, would you be willing to care for her or him in your own household?	YES . 1 NO 8	
721	In your opinion, if a female teacher has HIV but is not sick, should she be allowed to continue teaching in the school?	SHOULD BE ALLOWED	
722	Should children age 12-14 be taught about using a condom to avoid getting AIDS?	YES . 1 NO 8	
723		YES . 2	
724	CHECK 414: HAS HAD SEXUAL HAS NOT HAD SEXUAL INTERCOURSE INTERCOURSE		$\rightarrow 732$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
725	CHECK 723: HEARD ABOUT OTHER SEXUALLY TRANSMITTED YES	FECTIONS? NO	$\rightarrow 727$
726	Now I would like to ask you some questions about your health in the last 12 months. During the last 12 months, have you had a disease which you got through sexual contact?	YES . 8	
727	Sometimes men experience an abnormal discharge from their penis. During the last 12 months, have you had an abnormal discharge from your penis?		
728	Sometimes men have a sore or ulcer near their penis. During the last 12 months, have you had a sore or ulcer near your penis?	YES . 8	
729	CHECK 726, 727, AND 728: HAS HAD AN HAS NOT HAD AN INFECTION INFECTION OR (ANY 'YES') DOES NOT KNOW		$\rightarrow 732$
730	The last time you had (PROBLEM FROM 726/727/728), did you seek any kind of advice or treatment?	YES . 2	$\rightarrow 732$
731	Where did you go? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE. IF UNABLE TO DETERMINE IF PUBLIC OR PRIVATE SECTOR, WRITE THE NAME OF THE PLACE.		
732	If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in asking that they use a condom when they have sex?	YES . 8 NO	
733	Is a wife justified in refusing to have sex with her husband when she knows her husband has sex with other women?	YES . 8	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
801	Now I would like to ask you some other questions relating to health matters. Some men are circumcised, that is, the foreskin is completely removed from the penis. Are you circumcised?	YES NO DON'T KNOW	$\xrightarrow{\rightarrow} 804 \mathrm{~A}$
802	How old were you when you got circumcised?	AGE IN COMPLETED YEARS \square DURING CHILDHOOD (<5 YEARS) DON'T KNOW	
803	Who did the circumcision?	TRADITIONAL PRACTITIONER/ FAMILY/FRIEND HEALTH WORKER/PROFESSIONAL OTHER DON'T KNOW	
804	Where was it done?	HEALTH FACILITY HOME OF A HEALTH WORKER/ PROFESSIONAL CIRCUMCISION DONE AT HOME RITUAL SITE OTHER HOME/PLACE DON'T KNOW	
804A	If you had a baby boy, would you have him circumcised?	YES NO DON'T KNOW	
804B	Are there any benefits to male circumcision?	YES NO DON'T KNOW	$\xrightarrow{\longrightarrow} 804 \mathrm{D}$
804C	What are the benefits of male circumcision? RECORD ALL MENTIONED.	RECOMMENDED BY TRADITION/ RELIGION GOOD FOR HEALTH/HYGIENE PROTECTS AGAINST GETTING HIV PROTECTS AGAINST GETTING STD؟ INCREASE SEXUAL SATISFACTION EASIER TO PUT ON CONDON OTHER \qquad (SPECIFY) DON'T KNOW	
804D	Have you ever heard of an illness called tuberculosis or TB?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\rightarrow 805$
804E	How does tuberculosis spread from one person to another? PROBE: Any other ways? RECORD ALL MENTIONED.	THROUGH THE AIR WHEN COUGHING OR SNEEZING THROUGH SHARING UTENSILS. THROUGH TOUCHING A PERSON WITH TB THROUGH FOOD THROUGH SEXUAL CONTACT THROUGH MOSQUITO BITES . OTHER \qquad (SPECIFY) DON'T KNOW \qquad	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
804F	What symptoms will a person with tuberculosis or TB have? Anything else? RECORD ALL MENTIONED.		
804G	Can tuberculosis be cured?		
804H	If a member of your family got tuberculosis, would you want it to remain a secret or not?		
805	Have you had an injection for any reason in the last 12 months? IF YES: How many injections have you had? IF NUMBER OF INJECTIONS IS 90 OR MORE, OR DAILY FOR 3 MONTHS OR MORE, RECORD ' 90 '. IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE.	NUMBER OF INJECTIONS NONE 00	$\rightarrow 808$
806	Among these injections, how many were administered by a doctor, a nurse, a pharmacist, a dentist, or any other health worker? IF NUMBER OF INJECTIONS IS 90 OR MORE, OR DAILY FOR 3 MONTHS OR MORE, RECORD ' 90 '. IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE.	NUMBER OF INJECTIONS NONE 00	$\rightarrow 808$
807	The last time you got an injection from a health worker, did he/she take the syringe and needle from a new, unopened package?	YES . 8	
