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Preface 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 
on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 
HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports to meet the increasing 
interest in a spatial perspective on demographic and health data. The principal objectives of all DHS report 
series are to provide information for policy formulation at the international level and to examine individual 
country results in an international context. 

The topics in the DHS Spatial Analysis Reports are selected by The DHS Program in consultation with the 
U.S. Agency for International Development.  A range of methodologies are used, including geostatistical 
and multivariate statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 
survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 
used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 
Director, The DHS Program 
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Abstract 

Preventable mortality of children has been targeted as one of the UN’s Sustainable Development Goals for 
the 2015-30 period. Global decreases in child mortality (4q1) have been seen, although sub-Saharan Africa 
remains an area of concern, with child mortality rates remaining high relative to global averages or even 
increasing in some cases. Furthermore, the spatial distribution of child mortality in sub-Saharan Africa is 
highly heterogeneous. Thus, research that identifies primary risk factors and protective measures in the 
geographic context of sub-Saharan Africa is needed. In this study, household survey data collected by The 
Demographic and Health Surveys (DHS) Program aggregated at DHS sub-national area scale are used to 
evaluate the spatial distribution of child mortality (age 1 to 4) across 27 sub-Saharan Africa countries in 
relation to a number of demographic and health indicators collected in the DHS surveys.  In addition, this 
report controls for spatial variation in potential environmental drivers of child mortality by modeling it 
against a suite of geospatial datasets. These datasets vary across the study area in an autoregressive spatial 
model that accounts for the spatial autocorrelation present in the data.  

This study shows that socio-demographic factors such as birth interval, stunting, access to health facilities 
and literacy, along with geospatial factors such as prevalence of Plasmodium falciparum malaria, variety 
of ethnic groups, mean temperature, and intensity of lights at night can explain up to 60% of the variance 
in child mortality across 255 DHS sub-national areas in the 27 countries.  Additionally, three regions - 
Western, Central, and Eastern Africa - have markedly different mortality rates.  By identifying the relative 
importance of policy-relevant socio-demographic and environmental factors, this study highlights priorities 
for research and programs targeting child mortality over the next decade. 
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Executive Summary 

In 2015, the United Nations established the Sustainable Development Goals (SDGs), which followed the 
eight Millennium Development Goals (MDGs). The aim of the third SDG is ending preventable deaths of 
newborns and children under age 5, with all countries focused on reducing neonatal mortality at least as 
low as 12 per 1,000 live births and under-five mortality at least as low as 25 per 1,000 live births (United 
Nations General Assembly 2015). Sub-Saharan Africa carries about half of the burden of the world’s under-
five deaths (United Nations 2015). 

The third SDG recognizes the importance of addressing different aspects of child and maternal health in 
order to decrease mortality rates. This will involve reducing risk factors and increasing protections (United 
Nations General Assembly 2015). Part of the complexity in understanding child mortality across such a 
large region as sub-Saharan Africa lies in the heterogeneity across the region in mortality rates and 
associated risk factors (Balk et al. 2004). In addition to variability in socio-economic drivers, sub-national 
inequalities in health (Arku et al. 2016; Colson et al. 2015; Roberts et al. 2015; Tatem et al. 2012; Wollum 
et al. 2015), geographic differences in environmental conditions,  and spatially varying factors can also 
affect under-five mortality (Balk et al. 2003; Balk et al. 2004). 

This report builds on the work reported in The Demographic and Health Surveys (DHS) Spatial Analysis 
Report 12 (SAR 12, Burgert-Brucker et al. 2015) that explained spatial patterns in child mortality rates 
(4q1 - defined as the number of deaths among children between age 1 and 4 in the five-year period 
preceding the survey per 1,000 children surviving to age 12 months1). In SAR 12, descriptive geospatial 
analyses identified spatial clustering in nine maternal and child health indicators within and among 27 
countries at the DHS sub-national area level in sub-Saharan Africa. This report adds geospatial factors to 
the usual demographic and socio-economic determinants of child mortality in order to (i) identify the 
geospatial, demographic, and socio-economic covariates (or combinations of them) that might best explain 
the observed patterns of child mortality at the DHS sub-national area level, (ii) explain patterns in 
geographic regions, and (iii) account for spatial clustering of the data identified in SAR 12 by using spatially 
explicit models.  

Plausible factors that may affect or be related to child mortality have been assembled and summarized at 
the DHS sub-national area level. Polygons that represent DHS sub-national areas were obtained from the 
DHS Spatial Data Repository (ICF International 2008-2015b). A suite of determinants of child mortality 
were calculated within each of these areas based on the DHS data including socio-economic (housing and 
literacy), health (vaccination coverage), and demographic (birth interval) factors.  Additional geographic 
information was extracted from a set of geospatial data including indicators such as night-time light 
intensity, travel time to major population centers, and malaria prevalence.  These geospatial covariates were 
then aggregated within each DHS sub-national area. Covariate and model selection processes were first 
performed to explore which individual (and combinations of) DHS and geographic covariates could explain 
the variation in 4q1 in a linear model setting. An autoregressive spatial model was then applied to account 
for the spatial autocorrelation present in the data and to test the associations among demographic, socio-
economic, geospatial factors, and child mortality.  

                                                            
1 Child mortality rates (age 1 to 4) includes deaths reported at age 12-59 months and excludes infant deaths (deaths 
occurring between age 0 and 11 months). The DHS Program uses a synthetic cohort life table approach to directly 
estimate the under-five mortality rate. Details may be found in the Guide to DHS Statistics, pp.90-95 
(http://www.dhsprogram.com/publications/publication-DHSG1-DHS-Questionnaires-and-Manuals.cfm) and further 
described in Pullum et al. 2013. 
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The results show how a large degree (60%) of the regional variation in child mortality can be explained by 
the socio-demographic and environmental indicators in the analysis, the interactions among them, and the 
patterns in child mortality. Socio-demographic factors such as birth interval, stunting, access to health 
facilities, and literacy, as well as geospatial factors such as the prevalence of Plasmodium falciparum 
malaria, ethnic group variety, mean annual temperature, night-time lights, and economic activity explain a 
considerable portion of the variance in child mortality across 255 DHS sub-national areas in the 27 
countries.  

Interestingly, the role of interaction terms suggests that risk factors can be attenuated by protective factors 
and vice versa. For example, increased literacy reduces the effect of a too-short birth interval on child 
mortality. Conversely, an increase in literacy is associated with an increase in the effect of access to a health 
facility on child mortality. The results indicate that literacy rate is a strong predictor of women’s 
reproductive and health behavior, influences access to health facilities, and has an overarching role as a 
determinant of child mortality. This suggests the need for integrated, multi-dimensional approaches to 
planning and implementing interventions that are designed to reduce child mortality (age 1 to 4) in sub-
Saharan Africa. 

After confirming patterns of positive spatial autocorrelation in child mortality rates across the 255 DHS 
sub-national areas, the results also show differences in child mortality rates across the Western, Central, 
and Eastern Africa regions, with the highest child mortality rates in Central and Western Africa and the 
lowest in Eastern Africa. 
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1. Introduction  

1.1. Background  

1.1.1. Policy relevance and socio-demographic determinants of child mortality 

In 2015, the United Nations established the Sustainable Development Goals (SDGs), following the eight 
Millennium Development Goals (MDGs). The third SDG is to end preventable deaths of newborns and 
children under age 5, with all countries aiming to reduce neonatal mortality at least as low as 12 per 1,000 
live births and under-five mortality at least as low as 25 per 1,000 live births (United Nations General 
Assembly 2015). In Africa, progress has been made in many areas to improve survival rates of children 
(UNICEF et al. 2015; WHO 2016a) through the reduction of diseases and improved access to health 
facilities and quality health care for mothers (WHO 2016a). In sub-Saharan Africa, under-five mortality 
rates have fallen from 179 deaths per 1,000 live births in 1990 to 86 deaths per 1,000 live births in 2015 
(United Nations 2015). Despite this substantial improvement, sub-Saharan Africa carries about half of the 
burden of the world’s under-five deaths - 3 million in 2015.  

The SDG 3 recognizes the importance of addressing different aspects of child and maternal health to further 
decrease mortality rates. This would involve reducing risk factors such as the prevalence of tropical diseases 
to increasing protections such as access to high quality maternal health care (United Nations General 
Assembly 2015). About half of under-five child deaths are due to diseases that are preventable or treatable 
through simple, affordable interventions (WHO 2016a). A causal pie by Liu et al. (2012) identified the 
causes of child mortality in sub-Saharan Africa. To conceptualize the relationships among potential 
covariates related to child mortality for the current study, protective factors (behaviors or conditions that 
can reduce the risk of mortality through prevention or treatment) were overlaid onto the causal pie and 
identified distal factors related to child mortality, including mothers’ education and the spatial environment. 
Figure 1 presents a conceptual model that illustrates the conditions driving child mortality in sub-Saharan 
Africa. 

Prevalent causes of death in children are preventable diseases such as pneumonia, diarrhea, and malaria 
(Figure 1) (UNICEF 2015; WHO 2015b). Risk factors that increase mortality from these diseases include 
nutrition-related factors such as stunting (Bhutta et al. 2008; Black et al. 2008; Bryce et al. 2005). Lack of 
adequate sanitation and hygiene has been identified as one of the major causes of diarrheal deaths (Anand 
and Roy 2016; Fink, Günther, and Hill 2011; WHO 2009), which represent 11% of child deaths in sub-
Saharan Africa (Liu et al. 2012, and Figure 1).  
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Figure 1. Conceptual model describing prevention and treatment interventions for, as well as distal 
factors affecting, the main causes of death for children under age 5 in sub-Saharan Africa, as 
identified by Liu et al. (2012). 

 

 

Conversely, strengthening the health system and infrastructure to provide high quality services (Lavy et al. 
1996; WHO 2016a) and improving access to health facilities (Karra, Fink, and Canning 2016) and 
interventions (Eisele et al. 2012) will help reduce deaths. Maternal education also plays a crucial contextual 
role as a protective factor against the mortality of children born in rural areas and poor households, or for a 
mother with no access to basic education (WHO 2016a). Caldwell (1979) suggested that mothers with 
higher levels of education have improved health knowledge and greater control over health choices for their 
children, which enhance child survival. Moreover, a mother’s education is a protective factor that enables 
the prevention and management of childhood diseases (UNFPA 2007). Table 1 lists the demographic and 
socio-economic factors relevant to child mortality that were tested in this analysis. 
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1.1.2. Spatial heterogeneity in child mortality and driving factors 

Part of the complexity in understanding child mortality across a large region such as sub-Saharan Africa 
lies in the heterogeneity across the area in terms of mortality rates and factors that contribute to those rates 
(Balk et al. 2004). Overall, countries in Western and Central Africa have the highest burden of under-five 
deaths. Perhaps unsurprisingly, as compared to Eastern and Southern Africa, these regions also have the 
slowest rates of improvement in many of the key drivers of mortality such as stunting and the lowest rates 
of insecticide-treated bed net use (UNICEF 2015). Inequalities in health have also been detected at sub-
national levels in a wide range of literature (Arku et al. 2016; Colson et al. 2015; Roberts et al. 2015; Tatem 
et al. 2012; Wollum et al. 2015) that stresses the need for analysis of health indicators in small geographic 
units to aid in the identification of areas of greatest need and a more targeted, efficient allocation of 
resources (Arku et al. 2016; Burgert-Brucker et al. 2015; DHS Spatial Interpolation Working Group 2014; 
Rosero-Bixby 2004).  

Geographic differences in environmental conditions can also add to the variability present in socio-
economic drivers. Several studies have explored environmental effects on under-five mortality and have 
highlighted how geography affects health inequalities (Balk et al. 2003; Balk et al. 2004).  Balk et al. (2003) 
analyzed the role of environmental factors that are explicitly spatial, together with usual proximate and 
socio-economic determinants, in predicting infant and child mortality in West Africa. Some spatial factors 
explored in their study (proximity to urban areas and population density) explain a good deal of the country-
specific variation in mortality. Among other findings, Balk et al. detected a correlation between arid and 
semi-arid areas and higher risk of under-five deaths. 

Spatially varying factors can have an indirect effect on under-five mortality. As described in Balk et al. 
(2003), population density was highly correlated with transmission of diseases (Root 1997) while 
overcrowding and slum conditions have negative effects on both infant and child survival (Defo 1994; 
Gupta and Baghel 1999; Woods 2003). However, areas with high population density are usually urban 
where access to improved water and sanitation is higher; this reduces exposure to vector borne and other 
diseases (Hay et al. 2005; Qi et al. 2012; Rutstein 2000; Tatem et al. 2013) and makes sharing of information 
and resources easier. Children residing in urban areas have, on average, higher access to water and 
sanitation and better nutritional status than those in rural areas; therefore, these children have better chances 
of survival (Balk et al. 2003, 2005).   

Urbanization has been historically linked to development.  Urban populations, excluding those living in 
slums (Vlahov et al. 2007), generally have better access to healthcare and better quality care services, 
including those for mothers and children. This facilitates access to vaccination and other treatments that 
could prevent risk of child mortality (Dye 2008; Rutherford, Mulholland, and Hill 2010). Urban areas are 
generally more economically prosperous than rural areas, and this results in improved living conditions 
such as better housing that reduce the risk of contracting infectious diseases (Hay et al. 2005), and a higher 
likelihood of affording healthcare and treatment and reducing the risk of child deaths (Rutherford, 
Mulholland, and Hill 2010). Better access to schools, higher levels of education, and increased parental 
employment rates are also strongly associated with reduced child mortality (Gakidou et al. 2010). 

Climatic and environmental factors such as precipitation, vegetation density, and length of growing season 
are strongly associated with the prevalence of vector-borne diseases such as malaria because these factors 
are related to favorable habitats for disease vectors (Tottrup et al. 2009). Such factors can be related to 
overall health through increased malnutrition (Curtis and Hossein 1998; de Sherbinin 2011; Jankowska et 
al. 2012). Vegetation density is associated with intensity of poverty in West Africa (Sedda et al. 2015). 
Spatial variations in rainfall and temperature are associated with increasing of cases of diarrhea (Balk et al. 
2003; Bandyopadhyay, Kanji, and Wang 2012), the spread of infectious diseases in Mali (Findley et al. 
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2002), and child mortality in Burkina Faso, especially in the context of specific agro-climatic regions (Dos 
Santos and Henry 2008). 

Temperature and other climatic factors have been widely used in malaria prediction modeling efforts 
(Gething et al. 2011; Weiss et al. 2014) to predict seasonality of malaria incidence (Cairns et al. 2012) and 
dengue risk (Brady et al. 2014). Environmental data have also been used for mapping the distribution of 
infectious diseases and malaria (Hay et al. 2006), as discussed in Kraemer et al. (2016) and Clements et al. 
(2013). Moreover, climate and environment have an impact on agricultural production, which in turn affects 
household livelihoods (Balk et al. 2003; Mabhaudhi, Chibarabada, and Modi 2016). Table 2 further 
describes some of the most relevant spatial environmental factors that influence child mortality that were 
tested in this analysis.  

Table 1. DHS indicators tested in analysis and their relevance to child mortality 

Indicator  Significance Status in sub-Saharan Africa 

Child Mortality rate2 

(4q1) 
Outcome indicator 
 

Under-five mortality rate sub-Saharan Africa 
was 86 per 1,000 live births in 2015. The region 
carries half of the burden of the world’s under-
five deaths—3 million in 2015.  These rates are 
expected to rise in the future (United Nations 
2015). 

Female Literacy  Education of women helps determine child 
survival via increased health knowledge, greater 
control over health choices for children, and 
influencing prevention and proactive 
management of childhood diseases (Caldwell 
1979; Hobcraft 1993; UNFPA 2007). 

Sub-Saharan Africa still has the lowest literacy 
rates and widest gender gap in literacy rates in 
the world (UNESCO UIS 2015). 

Contraceptive 
prevalence, (CPR), 
any modern 
method 

Family planning can prevent closely spaced and 
ill-timed pregnancies and births, which 
contribute to some of the world’s highest infant 
mortality rates.  Chances of survival and 
improvement of health status of children can be 
prevented by the use of modern contraception 
(Cleland et al. 2012; Rutstein 2011; WHO 
2015a). 

Contraceptive use among women aged 15 to 49 
doubled between 1990 and 2015, from 13% to 
28% (United Nations 2015).   

Birth interval 
 

Birth intervals shorter than 36 months have 
been shown to increase the risk of mortality, 
under-nutrition, and pregnancy morbidity 
(Gribble, Murray, and Menotti 2009; Rutstein 
2008, 2011). Family planning brings large 
potential health and survival benefits for 
children, mainly as a result of wider intervals 
between births (Cleland et al. 2012; Cleland et 
al. 2006). 

Trends in birth intervals for 46 countries showed 
that mothers would prefer a median birth interval 
of 41.5 months - over 9 months longer than their 
actual median interval of 32.5 months in the five 
years preceding the surveys. (Rutstein 2011) 

Continued 

                                                            
2 Child mortality rates (age 1 to 4) includes deaths reported as age 12– 59 months. Therefore, infant deaths (before 
age 1) are not included in the metric used in this report. The DHS Program uses a synthetic cohort life table approach 
to directly estimate the under-five mortality rate. Details may be found in the Guide to DHS Statistics, pp.90-95 
(http://www.dhsprogram.com/publications/publication-DHSG1-DHS-Questionnaires-and-Manuals.cfm) and further 
described in Pullum et al. 2013. 
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Table 1—Continued 

Indicator  Significance Status in Sub-Saharan Africa 

Access to a health 
facility 

In the context of child mortality (excluding infant 
mortality), delivery in a health facility is used as 
proximate indication of access to health facilities 
and affordability (Karra, Fink, and Canning 
2016), service availability and presence of 
health infrastructures (WHO 2016a) and 
perceived quality of healthcare (Thaddeus and 
Maine 1994). This broader definition of access 
to health facilities also captures the idea of care 
seeking behavior.  

About a quarter of births take place without the 
assistance of a skilled birth attendant. In 2015 
alone, this translated into more than 35 million 
unattended births in South Asia and sub-
Saharan Africa (UNICEF 2016).  

Exclusive 
breastfeeding 
(EBF) 

 

Exclusive breastfeeding reduces risks of 
ARI/pneumonia, diarrheal disease and 
malnutrition (Black et al. 2008; Jones et al. 
2003; WHO Collaborative Study Team 2000), 
which are leading causes of child mortality (Liu 
et al. 2012).  Exclusive breastfeeding is also 
associated with increased spacing between 
pregnancies. 

Prevalence of EBF in West and Central Africa is 
estimated at 28% in 2010, and 47% in Eastern 
and Southern Africa (Cai, Wardlaw, and Brown 
2012). 

Stunting prevalence 
in children 

Undernutrition is the underlying cause of 3.1 
million child deaths in 2011 (Black et al. 2011). 

Stunting prevalence in 2014 was 32% in Africa 
(UNICEF, WHO, and The World Bank 2015). 

Measles vaccination 
coverage3 

Measles is still a leading cause of death for 
children under age five and can lead to serious 
complications, including severe diarrhea and 
pneumonia (Burgert-Brucker et al. 2015; WHO 
2015b). Immunization coverage of at least 90% 
is required for herd immunity (Luna, Monga, and 
Morgan 2014). 

“In 2014, about 85% of the world’s children 
received one dose of measles vaccine by their 
first birthday through routine health services – 
up from 73% in 2000” (WHO 2015b). 

Diphtheria-tetanus-
pertussis (DTP3) 
immunization 
coverage 

 

Diphtheria, pertussis, and tetanus (DPT) are 
vaccine-preventable diseases that cause 
substantial global disease burden among 
children under age five (Burgert-Brucker et al. 
2015). 

“As of 2014, DPT3 immunization coverage 
among one-year-olds across Africa was 75%, 
the lowest among all WHO regions” (WHO 
2014). 

Coverage of 
improved water 
sources 

The majority of diarrhea deaths are attributed to 
unimproved water supply or unimproved 
sanitation, making it among the most important 
cause of under-five deaths (Anand and Roy 
2016; Fink, Günther, and Hill 2011; WHO 2009).

In sub-Saharan Africa, the coverage of 
improved water sources is about 68% with 
widespread disparities existing between 
countries and across regions (WHO 2016b). 

Sanitation practices  
 

Open defecation practice facilitates the 
transmission of diarrheal diseases – one of the 
leading causes of mortality in children under-five 
in sub-Saharan Africa (Galan, Kim, and Graham 
2013). 

In sub-Saharan Africa, it is estimated that 215 
million people continue to engage in open 
defecation (United Nations 2015). 

 

 

  

                                                            
3 Two doses of measles vaccination are recommended. 
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Table 2. Spatially relevant factors tested in the analysis and their relevance to child mortality 

Spatial environmental factors 
relevant to child mortality Significance 

Population density As described in Balk et al. (2003), population density is highly correlated with the 
transmission of diseases (Root 1997) where, for example, overcrowding has 
negative effects on both infant and child mortality (Defo 1994). Slum areas, where 
maternal services are usually inadequate, have higher mortality rates (Gupta and 
Baghel 1999). 

Urbanicity and night-time 
lights 

Urban areas have lower risk of contracting infectious diseases (Hay et al. 2005) and 
are usually associated with lower mortality rates than rural areas. By contrast, very 
sparsely populated areas may have inadequate infrastructure to support prenatal 
and delivery services (Balk et al. 2003). Balk et al. (2005) found strong relationships 
among urbanicity, population density, and child malnutrition. Moreover, urban 
residence is overall associated with development, with urban areas being more 
economically prosperous than rural areas, and providing better access to health 
care services (Rutherford, Mulholland, and Hill 2010), vaccination coverage, and 
schools (Gakidou et al. 2010). Intensity of lights at night is often considered as a 
proxy of population agglomerations and urbanicity, and can therefore capture 
urban-rural differences as well as different levels of wealth and access (Xie et al. 
2015). 

Travel time to major 
population centers 

Entwisle et al. (1997) found significant effects of travel time on contraceptive choice 
and accessibility to towns. Populations living in remote and isolated areas are 
typically poorer (Tatem et al. 2014) and have lower access to population centers, 
resources, and vaccination coverage (Metcalf et al. 2015). Pozzi, Robinson, and 
Nelson (2010) found that distance and travel time to population centers in the Horn 
of Africa are highly correlated with wealth indices: “Welfare decreases rapidly as 
access to population centers gets worse” (Pozzi, Robinson, and Nelson 2010). 

Ethnicity A study conducted in 11 sub-Saharan African countries showed large disparities in 
early child survival chances among ethnic groups in a wide range of African 
countries (Brockerhoff and Hewett 2000). Other studies (Platas 2010) have found 
associations between ethnic group variety, provision of health services, and health 
outcomes; these show that greater ethnic diversity is associated with poorer health 
outcomes, including higher infant and child mortality and lower public health 
expenditure. 

Conflicts 
 

Conflict areas are usually deprived and can lack basic access to clean water,  
sanitation, and adequate food. Moreover, some association has been found 
between conflict zones and malaria prevalence (Sedda, Qi, and Tatem 2015). 

Economic activity The global distribution of per-capita gross domestic product is correlated with 
malaria and poverty; malaria-endemic countries also have lower rates of economic 
growth (Gallup and Sachs 2001; Sachs and Malaney 2002). The development of 
health systems and poverty reduction are major drivers for the reduction of health 
inequalities (Marmot 2005; Wagstaff 2002); on the other hand, the distribution of 
mortality aids in understanding inequalities (Sen 1998). 

Livestock density Ownership of livestock is usually associated with rural residency, where households 
depend on agriculture for part of their livelihood (FAO 2011). Livestock is 
recognized as an indispensable asset of the poor that contributes to their nutrition 
and health (Randolph et al. 2007). Ownership of livestock is associated with lower 
prevalence of child stunting in three countries in Eastern Africa (Mosites et al. 
2015). In a more recent work conducted in Western Kenya, Mosites et al. (2016) did 
not find associations between ownership and child growth, although they saw some 
correlation between presence of livestock diseases and lower growth rates in some 
groups. 

Temperature Bandyopadhyay, Kanji, and Wang (2012) found that raised temperatures raise 
diarrheal prevalence in dry seasons in sub-Saharan Africa (in Balk et al. 2003).  

Continued 
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Table 2—Continued 

Spatial environmental factors 
relevant to child mortality Significance 

Rainfall Findley et al. (2002) detected effects of rainfall on the incidence of infectious 
diseases (in Balk et al. 2004); Adams (1994) and colleagues (Sauerborn, Adams, 
and Hien 1996) linked climate anomalies in rainfall-dependent agricultural 
communities with health and nutrition of household members (in Balk et al. 2004). 
Balk et al. (2003) observed that variation in average daily rainfall affected the 
survival of children age 1-4, and interpreted this as a link between agricultural 
production and children dietary needs. Together with raised temperatures, rainfall 
shortage raised diarrheal prevalence in dry seasons (Bandyopadhyay, Kanji, and 
Wang 2012). Dos Santos and Henry (2008) also found a relationship between 
rainfall and child mortality in Burkina Faso, especially in specific agro-climatic 
regions. 

Aridity / Growing season 
length 

Curtis and Hossein (1998) found that aridity and length of growing season affect 
child malnutrition. Balk et al. (2003) also found that children living in areas with the 
shortest growing seasons, classified as arid and semiarid, had a higher risk of 
death.  
 

Drought de Sherbinin (2011) found that, among other geographic and socio-economic 
variables, drought prevalence was significantly correlated with malnutrition in sub-
Saharan Africa. 

Vegetation density Vegetation indices such as the Enhanced Vegetation Index (EVI) are considered  
proxies of vector habitat; disease transmission and physical environment are 
strongly correlated with disease environments in determining the intensity of 
exposure to infectious diseases or providing favorable habitats for disease vectors 
(Tottrup et al. 2009). Tottrup et al. (2009) also found that districts with dense 
vegetation, high rainfall, and low elevation experienced the lowest reductions in 
child mortality. Finally, vegetation was associated with intensity of poverty in West 
Africa (Sedda et al. 2015). 

Topography Topographic spatial data (elevation, slope, and roughness) are usually used as 
proxies for natural barriers to geographical access to city centers, markets, and 
health care (Ombok et al. 2010), and for different exposures to infectious diseases, 
given the spatial variability of malaria prevalence (Gemperli et al. 2004). Webb 
(1998) found an association between topographic conditions and child stunting, 
while a similar association between elevation and underweight rates was reported 
by Balk et al. (2005). However, de Sherbinin (2011) found no association between 
elevation and malnutrition.  