808	Do you currently smoke cigarettes?	YES . 2	$\rightarrow 810$
809	In the last 24 hours, how many cigarettes did you smoke?	NUMBER OF CIGARETTES	
810	Do you currently smoke or use any (other) type of tobacco?	YES . 2	$\rightarrow 811 \mathrm{C}$
811	What (other) type of tobacco do you currently smoke or use? RECORD ALL MENTIONED.		
811A	Do you use or smoke tobacco products daily?	YES . 2	$\rightarrow 811 \mathrm{C}$
811B	How old were you when first started using any tobacco products daily?	AGE IN YEARS \square	
811C	Have you ever consumed an alcoholic drink, such as beer, wine, spirits, or other home-brewed liquor?	YES . 2	$\longrightarrow 812$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
811F	Have you consumed an alcoholic drink during the past two weeks?	YES .	$\longrightarrow 812$
811G	During the past two weeks, on how many days did you have at least one alcoholic drink?	NUMBER OF DAYS DON'T KNOW/NOT SURE	
811H	During the past two weeks, when you consumed alcohol, on average, how many bottles/glasses/tots of alcohol did you have per day?	NUMBER OF DRINKS DON'T KNOW/NOT SURE	
812	Are you covered by any health insurance?	YES . 2	\longrightarrow 813A
813	What type of health insurance are you covered by? RECORD ALL MENTIONED.	HEALTH INSURANCE THROUGH EMPLOYER A SOCIAL SECURITY B OTHER PRIVATELY PURCHASED COMMERCIAL HEALTH INSURANCE C OTHER \qquad (SPECIFY)	
813A	Are you involved in exercise that causes an increase in your heart rate for at least 10 minutes continuously? IF YES, ASK: At work? During other physical activities?	NO $\ldots . .$. $\ldots . .$. $\ldots . .$. ... 1 YES AT WORK $\ldots .$. $\ldots . .$. \ldots 2 YES OTHER PHYSICAL ACTIVITY. 3	
813B	In the last 7 days, on how many days did you do exercise that lasted for at least 10 minutes each time? IF 'NONE' RECORD '0'	NUMBER OF DAYS \square DON'T KNOW/NOT SURE	
813E	Now I would like to ask you about liquids and foods that you consume. How many glasses of water do you drink in one day on average? IF 'NONE' RECORD '00'	NUMBER OF GLASSES \quad 	
813F	In a typical week, on how many days do you eat fruits, such as apples, pears, oranges, bananas, mangoes, etc.? IF 'NONE' RECORD '0'	NUMBER OF DAYS DON'T KNOW/NOT SURE	$\rightarrow 813 \mathrm{H}$
813G	On a day when you eat fruits, how many times do you eat on average? IF 'NONE' RECORD '0'	NUMBER OF TIMES \qquad \square DON'T KNOW/NOT SURE \qquad 8	
813H	In a typical week, on how many days do you eat vegetables, such as tomatoes, carrots, cabbage, dark green leafy vegetables (e.g. spinach) pumpkin, squash, etc.? IF 'NONE' RECORD '0'	NUMBER OF DAYS \square DON'T KNOW/NOT SURE	$\rightarrow 813 \mathrm{M}$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIE		SKIP
8131	On a day when you eat vegetables, how many times do you eat on average? IF 'NONE' RECORD '0'	NUMBER OF TIMES DON'T KNOW/NOT SURE		
813M	In the past 30 days, when you were seated in a vehicle either as a driver or passenger, have you used a seatbelt always, sometimes or never?	ALL THE TIME SOMETIME NEVER HAVE NOT BEEN IN VEHICLE IN PAST 30 DAYS NO SEATBELT IN CAR DON'T KNOW/NOT SURE	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 8 \end{aligned}$	
813N	CHECK 103: MAN AGE 40-64 MAN AGE 15-			813Q
8130	Have you ever heard of prostate cancer?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$		$\rightarrow 813 \mathrm{Q}$
813P	Have you ever had a test or exam to see if you have prostate cancer?	YES NO DON'T KNOW	1 2 8	
813Q	Now I would like to ask some questions about mental health. Are there times when you see or hear things that are actually not there?	YES NO		
813R	In the past 12 months, have you ever felt seriously worthless, hopeless, or wished you were dead?	YES NO		
813S	In the past two weeks, have you felt that you had little interest or pleasure in doing things? IF YES, ASK: How many days did you feel this way?	NUMBER OF DAYS. 1 NO DON'T KNOW/NOT SURE		
813 T	In the past two weeks, have you felt very low in energy, been in a bad mood, or been sad all the time? IF YES, ASK: How many days did you feel this way?	NUMBER OF DAYS. 1 NO DON'T KNOW/NOT SURE	$\begin{aligned} & \text { } \\ & \hline 2 \\ & 8 \end{aligned}$	
8134	CHECK 813Q, 813R, 813S, AND 813T: YES TO ANY NO/DK/NOT SURE TO ALL			\rightarrow 901A
813V	Did you seek any medical care?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$		