Land cover Land cover serves as proxy for vector habitats and ecological factors (Balk et al. 
2003; Mutuku et al. 2009) 

Malaria prevalence Mosley and Chen (1984) described a child survival conceptual framework that 
highlighted the relationship between environmental contamination and disease 
transmission (exposure to malaria). Balk et al. (2003) found correlations between 
high transmission of malaria and child mortality. Snow et al. (1999) used climatic 
data and probability models to estimate populations exposed to the risk of infection 
of malaria in Africa. Gemperli et al. (2004) found a spatial pattern of infant mortality 
related to the foci of malaria transmission in Mali. 

 

1.2. Rationale for DHS Spatial Analysis Report 13 

This report builds upon the work reported in Demographic and Health Surveys (DHS) Spatial Analysis 
Report 12 (SAR 12) (Burgert-Brucker et al. 2015), in which descriptive geospatial analyses were applied 
to nine maternal and child health indicators within and among countries, using DHS data for 27 countries 
in sub-Saharan Africa. Burgert-Brucker et al. (2015) were able to (i) explore sub-national geographic 
variability of nine maternal and child health indicators across the 27 countries; (ii) identify areas of high or 
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low coverage through comparison with neighboring areas by using sub-national area level autocorrelation 
for each indicator as well as spatial clusters; (iii) establish the significance of geography in analyzing 
differences in the coverage of health indicators. This work set the stage for the current analysis of 
differences in coverage among contiguous political sub-national areas.  

While SAR 12 identified spatial clustering for some of the DHS indicators across 27 sub-Saharan DHS sub-
national areas, this report aims to add spatial environmental factors to the usual demographic and socio-
economic determinants of child mortality. The report also aims to further identify the spatial or 
demographic and socio-economic covariates (or combinations of covariates) that might best explain 
observed patterns of child mortality at DHS sub-national area level, particularly those that may have 
implications for future interventions and policy relevance. Finally, this report will also account for spatial 
clustering of the data identified in SAR 12 using spatially explicit models. More specifically, this report  
aims to understand the extent to which patterns of child mortality can be explained by combining the effects 
of geospatial covariates with the usual metrics of socio-economic and demographic determinants of child 
mortality by: 

1. Accounting for geospatial factors that might be associated with patterns in child mortality on their 
own; 

2. Understanding how socio-economic, environmental, and geographic variables interact to produce 
observed patterns in child mortality; 

3. Defining patterns in child mortality that are likely due to factors that transcend country boundaries; 

4. Explaining patterns in terms of geographic regions. 

These findings will be used to make policy recommendations that address the combinations of factors 
identified within the study. 

In this report, child mortality rates are calculated as the number of deaths among children between age 1 
and 4 in the five-year period preceding the survey per 1,000 children surviving to age 12 months4.  This 
includes deaths reported at age 12–59 months. Therefore, neonatal deaths and other deaths before age 1 are 
not included in this metric. In general, the literature shows that factors associated with child survivorship 
after the first year of life are different from those associated with infant survivorship (Balk et al. 2003). 
Since this analysis only considers children between ages 1 and 4, only factors associated with the probability 
of dying between the age 1 and 4 are considered. Among those factors, as also discussed in (Balk et al. 
2003), spatial environmental factors are expected to act more strongly on child mortality than infant 
mortality. 

                                                            
4 Child mortality rates (age 1 to 4) include deaths reported as age 12– 59 months. Therefore, infant deaths (before 
age 1) are not included in the metric used in this report. The DHS Program uses a synthetic cohort life table 
approach to directly estimate the under-five mortality rate. Details may be found in the Guide to DHS Statistics, 
pp.90-95 (http://www.dhsprogram.com/publications/publication-DHSG1-DHS-Questionnaires-and-Manuals.cfm) 
and further described in Pullum et al. 2013. 
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2. Data  

2.1. Study Area and Data Description 

This report focuses on 27 countries located in sub-Saharan Africa (Figure 2): Benin, Burkina Faso, Burundi, 
Cameroon, Republic of Congo, Côte d’Ivoire, Democratic Republic of Congo (DRC), Ethiopia, Gabon, 
The Gambia, Ghana, Guinea, Kenya, Liberia, Malawi, Mali, Mozambique, Niger, Nigeria, Rwanda, 
Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zambia, and Zimbabwe. 

Figure 2. Focus countries and year of the DHS survey used for this study 

 

These countries were selected as the focus countries for the SAR 12 report because they had recent DHS 
survey data (from after 2010) and were contiguous in space. This report uses the same countries but includes 
updated data when available (Ghana and Kenya; Figure 2). In addition, these 27 countries have high policy 
relevance both in the framework of the new Agenda for Sustainable Development Goals (United Nations 
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General Assembly 2015) and the Strategic Plan 2016-2020 of the Partnership for Maternal, Newborn & 
Child Health (PMNCH 2015). Investigating further aspects of child mortality in these 27 countries would 
contribute to tracking progress of countries in the achievement of child mortality related goals. 

Polygons representing DHS sub-national areas were obtained from the DHS Spatial Data Repository (ICF 
International 2008-2015b). Each country contains between 3 and 26 sub-national areas, with a mean number 
of areas of 9.4 and median of 10 for a total of 255 sub-national areas across the 27 countries (Table 3; 
Burgert-Brucker et al. 2015). The DHS sub-national areas correspond to administrative level-one areas 
(provinces) or a combination of such areas within each survey country. 

Determinants of child mortality also include environmental and physical (climate, land cover, and 
accessibility to cities), socio-economic (housing and poverty), health (vaccination coverage) and 
demographic (birth interval) factors. Thus, this analysis is based on DHS survey data and additional 
information extracted from a variety of spatial data sources. In this report, a number of plausible factors 
that may affect or be related to child mortality have been assembled and summarized at the DHS sub-
national area level.  

Data from the most recent DHS surveys conducted in these 27 countries between 2010 and 2014 were used 
to compute the key child mortality rate indicator (Pullum et al. 2013; Rutstein and Rojas 2006) and a set of 
other indicators known in the literature to be associated with child mortality (ICF International 2008-2015a, 
Table 1): contraceptive prevalence (any modern method), access to a health facility (delivery in a health 
facility is used as a proxy for access to health facilities), female literacy, exclusive breastfeeding (EBF), 
measles vaccination, DPT-3 immunization coverage, coverage of improved water sources, sanitation 
practices, stunting prevalence in children, and birth interval. All DHS surveys used in this report are 
representative at national and the DHS sub-national area level. Sampling weights were applied to calculate 
appropriate estimates for each indicator at the DHS sub-national area level with Stata 14 software.  

As with the DHS indicator estimates, geospatial datasets that represent factors associated with or having an 
impact on child mortality rates in sub-Saharan Africa (Table 2) were used to extract and summarize 
covariates at the DHS sub-national area level. A full list of the geospatial datasets assembled in this study’s 
framework and the derived geospatial covariates tested in the analysis appear in Table 4. 
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Table 3. Countries, number of DHS sub-national areas in each country, and year 
of the DHS surveys used in the framework of this study 

Country 
DHS sub-national 

areas DHS Survey Year 

Benin 12 2012 
Burkina Faso 13 2010 
Burundi 5 2010 
Cameroon 12 2011 
Congo  12 2012 
Côte d’Ivoire 11 2012 
The Democratic Republic of the Congo 11 2014 
Ethiopia 11 2011 
Gabon 10 2012 
The Gambia 8 2013 
Ghana 10 2014 
Guinea 8 2012 
Kenya 8 2014 
Liberia 5 2013 
Malawi 3 2010 
Mali 6 2013 
Mozambique 11 2011 
Niger 8 2012 
Nigeria 6 2013 
Rwanda 5 2010 
Senegal 14 2011 
Sierra Leone 4 2013 
United Republic of Tanzania 26 2010 
Togo  6 2013-14 
Uganda 10 2011 
Zambia 10 2013 
Zimbabwe 10 2011 

 
2.1.1. DHS indicators 

Definitions of the DHS indicators used in the analysis are described briefly below. Section 2.2.1 describes 
how these indicators were summarized at the DHS sub-national area level for use as covariates in the 
analysis. All covariates were estimated using the proper DHS sample weights for each survey. 

Child mortality rate (4q1) 

Number of deaths among children between age 1 and 4 in the five-year period preceding the survey per 
1,000 children surviving to age 12 months5. This rate includes deaths reported at age 12–59 months and 
excludes infant deaths (age 0 to 11 months). In this analysis, rates were calculated by DHS sub-national 
areas and were used as the response variable (outcome).  

                                                            
5 Child mortality rates (age 1 to 4) includes deaths reported as age 12–59 months. Therefore, infant deaths (before age 
1) are not included in the metric used in this report. The DHS Program uses a synthetic cohort life table approach to 
directly estimate the under-five mortality rate. Details may be found in the Guide to DHS Statistics, pp.90-95 
(http://www.dhsprogram.com/publications/publication-DHSG1-DHS-Questionnaires-and-Manuals.cfm) and further 
described in Pullum et al. 2013. 



 

12 

Female literacy 

Percentage of women age 15-49 who attended primary schooling and can read a whole or part of a sample 
sentence. A respondent who attended secondary education or higher is coded as literate, as well as 
respondents who could read a whole sentence.  

Contraceptive prevalence (CPR), any modern method 

Percentage of all women age 15-49 who report current use of a modern contraceptive method.6 

Preceding Birth interval 

Percentage of births with a birth interval less than 36 months between the preceding birth and conception 
of the index child.  

Access to a health facility 

Percentage of children born in the last 5 years who were delivered in a health facility. In the context of child 
mortality (age 1 to 4), this variable is used as a proxy for (and in this work referred interchangeably with) 
access to a health facility. 

Exclusive breastfeeding (EBF) 

Percentage of last-born infants under age 6 months who are living with the mother, breastfeeding, and have 
not had any water, liquids, or solids in the day or night before the interview.  

Stunting prevalence in children 

Stunting is defined as those children whose height is two standard deviations (SD) or more below the 
median height for children of the same sex and age in an internationally standard index, defined in the WHO 
Child Growth Standards that were adopted in 2006. 

Measles vaccination coverage  

Percentage of live children age 12-23 months who received the measles vaccination at any time before the 
survey.  

Diphtheria-tetanus-pertussis (DTP3) immunization coverage 

Percentage of live children age 12-23 months who received three doses of DPT vaccine at any time before 
the survey.  

Coverage of improved water sources 

Percentage of de jure population whose main source of drinking water is a household connection (piped), 
public standpipe, borehole, protected dug well or spring, rainwater collection, or bottled water. 

                                                            
6 Modern contraceptive methods include female sterilization, male sterilization, the contraceptive pill (oral 
contraceptives), intrauterine contraceptive device (IUD), injectables (Depo-Provera), implants (Norplant), female 
condom, male condom, diaphragm, contraceptive foam and contraceptive jelly, lactational amenorrhea method 
(LAM), country-specific modern methods and other modern contraceptive methods mentioned by the respondent 
(including cervical cap, contraceptive sponge, and others). Abortion, menstrual regulation, and withdrawal are NOT 
considered modern contraceptive methods. 
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Sanitation practices 

Percentage of de jure population that use fields, bushes, forests, open bodies of water, or other open spaces 
rather than using the toilet to defecate (United Nations 2016). 

2.1.2. Geospatial datasets 

Geospatial datasets that represent factors potentially correlated with child mortality in the study area (Table 
2) were obtained from multiple existing sources or produced ad hoc for this study (topographic slope and 
roughness). The datasets are different in format (grid or polygons), type (categorical or continuous), 
accuracy, survey scale, spatial resolution, and temporal and spatial coverage. 

All geospatial datasets in this study are briefly described below and summarized in Appendix A and Table 
4, which also provides source links for obtaining additional information about the methodology and data 
used to produce them. (See Section 2.2.2 below for a description of how the geospatial covariates in the 
analysis were extracted from these datasets and summarized at the DHS sub-national area level.) 

Population density 

The WorldPop (www.worldpop.org) 2010 UN adjusted People Per Pixel raster datasets (Linard et al. 2012; 
Stevens et al. 2015), which are publicly available for all countries in this study and have a resolution of 
approximately 100 m at the equator, were used to represent the population distribution within the study area 
(Figure A.1 in Appendix A). 

Urbanicity 

The publicly available 2000/2001 “MODIS 500m Global Urban Extent” raster dataset (Schneider, Friedl, 
and Potere 2009, 2010), with a resolution of approximately 500 m near the equator, was used to represent 
the extent of built-up and settled areas within the study area (Figure A.2a in Appendix A). 

The European Commission Joint Research Centre “Global Human Settlement Layer” raster dataset 
(courtesy of M. Pesaresi), with a resolution of 38 m (Figure A.2b in Appendix A), provided an alternative 
representation of the extent of built-up areas within the study area. 

Night-time lights 

The publicly available global NOAA Suomi National Polar-orbiting Partnership (NPP) composite night-
time light raster dataset (Elvidge et al. 2013) for April 2012, with a spatial resolution of approximately 500 
m near the equator, was used to measure the night light intensity in the study area (Figure A.3 in 
Appendix A). 

Travel time to major population centers 

The publicly available global European Union Joint Research Centre “travel time to major cities” raster 
datasets (Uchida and Nelson 2008), representing the time required to travel between two grid cells with a 
spatial resolution of approximately 1km near the equator, were used to estimate the accessibility, via all 
transport methods, to settlements with more than 50,000, 100,000, and 500,000 inhabitants located within 
the study area (Figure A.4a, A.4b, A.4c in Appendix A). 