SECTION 9. DOMESTIC VIOLENCE

READ TO THE RESPONDENT
Now I would like to ask you questions about some other important aspects of a man's life. You may find some of these questions very personal. However, your answers are crucial for helping to understand the condition of men in Namibia. Let me assure you that your answers are completely confidential and will not be told to anyone and no one else in your household will know that you were asked these questions.

903 First, I am going to ask you about some situations which happen to some men. Please tell me if these apply to your relationship with your (last) (wife/partner)?
a) She (is/was) jealous or angry if you (talk/talked) to other women?
b) She frequently (accuses/accused) you of being unfaithful?
c) She (does/did) not permit you to meet your male friends?
d) She (tries/tried) to limit your contact with your family?
e) She (insists/insisted) on knowing where you (are/were) at all times?
f) She doesn't trust you with money/finances?

Now I need to ask some more questions about your relationship with your (last) (wife/partner).

A Did your (last) (wife/partner) ever:
B How often did this happen during the last 12 months: often, only sometimes, or not at all?
a) say or do something to humiliate you in front of others?
b) threaten to hurt or harm you or someone you care about?
c) insult you or make you feel bad about yourself?

		SOME-	NOT IN LAST
EVER	OFTEN	TIMES	12 MONTHS

YES	$1 \longrightarrow$	1	2	3
NO	$\begin{aligned} & 2 \\ & \downarrow \end{aligned}$			
YES	$1 \longrightarrow$	1	2	3
NO	$\begin{aligned} & 2 \\ & \downarrow \end{aligned}$			
YES	$1 \longrightarrow$	1	2	3
NO	$\begin{aligned} & 2 \\ & \downarrow \end{aligned}$			