Ethnicity 

The 2010 global “Geo-Referencing of Ethnic Groups (GREG)” vector dataset (Weidmann, Rød, and 
Cederman 2010), was used to map the spatial distribution of the various ethnic groups within the study area 
(Figure A.5 in Appendix A). 
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Conflicts 

The publicly available “Armed Conflict Location & Event Data Project (ACLED)” database 
(www.acleddata.com), with disaggregated conflict and protest data that included event locations and 
associated fatalities, was used to map the level of political instability and violence within the study area 
(Figure A.6 in Appendix A). 

Economic activity 

The global “Geographically-based Economic (G-Econ)” raster dataset (Nordhaus and Chen 2009), 
representing the regional equivalent of the gross domestic product at a spatial resolution of approximately 
5 km near the equator, was used to depict the level of economic activity in 2005 within the study area 
(Figure A.7 in Appendix A). 

Livestock density 

The publicly available FAO “Gridded Livestock of the World, v2.0 (GLW2)” (Robinson et al. 2014), with 
a spatial resolution of approximately 1 km near the equator, were used to represent the cattle, goat, pig, and 
sheep density within the study area (Figure A.8a, A.8b, A.8c, A8d in Appendix A). 

Temperature and rainfall 

The publicly available WorldClim - Global Climate Data “Annual Mean Temperature (BIO1)” and “Annual 
Total Precipitation (BIO12)” raster datasets (Hijmans et al. 2005), both with a spatial resolution of 
approximately 1km at the equator, were used to represent the current conditions in climate conditions within 
the study area (Figure A.9a and A.9b in Appendix A). 

MODIS-based daytime Land Surface Temperature (LST) monthly composite raster datasets (MOD11C3), 
with a spatial resolution of approximately 5.6 km near the equator, were also used to represent the current 
annual average temperature in the study area (Figure A.10 in Appendix A). 

Aridity 

The publicly available CGIAR Global Aridity Index raster dataset (Zomer et al. 2008), with a spatial 
resolution of approximately 1km near the equator, was used to represent the current aridity conditions in 
the study area (Figure A.11 in Appendix A). 

Growing season length 

The publicly available FAO “Global length of growing periods” raster dataset (dataset lgp_pl71available 
at http://www.fao.org/geonetwork/srv/en/main.home), with a resolution of approximately 50 km near the 
equator, was used to characterize the agricultural setting within the study area (Figure A.12 in Appendix A). 

Drought 

The CIESIN Global Drought Hazard Frequency and Distribution, v1 raster dataset (Dilley et al. 2005), with 
a spatial resolution of about 5 km near the equator, was used to estimate the relative frequencies of drought 
occurrences within the study area (Figure A.13 in Appendix A). 

Vegetation density 

MODIS-based Enhanced Vegetation Index (EVI) monthly composite raster datasets (MOD13C2), with a 
spatial resolution of approximately 5.6 km near the equator, were used to represent the vegetation conditions 
in the study area (Figure A.14 in Appendix A).  
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Topography 

The publicly available Global 30 Arc-Second Elevation raster dataset (GTOPO30; 
http://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm), with a spatial resolution of approximately 1 km 
near the equator, was used to represent the topographic characteristics of the study area (Figure A.15a, 
A.15b, A.15c, A.15d, A.15e in Appendix A).  

Land cover 

The publicly available ESA 2009 GlobCover raster dataset (Bontemps et al. 2011), with a resolution of 
approximately 300 m near the equator, was used to represent the land cover within the study area (Figure 
A.16 in Appendix A).  

Malaria prevalence 

The publicly available Malaria Atlas Project “PfPR2-10 in Africa 2000-2015” raster datasets, with a 
resolution of approximately 5 km near the equator, were used to depict the Plasmodium falciparum 
infection prevalence in children age 2-10 within the study area (Figure A.17 in Appendix A).  

2.2. Data Preparation 

All DHS indicators and geospatial datasets that represented the factors in this study were summarized at 
the DHS sub-national area level with the methodology described below. 

2.2.1. DHS covariates aggregation 

The units of analysis of this work are DHS sub-national areas, which correspond to administrative level-
one areas (provinces) or a combination of such areas within each survey country. The data are statistically 
representative estimates of each indicator of interest for the population within each DHS sub-national areas 
at the time of each survey. Sampling weights were applied to calculate appropriate estimates for each 
indicator at the sub-national area level. 

In addition to the child mortality rate indicator, which represents a rate expressed as number of deaths per 
1,000 children surviving to age 12 months by DHS sub-national area, all other DHS indicators described 
above were calculated and used as percentages by DHS sub-national area.  

Figures 3(a-f) below shows the spatial distribution at the DHS sub-national area level for the six most 
relevant DHS indicators selected for use in the final statistical model (birth interval, sanitation, female 
literacy, access to a health facility (delivery in a health facility used as a proxy for access to health facilities), 
measles vaccination, and stunting). In Figures 3(a-f), the scale ranges vary for each indicator. A common 
color scheme is used for all indicators in these figures, with relatively better conditions shown in green and 
worse conditions in red. For example, reddish colors are associated with higher values of stunting 
prevalence in children and with lower values of female literacy. 
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Figure 3a. Percentage of literate women (age 15-49) in the 225 DHS sub-national areas 

 
 
Figure 3b. Percentage of births with a birth interval less than 36 months between birth and 
conception in the 255 DHS sub-national areas 
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Figure 3c. Percentage of children born in last 5 years with access to a health facility in the 225 DHS 
sub-national areas (access defined as delivery in a health facility)  

 
 
Figure 3d. Percentage of stunting children age (12-59 months) in the 255 DHS sub-national areas 
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Figure 3e. Percentage of live children age 12-23 months who received the measles vaccination at 
any time prior to the survey in the 255 DHS sub-national areas 

 
 

Figure 3f. Percentage of population practicing open defecation in the 225 DHS sub-national areas 
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2.2.2. Geospatial covariates preparation 

In order to extract covariates from the geospatial datasets described in subsection 2.1.2 and to summarize 
these covariates at the DHS sub-national area level (at the same spatial detail of the DHS covariates), the 
DHS sub-national areas (ICF International, 2008-2015b), were used to calculate GIS-based zonal statistics 
and append the results to the corresponding aggregate DHS covariates. 

The WorldPop 2010 UN adjusted People Per Pixel datasets were mosaicked and used to calculate the 
population density of each DHS polygon by dividing the total population in each polygon by the surface 
area of the corresponding polygon. 

The mosaicked WorldPop dataset was also combined with the temporally averaged “PfPR2-10 in Africa 
2000-2015” datasets to calculate the population-weighted mean malaria prevalence value for each DHS 
polygon. This involved multiplying the two raster datasets and dividing the total number of infected people 
within each polygon (calculated with the output raster generated by the multiplication) by the total 
population in the same polygon (calculated with the mosaicked WorldPop dataset). 

The “MODIS 500m Global Urban Extent” and “Global Human Settlement Layer” were used to calculate 
two different estimates of the percentage of urban area in each DHS polygon.  These estimates were 
subsequently combined with the mosaicked WorldPop to produce two estimates of the percentage of urban 
population living within each polygon.  

The georeferenced event locations and the associated fatalities were extracted from the ACLED database 
and were used to calculate the total number of events and fatalities in each DHS polygon. The total number 
of events and fatalities was then divided by the area and total population of the corresponding polygon, 
respectively. 

The “Annual Total Precipitation (BIO12)” was used to calculate the annual rainfall rate, in each DHS 
polygon, defined as the average volume of water in the form of rain (mm) that falls per unit of area (~km2) 
and per unit of time (year). This involved calculating the total amount of annual rain falling in each DHS 
polygon and dividing this total by the area of each polygon. 

Geospatial covariate values to be used in the statistical analysis were summarized for each DHS polygon 
in two different ways according to the geospatial dataset type from which they were extracted (Table 4). 
For continuous covariates (night-time lights, travel time to major population centers, economic activity, 
livestock density, temperature, aridity, drought, EVI, topographic elevation, slope, and roughness), the 
mean (referred as spatial average in Figure 4b, 4d, 4e, and in Table 4) and median values were calculated 
and extracted. In particular, for each DHS polygon, (i) the mean was calculated by averaging the values of 
all grid cells located within it, while (ii) the median was calculated by identifying the value dividing into 
two equal parts the ordered values of the grid cell located within the polygon. For categorical covariates 
(landcover and a 30 arc seconds rasterized version of the GREG vector dataset), the modal value (the value 
that appears most often) and the variety of the values (the number of unique values) were considered. 

In order to calculate and extract the mean and median values from the “global length of growing periods” 
dataset, the dataset was reclassified into a continuous dataset by replacing, for each grid cell, the day interval 
(representing the growing season length) with its corresponding mean value. Figure 4(a-f) below shows the 
spatial distribution at the DHS sub-national area level for the most relevant geospatial covariates used in 
the analysis. Finally, because policy actions can often be implemented across large regions and patterns in 
4q1 appear to vary within distinct areas across sub-Saharan Africa (UNICEF 2015), three broad regions 
(East, Central, and West) were defined, as described by the United Nations geoscheme (Figure 5 and Table 
A.1 in Appendix A). 
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Figure 4a. Population density in each DHS sub-national area 

 
 

Figure 4b. Satellite-based night-time lights’ intensity spatially averaged within each DHS sub-
national area 
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Figure 4c. Number of dominant ethnic groups, indicating ethnic variability, in each DHS sub-
national area 

 
 
Figure 4d. Spatially averaged economic activity estimated using the grid-based equivalent of the 
purchasing parity gross domestic product, within each DHS sub-national area 
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Figure 4e. Annual mean temperature spatially averaged within each DHS sub-national area 

 
 

Figure 4f. Population-weighted mean Plasmodium falciparum prevalence in each DHS sub-national 
area 
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Figure 5. United Nations geoscheme regions used in the analysis 
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3. Analysis Methods 

3.1. Overview of Analysis Plan 

This section describes the spatial and non-spatial analysis methods used in the study. In general, the analysis 
involved three main steps. The first step, data processing, has been described in the previous section. The 
next step involved covariate and model selection in which individual (and combinations of) DHS and 
geographic covariates that were capable of explaining variation in 4q1 in a linear model setting were 
explored.  This step included an exhaustive model selection process. Finally, a spatial model along with the 
top linear model identified in the model selection process was fitted. These can be visualized in the flow 
diagram in Figure 6 and are described in detail in the following sections. 

3.2. Covariate and Model Selection 

The exploratory analysis methods included 1) selection of the most relevant set of covariates, 2) selection 
of top interaction terms and 3) the model selection procedure that resulted in the best combination of 
covariate terms for use in the final analysis.  

Figure 6. Flow diagram of analysis methods adopted in the study 
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3.2.1. Covariate selection 

To select the best set from the 10 DHS and over 30 geospatial covariates, both statistical and policy 
relevance considerations were explored. First, the relationships between each covariate and 4q1 was 
visualized with scatter plot diagrams to ensure assumptions of linearity were met. The latter was 
implemented by fitting nonparametric smooth curves (specifically, locally weighted regression (loess) 
curves; Cleveland and Devlin 1988) to the points in the scatter plots, as well as simple linear regressions 
for comparison.  

To identify potential issues arising from collinearity between covariates, all covariate pairs were compared 
for the correlation between them. The pairs with a correlation of greater than 0.5 (in absolute value) were 
identified for potential exclusion. As an additional step to address the problem of collinearity between the 
covariates, the variance inflation factor (VIF) of each variable was calculated. The VIF measures the 
increase in the variance of an estimated regression coefficient due to (multi) collinearity. For this analysis, 
collinearity was considered high for covariates with a VIF greater than 4 - a value that represents a two-
fold increase in the standard error of a regression coefficient as a result of collinearity.  When choosing 
between collinear variables after the VIF analysis, the decision was based on the variables with the highest 
R2 statistic when compared to 4q1, as well as the policy relevance of each variable. In a few cases, collinear 
covariates with moderate VIFs and high policy relevance were retained.  

3.2.2. Single covariate models, selection of interaction terms and best non-spatial model 

To determine an optimal subset of covariates for modeling 4q1, single covariate Gaussian regression models 
were fitted to the screened set of covariates and the AIC (Akaike information criteria), R2 and predictive R2 
(PR2) statistics were calculated. The AIC is a measure of the relative quality of fit of a statistical model; the 
smaller the AIC, the better the fit. The predictive R2 statistic was calculated with Monte Carlo cross-
validation to determine the performance of the models for the out-of-sample prediction. The out-of-sample 
prediction, with a randomly selected 80% of the data, was used for model training while the remaining 20% 
was used for validation. This process was repeated 10 times for 10 different splits of the data and measures 
of model fit averaged across these iterations. All the fitted models were then ranked based on the R2 statistic. 
All covariates whose R2 statistics were less than 5% were eliminated after this ranking.  

To identify potentially important interactions between covariates, models that included interactions 
between pairs of covariates were explored and measures of model fit recorded. To reduce the candidate set 
of interaction terms from the selection process and to maintain interpretability of the resulting models, 
particular emphasis was placed on interactions with potential policy relevance. By default, interaction 
models include terms for each of the covariates in the interaction, as well as a term for the interaction. To 
ensure that the interaction significantly improved the fit of the model, the interaction model was also 
compared with a model that included only the two main effects.  Only interaction models that resulted in a 
greater than 2 improvement in AIC score were retained. All interaction models with an R2 of less than 0.25 
were excluded. In addition, we investigated potential differences in the effects of each covariate on 4q1 
between East, Central, and Western Africa by testing models that included an interaction with region. 