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
910	In the last 12 months, how often have you done this to your (last) (wife/partner): often, only sometimes, or not at all?		
911	Does (did) your (last) (wife/partner) drink alcohol?		$\rightarrow 913$
912	How often does (did) she get drunk: often, only sometimes, or never?	OFTEN . 1 SOMETIMES 2 NEVER . 3	
913	Are (Were) you afraid of your (last) (wife/partner): most of the time, sometimes, or never?	MOST OF THE TIME AFRAID \ldots. 1 SOMETIMES AFRAID 2 NEVER AFRAID 3	
914	CHECK 410: MARRIED MORE \square MARRIED ONLY THAN ONCE ONCE \square		$\longrightarrow 916$
915	A So far we have been talking about the behavior of your (current/last) (wife/partner). Now I want to ask you about the behavior of any previous (wife/partner). a) Did any previous (wife/partner) ever hit, slap, kick, or do anything else to hurt you physically? b) Did any previous (wife/partner) physically force you to have intercourse or perform any other sexual acts against your will?	B How long ago did this last happen?	
916	CHECK 401 AND 402: EVER MARRIED/EVER LIVED WITH A WOMAN From the time you were 15 years old has anyone other than (your/any) (wife/partner) hit you, slapped you, kicked you, or done anything else to hurt you physically? NEVER MARRIED/NEVER LIVED WITH A WOMAN From the time you were 15 years old has anyone hit you, slapped you, kicked you, or done anything else to hurt you physically?	YES . 2 NO 3	$\xrightarrow{\xrightarrow{\longrightarrow} 922}$
917	Who has hurt you in this way? Anyone else? RECORD ALL MENTIONED.	MOTHER/STEP-MOTHER A FATHER/STEP-FATHER B SISTER/BROTHER C DAUGHTER/SON D OTHER RELATIVE E CURRENT GIRLFRIEND F FORMER GIRLFRIEND G MOTHER-IN-LAW H FATHER-IN-LAW I OTHER IN-LAW J TEACHER K EMPLOYER/SOMEONE AT WORK L POLICE/SOLDIER M OTHER \qquad X	
918	In the last 12 months, how often has (this person/have these persons) physically hurt you: often, only sometimes, or not at all?	OFTEN . 1 SOMETIMES 3	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
922	CHECK 401 AND 402: EVER MARRIED/EVER LIVED WITH A WOMAN \square NEVER MARRIED/NEVER LIVED WITH A WOMAN		\rightarrow 922B
922A	Now I want to ask you about things that may have been done to you by someone other than (your/any) (wife/partner). At any time in your life, as a child or as an adult, has anyone ever forced you in any way to have sexual intercourse or perform any other sexual acts when you did not want to?	YES . 2 NO . 3	
922B	At any time in your life, as a child or as an adult, has anyone ever forced you in any way to have sexual intercourse or perform any other sexual acts when you did not want to?		$\xrightarrow{\longrightarrow} 926$
923	Who was the person who was forcing you the first time this happened?		
924	CHECK 401 AND 402: EVER MARRIED/EVER LIVED WITH A WOMAN In the last 12 months, has anyone other than (your/any) (wife/partner) physically forced you to have sexual intercourse when you did not want to? NEVER MARRIED/NEVER \square LIVED WITH A WOMAN In the last 12 months has anyone physically forced you to have sexual intercourse when you did not want to?	YES .	$\longrightarrow 925$
924A	CHECK 905A (h-j) and 915A(b) AT LEAST ONE NOT A 'YES' SINGLE 'YES'		$\rightarrow 926$
925	CHECK 401 AND 402: EVER MARRIED/EVER LIVED WITH A WOMAN How old were you the first time you were forced to have sexual intercourse or perform any other sexual acts by anyone, including (your/any) wife/partner? NEVER MARRIED/NEVER LIVED WITH A WOMAN How old were you the first time you were forced to have sexual intercourse or perform any other sexual acts?	AGE IN COMPLETED YEARS DON'T KNOW	
926	CHECK 905A (a-j), 915A (a,b), 916, 922A, AND 922B: AT LEAST ONE NOT A SINGLE 'YES' 'YES'		$\rightarrow 930$

TO BE FILLED IN AFTER COMPLETING INTERVIEW

COMMENTS ABOUT RESPONDENT:

COMMENTS ON SPECIFIC QUESTIONS:
\qquad
\qquad
\qquad
\qquad
\qquad

ANY OTHER COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad

SUPERVISOR'S OBSERVATIONS

NAME OF SUPERVISOR:
DATE: \qquad

EDITOR'S OBSERVATIONS

NAME OF EDITOR: \qquad DATE: \qquad

[^0]: ${ }^{1}$ Households interviewed/households occupied
 ${ }^{2}$ Respondents interviewed/eligible respondents
 ${ }^{3}$ In 50 percent of selected households

[^1]: ${ }^{1}$ The categorisation into improved and non-improved categories follows that proposed by the WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (WHO and UNICEF, 2012a).

[^2]: Note: Table is based on de jure household members (i.e., usual residents). Total includes 1 child with missing information on sex.
 ${ }^{1}$ Includes children with father dead, mother dead, both dead, and one parent dead but missing information on the survival status of the other parent

[^3]: ${ }^{1}$ Data for men who read a newspaper at least once a week are not shown due to a problem in the data entry programme. The responses from men with a secondary education or higher were not entered, resulting in a gross underestimate of men's exposure to this type of media.

[^4]: Note: If more than one method is used, only the most effective method is considered in this tabulation.
 LAM = Lactational amenorrhoea method

[^5]: Note: If more than one method is used, only the most effective method is considered in this tabulation.
 LAM = Lactational amenorrhoea method

[^6]: ${ }^{1}$ There was an error in the 2006-07 Namibia DHS Final Report in the percentage of women age $15-49$ with an unmet need for family planning. The percentage of all women age 15-49 with an unmet need for family planning was actually 9 percent, with unmet need for spacing at 4 percent and unmet need for limiting at 5 percent. Corresponding figures for currently married women were 21 percent, 9 percent, and 12 percent, and corresponding figures for women who were not currently married were 3.2 percent, 1.7 percent, and 1.5 percent. Data on unmet need on the DHS Programme website (http://dhsprogramme.com) compare unmet need among currently married women calculated according to the new definition and the previous definition. The two percentages are very similar (20.5 percent and 20.6 percent, respectively).

[^7]: ${ }^{1}$ The imputation procedure is based on the assumption that the reported birth order of the siblings in the birth history is correct. The first step is to calculate birth dates. For each living sibling with a reported age and for each dead sibling with complete information on both age at death and year of death, the birth date is calculated. For a sibling missing these data, a birth date is imputed within the range defined by the birth dates of the bracketing siblings. In the case of living siblings, an age is calculated from the imputed birth date. In the case of dead siblings, if either age at death or year of death is reported, that information is combined with the birth date to produce missing information. If both pieces of information are missing, the age at death is imputed. This imputation is based on the distribution of the ages at death for those whose year of death is unreported but whose age at death is reported.

[^8]: ${ }^{1}$ Includes women who received a checkup after 41 days

[^9]: Note: Information was obtained from the vaccination card or if there was no written record, from the mother. For children whose information is based on the mother's report, the proportion of vaccinations given during the first year of life is assumed to be the same as for children with a written record of vaccinations.
 ${ }^{1}$ Pentavalent vaccinations include DPT, Hepatitis B (HepB) and Haemophilus influenza type b (HiB)
 ${ }^{2}$ Polio 0 is the polio vaccination given at birth.
 ${ }^{3}$ BCG, measles and three doses each of DPT and polio vaccine (excluding polio vaccine given at birth)

[^10]: Note: ORT includes fluid prepared from oral rehydration salt (ORS) packets, pre-packaged ORS fluid, and recommended home fluids (RHF). Total includes 15 children with missing information on type of diarrhoea. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Excludes pharmacy, shop, and traditional practitioner

[^11]: unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Continued feeding practices includes children who were given more, the same as usual, or somewhat less food during the diarrhoea episode.

[^12]: Note: Total includes 4 children with missing information on toilet facility.
 ${ }^{1}$ Children's stools are considered to be disposed of safely if the child used a toilet or latrine, if the faecal matter was put/rinsed into a toilet or latrine, or if it was buried.
 ${ }^{2}$ See Table 2.2 for definition of categories.
 ${ }^{3}$ Facilities that would be considered improved if they were not shared by 2 or more households

[^13]: ${ }^{1}$ In the earlier NDHS surveys, this information was collected for the youngest children under age 3 who were living with their mother at the time of the survey.