With the set of interaction terms identified (excluding selected region-level interactions), an exhaustive 
model selection procedure was used to test all possible combinations of multiple (first and second order) 
terms in a model. Inclusion of additional covariates was stopped when there was no discernible 
improvement to model fit with the inclusion of greater numbers of covariates. To guard against overfitting, 
the difference between PR2 and R2 scores was monitored; models in which PR2 was lower than R2 by greater 
than 5% were eliminated.  Models were assessed by AIC, R2 and PR2 and ranked by R2; the model with the 
lowest AIC score was retained.  
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3.3. Spatial Analysis Using a Conditional Autoregressive (CAR) Model  

In a non-spatial modeling framework, the observed data are assumed to be identically and independently 
distributed. However, data collected over space such as the 4q1 typically exhibit spatial autocorrelation. 
Although a proportion of this spatial autocorrelation may be accounted for by the inclusion of spatially-
varying covariates in standard linear regression models, it is often the case that spatial dependence remains 
in the residuals that result from fitting such models. To test for spatial autocorrelation in the residuals, 
Moran’s I permutation test was used (Banerjee, Carlin, and Gelfand 2015, p.75). The Moran’s I statistic is 
similar to a correlation coefficient. Positive values indicate that neighboring observations tend to be more 
alike whereas negative values indicate that nearby values tend to be dissimilar. A value of zero indicates a 
random spatial pattern. Spatial random effects were modeled with a conditional autoregressive (CAR; e.g., 
Leroux, Lei, and Breslow (2000) fitted in a Bayesian framework using the CARBayes software package in 
R; Lee 2013). A full description and implementation details of the model are provided in Appendix B. 
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4. Results  

4.1. Results from Covariate and Model Selection 

4.1.1. Covariate selection 

The plots of each covariate against 4q1, together with the loess fits, showed that the relationships could be 
reasonably modeled as linear (see Figures 7a and 7b). Testing for highly correlated covariates restricted the 
list to 29 covariates for the analysis (Table 5). 

4.1.2. Single covariate models, interaction terms and best non-spatial model 

Table 5 shows the rankings of the 29 retained covariates in terms of R2. The unstandardized and 
standardized (centered and scaled by the standard deviation of the covariate) coefficients of the covariates 
are also reported. Note that standardized coefficients are only included to allow comparison between the 
relative magnitudes of the effects of the covariates on 4q1. This comparison is untenable using the 
unstandardized coefficients because units/scales on which the covariates were measured were different. For 
example, the unstandardized coefficient of malaria prevalence, measured in proportions, is estimated at 
55.02. This coefficient will, however, change to 0.55 when this covariate is expressed in percentages to 
make it comparable with the DHS covariates. The R2 statistics show that some of the covariates offer little 
or no explanatory power for modeling 4q1. Using the criterion of an R2 value of at least 5%, the first 12 
covariates were selected as the best subset to be tested for inclusion in the final model. This subset includes 
6 DHS and 6 geospatial covariates. Figures 7a and 7b show the relationships between these covariates 
and 4q1. 

Table 5. Summary of single covariate models. Coefficients are presented as both unstandardized (i.e. native 
units) or standardized. 

Rank Covariate 
Unstandardized 

coefficient 
Standardized 

coefficient AIC R2 PR2 
1 Literacy -0.42 -10.74 2235 0.24 0.24 

2 Malaria prevalence 55.02 10.44 2240 0.23 0.23
3 Birth interval 1.04 9.46 2252 0.18 0.20
4 Access to a health facility -0.36 -8.09 2268 0.14 0.13
5 Sanitation 0.31 7.99 2269 0.13 0.11
6 Measles vaccination -0.56 -7.93 2269 0.13 0.13
7 Stunting 0.62 6.82 2279 0.10 0.08
8 Ethnic group variety 2.33 6.53 2281 0.09 0.10
9 Mean temperature 0.22 6.27 2283 0.08 0.08
10 Population density 0.00 -5.33 2289 0.06 0.06
11 Economic activity -8.19 -5.14 2290 0.05 0.05
*12 Night-time lights -2.20 -4.75 2292 0.05 0.05
13 DPT3 immunization -0.21 -4.50 2294 0.04 0.04
14 Breastfeeding -0.20 -4.27 2295 0.04 0.04
15 Conflict density -8.64 -3.15 2299 0.02 0.02
16 Modal ethnic group -0.01 -2.89 2300 0.02 0.01
17 Landcover variety -0.90 -2.79 2300 0.02 0.01
18 Cattle density -0.05 -2.53 2301 0.01 0.01
19 Water sources -0.10 -2.47 2301 0.01 0.01
20 Growing season length 0.02 2.39 2302 0.01 0.02
21 Roughness -3.97×106 -2.35 2302 0.01 0.02
22 Pig density -0.16 -1.92 2303 0.01 0.01
23 Travel time 0.00 -1.19 2304 0.00 0.00
24 Rainfall 0.00 0.96 2304 0.00 0.00
25 Vegetation -7.41 -0.75 2304 0.00 0.00
26 Modal landcover -0.01 -0.55 2304 0.00 0.00
27 Urban population 0.00 -0.48 2304 0.00 0.00
28 Conflict fatalities -189.91 -0.13 2305 0.00 0.00
29 Drought -0.04 -0.11 2305 0.00 0.00

*The top 12 covariates have R2 values greater than 5%.
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Figure 7a. Plots of selected DHS variables against child mortality rates. The blue lines are linear 
regression lines while the red lines are nonparametric loess fits to the data. 
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Figure 7b. Plots of selected geospatial covariates against child mortality rates. The blue lines are 
linear regression lines while the red lines are nonparametric loess fits to the data. 
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of the variation in child mortality; the best interaction model accounts for as much as 40% of this variation.  
This clearly shows the importance of interactions between covariates when modeling child mortality.  

Table 6. Top interaction models. A ‘:’ indicates the interaction between covariates. 

Interactions between covariates Region-level interactions 

Model AIC R2 Model AIC R2 

Malaria prevalence: Birth interval 2176.98 0.40 Birth interval: Region 2213.76 0.32 

Literacy: Ethnic group variety 2204.61 0.34 Access to a health facility: Region 2215.08 0.32 

Literacy: Birth interval 2205.36 0.33 Literacy: Region 2218.45 0.31 

Literacy: Access to a health facility 2224.45 0.28 Stunting: Region 2240.61 0.25 

Birth interval: Temperature 2228.78 0.27    

Literacy: Sanitation 2230.91 0.26    

Literacy: Night-time lights 2232.99 0.26    

Literacy: Economic activity 2233.00 0.26    

Birth interval: Ethnic group variety 2235.14 0.25    

 

In the non-spatial model selection phase, top models included up to 8 of the 12 covariate terms.  Models 
with greater numbers of covariates exhibited only marginal improvements in AIC scores and increasing 
evidence of overfitting as shown by the large differences in R2 and PR2 values. Top models had adjusted 
R2 values of up to 0.54, which indicated good explanatory power. These models also had PR2 values of ≈0.53 that indicated no overfitting of the models to the data.  A list of the top 10 models as ranked by the 
AIC is presented in Table B.1 (Appendix B).  

4.2. Results from Spatial Analysis using a Conditional Autoregressive (CAR) Model 

Testing for spatial autocorrelation in the 4q1 data using Moran’s I yielded a statistic of 0.1164 (p<0.005); 
this indicated the presence of significant positive spatial autocorrelation in the residuals. Fitting of a spatial 
random effect with the top selected model yielded an adjusted R2 of 0.60; this showed some improvement 
over the non-spatial model. Spatial models without region-level interactions were also fitted to provide 
confirmatory tests of significance for the marginal effects of the covariates with region-level interactions 
(see Table B.2 in Appendix B for the results of this model). Table 7 reports the posterior means, standard 
deviations and quantiles of the covariate effects (ࢼ), the variance parameters (ߪଶ, ߬ଶ), and the correlation 
parameter (ߩ) of the spatial model. 
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Table 7. Posterior estimates of the parameters of the spatial model 

Parameter Mean 
Standard 
Deviation Median 95% Credible Interval 

(Intercept) 27.0289 2.8163 27.2437 (21.1830, 32.0304) 
Region(CAFR) 17.6602 4.9860 17.5071 (8.8964, 27.6040) 
Region(WAFR) 7.2262 4.6206 7.0430 (-0.6524, 16.3675) 
Stunting 0.4594 0.1935 0.4623 (0.0646, 0.8045) 
Malaria prevalence 49.9618a 7.5869 49.9206 (35.8431, 64.4336) 
Access to a health facility -0.1821 0.1030 -0.1733 (-0.3990, 0.0049) 
Birth interval 0.5418 0.2423 0.5480 (0.0787, 0.9899) 
Literacy  0.1298 0.1073 0.1145 (-0.0670, 0.3620) 
Temperature 0.0214 0.0641 0.0228 (-0.1094, 0.1596) 
Night-time lights 0.0678 1.2112 -0.0215 (-2.1017, 2.5609) 
Ethnic groups’ variety -0.7261 0.3939 -0.7016 (-1.5366, 0.0667) 
Literacy: Birth interval  -0.0159 0.0076 -0.0154 (-0.0307, -0.0011) 
Literacy: Access to a health facility 0.0063 0.0032 0.0064 (0.0002, 0.0129) 
Birth interval: Malaria prevalence 1.6979 0.8352 1.7029 (-0.1293, 3.4090) 
Birth interval: Temperature -0.0069 0.0065 -0.0072 (-0.0186, 0.0046) 
Literacy: Night-time lights -0.0222 0.0337 -0.0201 (-0.0931, 0.0405) 
Birth interval: Ethnic groups’ 

variety 
0.0790 0.0478 0.0740 (-0.0040, 0.1813) 

Birth interval: Region(CAFR) 0.0918 0.5292 0.0535 (-0.9604, 1.1593) 
Birth interval: Region(WAFR) 0.7182 0.4311 0.7471 (-0.1750, 1.5533) 
Access to a health facility: 

Region(CAFR) 
-0.3455 0.2330 -0.3549 (-0.7955, 0.1560) 

Access to a health facility: 
Region(WAFR) 

0.0584 0.1616 0.0502 (-0.2476, 0.3994) 

Literacy: Region(CAFR) -0.3164 0.2771 -0.3177 (-0.8563, 0.2214) 
Literacy: Region(WAFR) -0.2182 0.1527 -0.2186 (-0.5356, 0.0873) 
Stunting: Region(CAFR) -0.3964 0.4566 -0.4265 (-1.3164,  0.4256) 
Stunting: Region(WAFR) -0.3345 0.2585 -0.3226 (-0.8072, 0.1601) ࣌૛ 144.8332 104.8733 204.9695 (0.0014, 262.5637) ࣎૛ 117.1275 155.2425 0.0231 (0.0005, 404.6400) (0.8736 ,0.0390) 0.2495 0.2407 0.3339 ࣋ 
a Note that malaria prevalence is measured in proportions. This estimate is equal to 0.4996 (i.e., 49.9618 
divided by 100) when malaria prevalence is transformed to percentage. 

 
A number of conclusions can be drawn from these results. First, the 95% credible intervals of both 
parameters of the spatial random effects (߬ଶ,  do not include zero; this affirmed the existence of substantial (ߩ
(positive) spatial autocorrelation in child mortality across the DHS sub-national areas. General patterns in 
the model coefficients (the parameter estimates) can be interpreted as: 

1. Child mortality rates vary significantly across the three regions in the study. 

2. Stunting, malaria prevalence, access to a health facility, and too short birth interval have significant 
marginal effects on child mortality (conditional on the average values of other covariates in each 
case). The marginal effects of other covariates were not significant. 

3. The interactions between female literacy, birth interval, and access to a health facility had a 
significant effect on child mortality (conditional on the average values of other covariates in each 
case). Other inter-covariate interactions were not significant.  

4. None of the region-level variations in the effects of the tested covariates (birth interval, access to a 
health facility, literacy, and stunting) on child mortality were significant. 
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A more detailed interpretation of these patterns is described below. All coefficients are interpreted in the 
context of holding all other covariates at their mean values. 

Intercept, CAFR, WAFR: The intercept (set to EAFR in this model) has an estimated value of 27.03. This 
value is the average predicted mortality rate per 1,000 children surviving to age 12 months for EAFR. 
Similarly, 27.03 + 17.67 = 44.69 and 27.03 + 7.26 = 34.3 are the respective average predicted mortality 
rates per 1,000 children surviving to age 12 months for CAFR and WAFR. The 95% credible intervals of 
these coefficients show that the average mortality rate for the reference region (EAFR) is significant. There 
is a significant difference between the average predicted mortality rates for EAFR and CAFR, but not 
between EAFR and WAFR. This implies that regional variation in mortality is significant. Finally, the 
average predicted mortality rate is highest in CAFR and lowest in EAFR. 

Stunting: Estimates of regression coefficients for stunting, stunting:CAFR, and stunting:WAFR are 0.46, 
-0.40 and -0.33 respectively. Thus, a unit increase in the percentage of stunting prevalence in EAFR will 
lead to an increase of 0.46 in child mortality. Similarly, for CAFR and WAFR, these are 0.46 - 0.40 = 0.06 
and 0.46 – 0.34 = 0.12, respectively. These region-level variations in the effect of stunting are not 
significant. Table B.2 (Appendix B) shows that for all the DHS sub-national areas, a unit increase in stunting 
will lead to a significant increase of 0.33 in child mortality.   