[^14]: ${ }^{1}$ In the first 2 months after delivery of last birth
 ${ }^{2}$ Excludes women in households where salt was not tested

[^15]: Note: Table is based on women who stayed in the household the night before the interview. Total includes 1 case for which information on education is missing. Figures in parentheses are based on $25-49$ unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
 ${ }^{1}$ An insecticide-treated net (ITN) is (1) a factory-treated net that does not require any further treatment (LLIN), (2) a pretreated net obtained within the past 12 months, or (3) a net that has been soaked with insecticide within the past 12 months.
 ${ }^{2}$ Indoor residual spraying (IRS) is limited to spraying conducted by a government, private, or non-governmental organisation.

[^16]: ${ }^{1}$ Data for women are not shown due to the small number of cases.

[^17]: ${ }^{1} \mathrm{http}: / / \mathrm{www}$. who.int/nmh/countries/nam_en.pdf?ua=1

[^18]:
 Note: Total includes 7 men with missing information on education.
 ${ }^{1}$ An individual was classified as having hypertension if he/she had

 ${ }^{2}$ Body mass index is expressed as the ratio of weight in kilograms to the square of height in metres ($\mathrm{kg} / \mathrm{m}^{2}$).

[^19]: ${ }^{2}$ Percentages may not add up to 100 percent due to rounding.
 ${ }^{3}$ http://www.who.int/mediacentre/factsheets/fs312/en/
 ${ }^{4}$ http://www.who.int/nmh/countries/nam_en.pdf?ua=1

[^20]: ${ }^{1}$ http://www.who.int/mediacentre/news/releases/2007/pr26/en/

[^21]: ${ }^{2}$ http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/

[^22]: ${ }^{3}$ http://www.who.int/dietphysicalactivity/pa/en/

[^23]: ${ }^{4}$ http://www.who.int/topics/mental_health

[^24]: ${ }^{1}$ Refers to women who had ever seen or heard things that are actually not there; who, in the past 12 months, had ever felt seriously worthless, hopeless, or wished to be dead; who, in the past 2 weeks, felt that they had little interest or pleasure in doing things; or who, in the past 2 weeks, felt low in energy, had been in a bad mood, or had been sad all of the time

[^25]: Note: Total includes 3 men with missing information on employment

[^26]: 1 'Skilled provider' includes doctor, nurse, midwife, or auxiliary nurse/midwife

[^27]: Note: Women can report more than one source from which they sought help. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ELCIN = Evangelical Lutheran Church in Namibia

[^28]: ${ }^{1}$ Includes all dried blood samples (DBSs) tested at the lab and for which there was a result, i.e., positive, negative, or indeterminate. Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
 ${ }^{2}$ Includes 1) other results of blood collection (e.g., technical problem in the field), 2) lost specimens, 3) noncorresponding bar codes, and 4) other lab results such as blood not tested for technical reason and not enough blood to complete the algorithm.

[^29]: ${ }^{1}$ Includes all dried blood samples (DBSs) tested at the lab and for which there is a result, i.e., positive, negative, or indeterminate. Indeterminate means that the sample went through the entire algorithm, but the final result was inconclusive.
 ${ }^{2}$ Includes 1) other results of blood collection (e.g., technical problem in the field), 2) lost specimens, 3) noncorresponding bar codes, and 4) other lab results, such as blood not tested for technical reason and not enough blood to complete the algorithm.
 ${ }^{3}$ A respondent is considered to have had concurrent partners if he or she had overlapping sexual partnerships with two or more people during the 12 months before the survey. (Respondents with concurrent partners included polygynous men who had overlapping sexual partnerships with two or more wives.)

[^30]: ${ }^{1}$ The mortality rates are calculated for last $0-4$ years for the national sample, and last $0-9$ years for regional samples.

[^31]: na = Not applicable
 ${ }^{1}$ Both year and month of birth given
 ${ }^{2}(\mathrm{Bm} / \mathrm{Bf}) \times 100$, where Bm and Bf are the numbers of male and female births, respectively
 ${ }^{3}[2 B x /(B x-1+B x+1)] \times 100$, where $B x$ is the number of births in calendar year x

[^32]: ${ }^{\text {a }}$ Includes deaths under one month reported in days
 ${ }^{1}$ Under one month