Malaria Prevalence (Plasmodium falciparum): In the fitted model, there exists an interaction between 
malaria prevalence and birth interval. The effect of this interaction is estimated at 1.70. Thus, a unit increase 
in too short birth intervals will increase the effect of malaria prevalence (in percentage) on child mortality 
by 0.02 (≈ 0.17 divided by 100) and vice versa. This interaction is not significant. A percentage increase 
in the prevalence of Plasmodium falciparum infection will result in an additional 0.5 deaths in children age 
1 – 5. The 95% credible interval shows that this marginal effect is significant. 

Birth Interval: The interaction between short birth interval and malaria prevalence has been explained. 
Birth interval also interacts with literacy, temperature, and ethnic group variety. The estimates of these 
interaction effects are -0.02, -0.01, and 0.08, respectively. Hence, a unit increase in ethnic group variety 
will increase the effect of too short birth intervals on child mortality by 0.08, whereas increasing mean 
temperature and female literacy will decrease its effect by 0.01 and 0.02, respectively. However, only the 
interaction between birth interval and female literacy is significant in the model. These conclusions are 
relevant for the reverse cases when the roles of these covariates are interchanged. For example, a unit 
increase in too short birth intervals will also increase the effect of ethnic group variety on child mortality 
by 0.08. 

The model also includes interactions between region and birth interval. The estimates of the interaction 
effects are 0.54 for EAFR, 0.63 (= 0.54 + 0.09) for CAFR and 1.26 (= 0.54 + 0.72) for WAFR. Thus, a unit 
increase in too short birth intervals will increase child mortality by 0.54, 0.63, and 1.26 in EAFR, CAFR 
and WAFR respectively. However, these regional variations in the effect of birth interval are not significant. 
Table B.2 (Appendix B) shows that a unit increase in too short birth intervals will significantly increase 
child mortality by 0.78. 

Literacy: This covariate interacts with birth interval as previously explained. The covariate also interacts 
with access to a health facility and night-time lights. The respective estimates of the effects of these 
interactions are 0.01 and -0.02. Thus, a unit increase in night-time lights will reduce the effect of female 
literacy on child mortality by 0.02. On the other hand, an increase in access to a health facility will increase 
the effect of female literacy on child mortality by 0.01. The reverse cases of these relationships are also 
true. While other interaction effects are significant, the interaction between literacy rate and night-time 
lights is not significant. 



 

37 

The regional effects of this variable have also been estimated. These include 0.13 for EAFR, -0.19 (= 0.13 
- 0.32) for CAFR and -0.09 (= 0.13 - 0.22) for WAFR. A unit increase in female literacy corresponds with 
a reduction of child mortality by 0.19 in CAFR and 0.09 in WAFR. In EAFR, there is a positive (but non-
significant) relationship between female literacy and child mortality, which may be due to the attenuating 
effect of other covariates. Table B.2 (Appendix B) shows that the overall effect of female literacy is not 
significant. 

Access to a Health Facility (delivery in a health facility used as a proxy for access to a health facility): 
This covariate interacts with literacy rate. The model also includes its interaction with region. The estimates 
of these regional effects are -0.18, -0.53 (= -0.18 - 0.35), and -0.12 (= -0.18 + 0.06) for EAFR, CAFR, and 
WAFR regions respectively. Thus, conditional on the average values of all other covariates, a unit increase 
in access to a health facility will reduce child mortality by 0.18 in EAFR, 0.53 in CAFR, and 0.12 in WAFR. 
The regional differences in the effect of access to a health facility are not significant. Table B.2 (Appendix 
B) shows that conditional on the average values of other covariates, a unit increase in access to a health 
facility corresponds to a reduction of child mortality by 0.16. 

Temperature, Night-time Lights, and Ethnic Group Variety: Unit increases in mean temperature and 
night-time lights are associated with non-significant increases of 0.02 and 0.07 in child mortality, 
respectively. Similarly, a unit increase in ethnic groups’ variety will lead to a non-significant reduction of 
child mortality by 0.73. There also exist non-significant interactions between temperature and birth interval, 
night-time lights and literacy, and ethnic group variety and birth interval as explained previously. 

4.2.1. Model predictions of child mortality rates 

Figures 8a displays the observed child mortality rates and the width of the 95% confidence interval for the 
indicator value; Figure 8b displays the predicted (or fitted) child mortality rates. These predicted rates 
represent smoothed values of the observed rates that have been adjusted for covariate effects as well as 
spatial autocorrelation. The maps of the observed and predicted rates both show a concentration of high 
mortality regions mostly in Central and Western Africa.  The maps also show some evidence of clustering 
in the spatial distribution of child mortality with most neighboring DHS sub-national areas that exhibit 
similar mortality rates. Standard deviations around these predicted regional rates (Figure 8c) suggest that 
there should be more variability within some regions than in others.  
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Figure 8a. Observed mortality rates and 95% confidence interval width for the 255 DHS sub-national 
areas in sub-Saharan Africa 

 

Figure 8b. Predicted mortality rates for the 255 DHS sub-national areas in sub-Saharan Africa 
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Figure 8c. Predicted standard deviations of the child mortality rates for the 255 DHS sub-national 
areas in sub-Saharan Africa 

 

Figure 8d. Observed minus predicted child mortality rates for the 255 DHS sub-national areas in 
sub-Saharan Africa 
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The three highest predicted mortality rates occurred in a DHS sub-national area in Burkina Faso (Western 
Africa) and two sub-national areas in Cameroon (Central Africa). The three lowest predicted mortality rates 
occurred in two sub-national areas in Kenya (Eastern Africa) and a sub-national area in Ethiopia (Eastern 
Africa). The standard deviations of the predicted values show high uncertainty in few DHS sub-national 
areas but generally moderate to low uncertainty in others; this indicates a good fit to the data. In most DHS 
sub-national areas, differences between observed and expected 4q1 are relatively low (Figure 8d), with one 
exception in northern Tanzania. 

Finally, Figure 9 is a scatter plot of the strong correlation between predicted mortality rates against the 
observed rates. This affirms the linear relationships between child mortality and the covariates used in the 
model. The figure reveals that high mortality rates are concentrated in Western and Central Africa as 
compared to Eastern Africa, where mortality values appear to be lower. 

Figure 9. A plot of observed vs. predicted child mortality rates  

 

4.2.2. Classification of mortality regions 

The average predicted child mortality rate for all 255 DHS sub-national areas was 37.55 deaths per 1,000 
children surviving to age 12 months (37.58 deaths per 1,000 for the observed rates).  However, there was a 
good deal of variation around this average, with some neighboring areas exhibiting strongly different 
differences. In this section, the DHS survey regions were classified as low, about average, and high 
mortality regions based on their predicted mortality rates. Low mortality regions were defined as regions 
whose 95% prediction intervals fell below the average predicted rate. High mortality regions were regions 
whose 95% prediction intervals were above the average predicted rate. Similarly, the 95% prediction 
intervals of the regions classified as about average included the average predicted rate.  

Figure 10 maps the child mortality classes. The figure shows that high mortality regions are primarily 
concentrated in Western and Central Africa, while most low and about average regions are located in the 
Eastern region. The DHS sub-national areas are shown in yellow – significantly lower than average 
predicted mortality rate; red – significantly higher than average predicted mortality rate; and orange – not 
significantly different from average predicted mortality rate. 
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Figure 10. Classification of child mortality regions 
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5. Discussion 

The DHS Spatial Analysis Report 12 (SAR12) analyzed the spatial distribution of key maternal and child 
health indicators for 255 DHS sub-national areas across 27 countries in sub-Saharan Africa. The report 
found spatial autocorrelation and cross-border relationships in the indicators. The presence of spatial 
autocorrelation in the indicators implies that neighboring DHS sub-national areas are more likely to share 
similar patterns than areas that are geographically distant. The present report builds on SAR 12 by exploring 
the spatial autocorrelation observed in child mortality rates to understand the determinants of its spatial 
distribution. Moreover, this report accounts for the effect of spatial environmental factors along with the 
usual demographic and socio-economic determinants on child mortality rates. This choice is supported by 
previous studies such as Balk et al. (2003, 2004) in which spatial environmental factors were identified as 
acting more strongly on child mortality than on infant mortality. 

Child mortality rates in this study were defined as the number of deaths among children between the age of 
1 and 4 in the five-year period preceding the survey per 1,000 children surviving to age 12 months7. This 
includes deaths reported at age 12– 59 months and excludes infant deaths (deaths occurring between age 0 
and 11 months). To the authors’ knowledge, this is one of the first studies to explore spatial patterns in child 
mortality rates across such a large region and accounting for both the effect of demographic and socio-
economic determinants and spatially explicit environmental factors. Importantly, the protective and risk 
factors used in the models to explain variation in child mortality have direct relevance for both policy and 
interventions. 

The results of this report show how a large degree (60%) of regional variation in child mortality can be 
explained by the socio-demographic and environmental indicators included in the analysis, the interactions 
between them, and the patterns in child mortality. While the results of this report do not necessarily help 
better predict child mortality rates, they do provide greater clarity about which of these factors are the most 
important drivers across the region. 

This analysis further investigated and confirmed patterns of positive spatial autocorrelation in child 
mortality rates across the 255 DHS sub-national areas. On a larger scale, this spatial autocorrelation 
manifests as the presence of significant differences in child mortality rates across Western, Central, and 
Eastern Africa regions, with the highest child mortality rates in Central and Western Africa and the lowest 
in Eastern Africa (see Figure 8b).  The results from the spatial regression model also highlight that several 
socio-economic and environmental factors have significant effects on child mortality in the 255 DHS sub-
national areas. These effects, however, do not vary significantly across Western, Central, and Eastern 
regions. Therefore, the application of interventions to reduce child mortality may have similar effects on 
child mortality in the three regions.   

Single covariate models used in this study are useful for identifying factors that can explain a meaningful 
portion of the variation in child mortality. These include female literacy, prevalence of malaria, birth 
interval, access to a health facility, sanitation practices, measles vaccination, and stunting. All these 
covariates had R2 values greater than 10%. This agrees with other studies about the significance of these 
factors (Table 5; Balk et al. 2004).  The ranking of these covariates using the R2 statistic already makes a 
strong case for which protective and risk factors should take priority in addressing child mortality. Indeed, 

                                                            
7 Child mortality rates (age 1 to 4) includes deaths reported as age 12– 59 months. Therefore, infant deaths (before 
age 1) are not included in the metric used in this report. The DHS Program uses a synthetic cohort life table approach 
to directly estimate the under-five mortality rate. Details may be found in the Guide to DHS Statistics, pp.90-95 
(http://www.dhsprogram.com/publications/publication-DHSG1-DHS-Questionnaires-and-Manuals.cfm) and further 
described in Pullum et al. 2013. 
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many of these factors have been highlighted as priorities in the 2015 SDGs (United Nations General 
Assembly 2015). However, the effects of single covariates are not necessarily as useful as when other 
explanatory factors are considered.  

The interpretation of the coefficients of the spatial model provides a perspective on the relationship between 
each factor and child mortality, while also accounting for all other factors present in the model. This 
provides a fuller picture of the geographic variation in child mortality.  When interpreting marginal effects, 
it is important to remember that each coefficient represents the marginal increase in child mortality in 
response to a unit increase in the factor of interest when all other covariates are kept at their average values. 
Thus, for all 255 DHS sub-national areas, stunting showed a statistically significant and positive effect on 
child mortality. For each increase in a percentage point of stunting, there is an increase of 0.33 deaths per 
1,000 children surviving to age 12 months. There were no regional differences observed in this effect. 
Malaria prevalence is also a significant factor correlated with child mortality in all the DHS sub-national 
areas analyzed. A unit increase in the percentage of the population with Plasmodium falciparum parasites 
in their blood (measured in the 2-10 age group) corresponds with an increase of 0.5 deaths per 1,000 
children surviving to age 12 months. Similarly, a unit increase in the percentage of births with a birth 
interval defined as too short is related to a 0.78 increase in child mortality. The marginal effect of access to 
a health facility is also statistically significant; a unit increase in the percentage of women who accessed a 
health facility is associated with a reduction of 0.16 deaths per 1,000 children surviving to age 12 months. 

Interestingly, interactions between pairs of covariates explained a large amount of the variation in child 
mortality. This perspective has not been well reported. The presence of interaction terms in the model 
indicates that risk factors can be attenuated by protective factors and vice versa. For example, although the 
marginal effect of literacy rates on child mortality is not significant, its combination (interactions) with 
other covariates such as a short birth interval and access to a health facility is statistically significant. 
Increased literacy reduces the effect of a too short birth interval on child mortality. Conversely, an increase 
in literacy is associated with an increase in the effect of access to a health facility on child mortality. 
Therefore, interventions to increase literacy rates will reduce the risk effect of a too short birth interval on 
child mortality. On the contrary, improving literacy increases the protective effect of accessing a health 
facility on child mortality.  

In contrast with other work that assessed the demographic and socio-economic determinants of child 
mortality across the 255 DHS sub-national areas in sub-Saharan Africa, this study controlled for spatial 
environmental factors. Among the covariates tested in this study, mean temperature, night-time lights and 
ethnic group variety showed a significant correlation with child mortality rates in the single covariates 
model. While none of these terms or their interactions were significant in the final model, their inclusion 
helped with the overall predictive power. These factors have strong geographic variation, and can be viewed 
as covariates that help explain the spatial variability in child mortality.  

There are several limitations to the present study that should be taken into account when interpreting the 
total results. First, although the sample size (N=255) was sufficient to highlight patterns across sub-Saharan 
Africa, regional differences in the effects of the covariates were not significant in the final model. This may 
be a consequence of the predictive power of the model given the data. That is, larger sample sizes or more 
focused studies might help clarify some factors at the regional level; this could further highlight priorities 
for interventions. One simple solution to this problem would be exploring the use of smaller aggregation 
areas for the analysis. The DHS data in this analysis included tens of thousands survey clusters aggregated 
at the DHS sub-national area level. This increases the support and therefore reliability of each data point, 
although it reduces the total number of available data points. In addition, aggregation at DHS sub-national 
level is likely to obscure some of the finer-scale variation in each factor.  Thus, the relationship between 
covariates and child mortality might be clearer if it were analyzed with a finer geographical scale.  
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Similarly, aggregating geospatial covariates within the DHS sub-national area level may obscure the effects 
of these factors by not representing the local conditions that are experienced at the cluster level.  For 
example, a region that is mostly arid and uninhabited but has a small area of high vegetation cover and a 
densely populated area would be represented as arid in this analysis, whereas the conditions experienced in 
the inhabited areas would be different. Moreover, another limitation is that some of the geospatial datasets 
used in this study were available only for specific time points up to 15 years prior to the temporal coverage 
of the DHS surveys. Indeed, although it is relatively safe to assume that time-invariant datasets (topography) 
did not change over time, temporally explicit datasets (economic activity) may have significantly changed 
over time; consequently, their use may have produced results that could be improved if more recent datasets 
were available. 

Furthermore, it is important to note that all geospatial datasets in this study have a degree of uncertainty 
that will be propagated into the analysis. Each DHS variable has sampling error associated with each 
estimate. Additionally, some surveys included in this analysis may be have less reliable child mortality 
estimates as assessed by UN IGME model (www.childmortality.org). An alternative approach for analysis 
would involve working at the DHS survey primary sampling unit scale, for which GIS coordinates (latitude 
and longitude) are usually available (but not for all the 27 countries included in this work). Child mortality 
aggregated at finer scales would then be used as a binary outcome (detected or not detected) and modeled 
in a logistic regression. This approach would have the disadvantage of not being easily relatable to the 
numbers of deaths per 1,000, but it would present a view of overall risk with potentially greater resolution 
than the aggregated approaches. Further investigations are needed to understand the degree of error and 
uncertainty that arises when calculating a rare event such as child mortality at fine spatial scale. The 
modeling approach used in this study allowed us to use the maximum amount of available data despite the 
limited size of the DHS sub-national areas. Further analyses might investigate alternative approaches to 
overcome these limitations. 

Despite this work showing that a great amount of variation in child mortality (60%) can be explained by a 
relatively small set of factors, other factors that were not included in the model may contribute in capturing 
some of the unexplained variance. For example, a direct measure of access to a health facility that includes 
the number and type of medical staff for a given area, which indicates the degree of supply of health 
services, was not available for the 27 countries; a proximate variable was used instead to account for access 
to health facilities. Moreover, none of the variables tested in this study provide a direct measure of HIV 
prevalence. The set of geospatial covariates tested in this work covered several different aspects that 
influence child mortality; however, future work could focus on testing additional geospatial covariates, 
such as rates of air pollution. Household wealth in this work was captured to an extent by using two 
household level covariates: coverage of improved water sources and sanitation practices. Future areas for 
investigation may include the use of a comparable wealth index that is standardized across countries and 
areas. Finally, the association of some variables with child mortality, such as ethnic group variety , might 
be a subject for future research.  

It is remarkable that such strong trends across such broad regions were detected in spite of the above 
limitations.  The emergence of these trends highlights the power of standardized surveys that are deployed 
across broad regions and cover such a wide range of topics. This broad perspective allows for greater 
understanding than that achieved by looking within a smaller region. It is important that policy-makers 
around the world utilize and support broad-scale data collection initiatives. Broad trends can also help to 
focus research on particular drivers within localized areas, and to understand finer-scale variability in the 
drivers and protective factors for child mortality. In addition, integrating various data sources could greatly 
enhance this type of analysis with survey data, data collected from study areas such as surveillance sites, 
civil and vital registration systems, and routine health system data.  
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The importance of geographic factors in predicting child mortality presents an interesting opportunity in 
the context of preventing child mortality. The availability of geographic data at high spatial resolutions, 
aided by the continuous evolution of geospatial analyses, makes it possible to use these data to predict in 
areas where DHS data are not available and or at higher spatial resolution in the current study. Such 
approaches have been successfully deployed, for example, in mapping children for the polio vaccination 
program in Nigeria (Alegana et al. 2015) and modeling malaria prevalence (Bhatt et al. 2015), both of 
which facilitate the improved targeting of interventions. 
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6. Policy Implications 

The findings of this study have important implications for both program planning and implementation of 
programs designed to reduce child mortality (age 1 to 4) in sub-Saharan Africa. The results show that child 
mortality is best explained by a multitude of interrelated factors. This suggests that there is a role for 
integrated, multi-dimensional approaches to planning and implementing interventions. This is particularly 
true where linkages between environmental, demographic, and socio-economic factors are found.  
Relationships between individual and environmental factors should be further considered and addressed in 
order to strengthen policy and program effectiveness. Analysis of the interaction terms in this study further 
highlights the importance of acting not just on single factors that may affect child mortality. Instead, it is 
important to coordinate actions in which different factors are considered simultaneously for possibly 
magnifying or dampening the effects on each other. 

One particular interaction worth highlighting is female literacy with birth interval.  In this study, female 
literacy significantly influenced the magnitude of the impact of birth interval and access to health care 
facilities on child mortality. Therefore, a program designed to reduce child mortality by increasing birth 
interval and improving access to health care could magnify the effects of these interventions with the 
addition of an intervention that increases female literacy. Alternatively, if program funding is restricted to 
health interventions, knowing the level of female literacy in the program area would provide valuable 
information for program planning such as setting targets and creating a delivery strategy. To date, many 
programs and interventions are targeted at individual determinants of child mortality because of operational 
constraints or the areas of expertise available within NGOs or government agencies.   Partnerships between 
agencies should therefore be considered for enhanced program impact.  

This report also highlights a number of broad geographic patterns that could inform policy and programs. 
There were significant differences in the distribution of child mortality between Western, Central, and 
Eastern Africa. Generally, there are higher levels of child mortality in Central and Western Africa as 
compared to Eastern Africa. This pattern corresponds to elevated risk factors in Central and Western Africa 
such as lower availability of improved sanitation and higher malaria prevalence than in Eastern Africa. 
Central and Western regions also suffer from lower prevalence of protective factors such as literacy rates 
and access to health facilities, as compared to Eastern Africa. Although disaggregated analyses could 
provide more specific information, there may be reasons to consider cross-border and regional interventions 
along with country-level policies that reduce child mortality through specific interventions. 

Finally, it should be noted that the spatial, seasonal distribution of malaria prevalence is strongly related to 
climate conditions. This is especially true where the disease is not effectively controlled (Gething et al. 
2010; Grover-Kopec et al. 2006). Thus, considering malaria prevalence and mean annual temperature 
among the most relevant geospatial factors that affect child mortality suggests the potential importance of 
accounting for climate change in future analyses. 
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7. Summary and Conclusions 

Sustainable Development Goal 3 will ensure healthy lives and promote well-being for all people at all ages. 
This goal aims to end preventable deaths of newborns and children under age 5 by 2030, with a benchmark 
for neonatal mortality of less than 12 per 1,000 live births and under-five mortality at least as low as 25 per 
1,000 live births. 

With this context in mind, this report provided insight into the drivers of child mortality in the highly 
heterogeneous landscape of sub-Saharan Africa, a region that carries about half of the burden of the world’s 
under-five deaths. To do so, this report explored how the importance of policy-relevant risk and protective 
factors and their interactions affect child mortality in sub-Saharan Africa. This report built on the work 
completed in SAR 12 by combining the effects of spatial-environmental factors with socio-economic and 
demographic determinants of child mortality.  The goal was a better understanding of the drivers of spatial 
heterogeneity in child mortality and identification of areas for policy interventions.  

Data for 27 sub-Saharan Africa countries aggregated at DHS sub-national area scale were assembled to 
observe the spatial distribution of child mortality across the 27 countries and Western, Central, and Eastern 
Africa regions. An autoregressive spatial model was applied to account for the spatial autocorrelation 
present in the data and to test the association between a number of demographic, socio-economic, and 
spatial-environmental factors on child mortality.  

The study detected strong differences in child mortality across Western, Central, and Eastern Africa regions. 
The study found that socio-demographic factors (birth interval, stunting, access to health facilities, and 
literacy), along with geospatial factors (prevalence of Plasmodium falciparum malaria, ethnic group variety, 
mean annual temperature, intensity of lights at night, and economic activity) explain a considerable portion 
of the variance in child mortality across 255 DHS sub-national areas in the 27 countries.   

The role of interaction terms explored in this study suggests that literacy rate is a strong driver of women’s 
reproductive and health behavior, influences access to health facilities, and has an overarching place as a 
determinant of child mortality. The results highlight the importance of accounting for spatial heterogeneity 
in addressing child mortality in multiple countries in sub-Saharan Africa, designing policy interventions 
that reduce inequalities, and exploring some of the observed trends at finer geographic scales.  
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Appendix A 

A.1  United Nations Geographical Region Composition for the 27 Sub-Saharan African 
Countries included in Our Analysis 

Table A.1. List of Countries in analysis by United Nations Regions 

WESTERN AFRICA REGION 
COUNTRIES (WAFR) 

EASTERN AFRICA REGION 
COUNTRIES (EAFR) 

CENTRAL AFRICA REGION 
COUNTRIES (CAFR) 

Benin 
Burkina-Faso 
Côte d’Ivoire 
Gambia 
Ghana 
Guinea 
Liberia 
Mali 
Niger 
Nigeria 
Senegal 
Sierra Leone 
Togo 

Burundi 
Ethiopia 
Kenya 
Malawi 
Mozambique 
Rwanda 
Tanzania 
Uganda 
Zambia 
Zimbabwe 
 

Cameroon 
Congo 
Democratic Republic of Congo 
(DRC) 
Gabon 
 

Source: (United Nations Statistics Division 2013) 
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A.2.  Geospatial Datasets 

This section of the Appendix briefly describes how the geospatial datasets in this study were produced.  The 
section contains the figures, referenced in Section 2.2.2, which show the spatial distribution, over the study 
area, of all spatial factors relevant to child mortality that were considered in the study. 

Population distribution 

WorldPop 2010 UN adjusted People Per Pixel raster datasets (www.worldpop.org) are produced using 
ancillary data to asymmetrically disaggregate administrative, unit-based population counts to a regular grid 
of fixed spatial resolution. National totals for 2010 were adjusted to match United Nations Population 
Division estimates (UNDP 2014). 

Figure A.1. Population distribution 
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Urbanicity (MODIS) 

The “MODIS 500m Global Urban Extent” dataset (https://nelson.wisc.edu/sage/data-and-
models/schneider.php) was produced with Collection 5 (C5) MODIS 500-m resolution data and a 
supervised decision tree classification algorithm to identify urban areas by using region-specific parameters 
(https://nelson.wisc.edu/sage/data-and-models/schneider-readme.php). 

Figure A.2a. MODIS-based spatial distribution of built-up areas 
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Urbanicity (GHSL) 

The “Global Human Settlement Layer” dataset (http://ghslsys.jrc.ec.europa.eu/) was produced by the 
European Union Joint Research Centre. This dataset used learning and classification techniques to process 
high and very high resolution images that identify areas that are densely built. Low-resolution thematic 
layers served as a reference (Pesaresi et al. 2013). 

Figure A.2b. GHSL-based spatial distribution of built-up areas 
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Night-time lights 

The NOAA Suomi National Polar-orbiting Partnership (NPP) composite night-time light dataset is  
produced by averaging monthly radiance data, acquired by the Visible Infrared Imaging Radiometer Suite 
(VIIRS) Day/Night Band (DNB). The data are filtered to exclude data affected by stray light, lightning, 
lunar illumination, and cloud-cover (http://ngdc.noaa.gov/eog/viirs/download_monthly.html). 

Figure A.3. Spatial pattern of VIIRS-based night-time lights’ intensity 
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Travel-times to major population centers 

“Travel time to major cities” datasets (http://forobs.jrc.ec.europa.eu/products/gam/download.php) were 
produced by the European Union Joint Research Centre.  The datasets used a cost-distance algorithm to 
compute the travel-time between two grid cells, expressed as a function of the cost required to travel across 
them (http://forobs.jrc.ec.europa.eu/products/gam/description.php). 

Figure A.4a. Travel-time to major centers with more than 50,000 inhabitants 
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Figure A.4b. Travel-time to major centers with more than 100,000 inhabitants 

 
 

Figure A.4c. Travel-time to major centers with more than 500,000 inhabitants 
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Ethnicity 

The “Geo-Referencing of Ethnic Groups (GREG)” dataset (http://www.icr.ethz.ch/data/other/greg) was 
created with spatial GIS techniques and data from the Soviet Narodov Mira atlas (Bruk and Apenčenko 
1964) to represent group territories as vector polygons. For the purpose of this study, values for the 
Tanzanian islands of Zanzibar and Pemba (two of the DHS sub-national areas within the study area that are 
not available in the GREG dataset) were set to the values of the closest group polygon in the mainland. 

Figure A.5a. Spatial distribution of dominant ethnic groups 
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Figure A.5b. Legend of Figure A.5a 
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Conflicts 

For Africa, the “Armed Conflict Location & Event Data Project (ACLED)” database 
(http://www.acleddata.com/data/) covers the period from 1997 to the present.  The database is constantly 
updated with data from multiple sources that include local media, national reports, humanitarian agencies, 
and research publications (http://www.acleddata.com/methodology/). Only data from 2010 to 2013 were 
used in this study. 

Figure A.6. Location of conflict events and associated fatalities between 2010 and 2013 
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Economic activity 

The global “Geographically-based Economic (G-Econ)” dataset (http://gecon.yale.edu/data-and-
documentation-g-econ-project) was produced with different country-based methodologies for estimating 
per capita gross cell product and calculating the gross cell product, with the latter representing the grid-
based equivalent of the purchasing parity of gross domestic product. 

Figure A.7. Spatial distribution of the gross cell product representing the regional equivalent of 
gross domestic product 
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Livestock 

The FAO Gridded Livestock of the World, v2.0 (GLW2) datasets (http://livestock.geo-wiki.org/) were 
obtained by disaggregating sub-national livestock figures from ancillary environmental and demographic 
datasets. 

Figure A.8a. Sheep density 

 
 



 

73 

Figure A.8b. Cattle density 

 
 

Figure A.8c. Pig density 
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Figure A.8d. Goat density 
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Temperature and rainfall 

WorldClim datasets (http://www.worldclim.org/current) were generated by modeling 30-years (1960-1990) 
of average monthly climate data from ground-based weather stations, as a function of latitude, longitude, 
and elevation (http://www.worldclim.org/methods1).  

Figure A.9a. 30-year average annual temperature 

 
 

Figure A.9b. 30-year average annual rainfall 
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Temperature (MODIS) 

The MODIS-based daytime Land Surface Temperature (LST) monthly composite datasets 
(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3) are derived from daily 
5.6km LST datasets (MOD11C1) by averaging values of clear-sky LST values during a one-month period. 
In this study, all LST monthly composite datasets that covered the whole study area, from June 2001 to 
June 2015, were mosaicked and then averaged across time. 

Figure A.10. 14-year average MODIS-based daytime Land Surface Temperature 
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Aridity 

The CGIAR Global Aridity Index raster dataset (http://www.cgiar-csi.org/data/global-aridity-and-pet-
database), which was produced with WorldClim Global Climate Data (Hijmans et al. 2005), is used to 
quantify precipitation availability over atmospheric water demand (Middleton and Thomas 1997). The 
index is defined as the ratio of mean annual precipitation to the mean annual potential evapo-transpiration; 
thus, the values increase from more arid to more humid conditions (http://www.cgiar-csi.org/wp-
content/uploads/2012/11/Global-Aridity-and-Global-PET-Methodology.pdf). 

Figure A.11. 50 year-based Aridity Index 
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Growing season length 

The FAO “Global length of growing periods” dataset (http://www.fao.org/geonetwork/ 
srv/en/main.home) represents, for each grid cell, the number of days expressed as intervals during the year 
when both moisture availability and temperature are conducive to crop growth.  This was produced by using 
the Agro-ecological Zones (AEZ) methodology for land productivity assessments 
(http://www.fao.org/fileadmin/user_upload/gaez/docs/GAEZ_Model_Documentation.pdf). 

Figure A.12. Spatial distribution of the growing season length 
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Drought 

The CIESIN Global Drought Hazard Frequency and Distribution, v1 dataset 
(http://sedac.ciesin.columbia.edu/data/set/ndh-drought-hazard-frequency-distribution/data-download) was 
created using the International Research Institute for Climate Prediction’s (IRI) Weighted Anomaly of 
Standardized Precipitation (WASP; (Lyon and Barnston 2005) and average monthly precipitation data from 
1980 through 2000 to calculate the number of drought events that occurred in each grid cell during the 
considered time period. According to the number of drought occurrences, grid cells are reclassified into 10 
classes, with each one containing the same number of grid cells 
(http://sedac.ciesin.columbia.edu/data/set/ndh-drought-hazard-frequency-distribution). 

Figure A.13. Relative frequencies of drought occurrences and their spatial distribution 
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Vegetation 

The MODIS Enhanced Vegetation Index datasets (https://lpdaac.usgs.gov/dataset_discovery/modis/ 
modis_products_table/mod13c2), that represent a measure of photosynthetic activity ranging from 0 (no 
vegetation) to 1 (complete vegetation), are cloud-free spatial composites of 16-day 1 km EVI datasets 
(MOD13A2). In this study, all EVI monthly composite datasets that covered the whole study area, from 
June 2001 to June 2015, were mosaicked and then averaged across time. 

Figure A.14. 14-year average MODIS-based Enhanced Vegetation Index 
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Topography 

The GTOPO30 (https://lta.cr.usgs.gov/GTOPO30) is a digital elevation model (DEM) that was produced 
using multiple vector and raster sources of topographic information (https://lta.cr.usgs.gov/ 
sites/default/files/gt30src.gif). In this study, it was used to derive a slope raster dataset and three roughness 
raster datasets for the study area, all of which have the same spatial resolution of the input GTOPO30 DEM. 
Since a raster-based roughness dataset expresses the amount of elevation difference between each grid cell 
and the considered surrounding area in the input DEM (grid cell values are a function of the size of the 
specific surrounding area selected to calculate the roughness), three different roughness datasets were 
produced by using three different neighborhood window sizes (3x3, 5x5, and 11x11 grid cells). 

Figure A.15a. Topographic elevation 
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Figure A.15b. Topographic slope 

 
 
Figure A.15c. Topographic roughness calculated using a neighborhood window of 3x3 grid cells 
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Figure A.15d. Topographic roughness calculated using neighborhood window of 5x5 grid cells 

 
 
Figure A.15e. Topographic roughness calculated using neighborhood window of 11x11 grid cells 
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Landcover 

The ESA 2009 GlobCover dataset (http://due.esrin.esa.int/page_globcover.php) was produced using 
Envisat MERIS fine resolution data and an automatic pre-processing and classification chain to identify 22 
classes compatible with the UN Land Cover Classification System (LCCS). 

Figure A.16. MERIS-based landcover classification 
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Malaria prevalence 

The Malaria Atlas Project “PfPR2-10 in Africa 2000-2015” datasets (http://www.map.ox.ac.uk/) were 
produced using malaria prevalence survey data (1995-2014), along with temporally explicit intervention 
coverage, environmental and socio-demographic covariates, as input to a spatiotemporal Bayesian 
geostatistical model to estimate PfPR trends (Bhatt et al. 2015). In this study, all “PfPR2-10 in Africa 2000-
2015” datasets were averaged across time. 

Figure A.17. 15-year average Plasmodium falciparum prevalence distribution 
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Appendix B – Detailed Methods and Results 

In this section of the appendix, we describe the complete spatial model discussed in Section 3.3. All the 
additional figures and tables referenced in Sections 3 and 4 are also presented. 

B.1. Conditional Autoregressive (CAR) Model 

The study region is partitioned into ݊ = 255 areal units, otherwise known as the DHS regions. These 
regions are denoted by झ = { ଵ࣭, … , 	࣭௡}. Let ܇ = (Yଵ, … , Y௡) denote the vector of child mortality rates 
associated with each region. Also, each region, ௜࣭, is linked with a vector of covariates (including an 
intercept term and p covariates) which we denote by ܠ௜் = (1, x௜ଵ, … , x௜௣). Considering a Gaussian 
distribution for the mortality rates, the spatial linear model is given by Y௜|ߤ௜~ܰ(y௜|ߤ௜, ఙଶ), for ݅ = 1,… , ݊, 

௜ߤ                = ௜்ܠ ࢼ + ߶௜.              (1) 

In model (1), ࢼ(௣ାଵ)×ଵ denotes the regression coefficients, ఙଶ is a scale parameter for the mortality rates 
and ߶௜ is a spatial random effect for region, ௜࣭.  
The random effects ࣘ = (߶ଵ,… , ߶௡) model residual spatial autocorrelation in ܇. In models of the type 
given in (1), these random effects ࣘ are typically characterized using a conditional autoregressive (CAR) 
model. A number of global CAR models have been proposed in the statistical literature for this purpose. 
These include the intrinsic CAR and Besag-York-Mollie (BYM) models (Besag, York, and Mollié 1991) 
and their alternatives (Leroux, Lei, and Breslow 2000; Stern and Cressie 1999). However, based on a recent 
review study by (Lee 2013), we adopted the CAR model by Leroux et al. for our analysis. This CAR prior 
is given by  

߶௜|ࣘି௜ ∼ ܰ ቆ ∑ߩ ߩ௜௝߶௝௡௝ୀଵݓ ∑ ௜௝ݓ + 1 − ௡௝ୀଵߩ , ߬ଶߩ∑ ௜௝ݓ + 1 − ௡௝ୀଵߩ ቇ	,	 
where ߩ is a spatial autocorrelation parameter and ߬ଶ is a variance parameter. The ݊ × ݊ matrix of the ݓ௜௝’s 
(ܹ) characterizes the neighborhood structure of the regions; this induces spatial autocorrelation in ࣘ.  A 
binary specification is often used for ܹ where ݓ௜௝ = 1 if regions ( ௜࣭ , ௝࣭) share a common border and is 
zero if they do not.  

The model was estimated in a Bayesian framework that naturally takes care of uncertainty in predictions 
and parameter estimation. To complete our model specification, we placed the following priors on the 
parameters:  ߚ௝	~	ܰ(0,1000)	(݆ = 0,… , ,Uniform(0	~	ଶߪ ,(݌ ,Uniform(0	~	ߩ ,(1000 1) and ߬ଶ	~	Uniform	(0, 1000). 
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Table B.1. Top 10 models resulting from the model selection process. Models are ranked according 
to R2. 

Model AIC R2 PR2 

stunting + malaria prevalence*birth interval + literacy*birth interval + literacy*access to a health 
facility + birth interval*temperature + literacy*night-time lights + birth interval*ethnic groups 
variety 

2132 0.54 0.53

stunting + temperature + malaria prevalence*birth interval + literacy*birth interval + 
literacy*access to a health facility + literacy*night-time lights + birth interval*ethnic groups variety 

2130 0.54 0.53

stunting + night-time lights + malaria prevalence*birth interval + literacy * birth interval + literacy 
* access to a health facility + birth interval *temperature + birth interval*ethnic groups variety 

2130 0.54 0.53

stunting + malaria prevalence*birth interval + literacy*birth interval + literacy * access to a health 
facility + birth interval * temperature + literacy*economic activity + birth interval * ethnic groups 
variety 

2132 0.54 0.53

stunting + temperature + night-time lights +malaria prevalence* birth interval + literacy* birth 
interval + literacy * access to a health facility + birth interval* ethnic groups variety 

2128 0.54 0.53

stunting + temperature + malaria prevalence*birth interval + literacy* birth interval + literacy* 
access to a health facility + literacy *economic activity + birth interval * ethnic groups variety 

2130 0.54 0.53

stunting + economic activity + malaria prevalence* birth interval + literacy* birth interval + 
literacy* access to a health facility + birth interval* temperature + birth interval * ethnic groups 
variety 

2130 0.54 0.53

stunting + malaria prevalence*birth interval + literacy * access to a health facility + birth 
interval*temperature + literacy *sanitation + literacy*economic activity + birth interval*ethnic 
groups variety 

2134 0.54 0.53

stunting + temperature + economic activity + malaria prevalence* birth interval + literacy* birth 
interval + literacy * access to a health facility + birth interval * ethnic groups variety 

2128 0.54 0.53

stunting + population density + malaria prevalence * birth interval + literacy* birth interval + 
literacy* access to a health facility + birth interval*temperature + birth interval * ethnic groups 
variety 

2130 0.54 0.53

 

Table B.2. Posterior means of the parameters of the spatial model without region-level interactions 

Parameter Mean SD Median 95% Credible interval 

(Intercept) 33.4298 1.1676 33.4633 (31.1412, 35.7095) 
stunting 0.3254 0.1201 0.3233 (0.0915, 0.5600) 
Malaria prevalence 50.6905 7.5511 51.0639 (35.3227, 65.1751) 
Birth interval 0.7751 0.1722 0.7664 (0.4497, 1.1245) 
Literacy 0.0146 0.0863 0.0103 (-0.1439, 0.1952) 
Access to a health facility -0.1614 0.0660 -0.1601 (-0.2905, -0.0287) 
Temperature 0.1103 0.0576 0.1080 (-0.0006, 0.2278) 
Night-time lights -0.2923 1.2151 -0.3366 (-2.6548, 2.0590) 
Ethnic groups variety -0.5791 0.4347 -0.5878 (-1.3887, 0.2862) 
Malaria prevalence: Birth interval 2.0500 0.8843 2.0393 (0.2837, 3.7821) 
Birth interval: Literacy -0.0162 0.0078 -0.0163 (-0.0310, -0.0008) 
Literacy: Access to a health facility 0.0049 0.0025 0.0050 (0.0000, 0.0097) 
Birth interval: Temperature -0.0008 0.0051 -0.0007 (-0.0107, 0.0094) 
Literacy: Night-time lights -0.0174 0.0342 -0.0181 (-0.0811, 0.0537) 
Birth interval: Ethnic group variety 0.0960 0.0491 0.0954 (0.0028, 0.1934) ࣌૛ 179.5640 90.8631 221.3824 (0.0218, 278.2934) ࣎૛ 102.9706 161.5442 0.0107 (0.0004, 468.1414) (0.8792 ,0.0413) 0.3627 0.2289 0.3974 ࣋ 
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