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Glossary 

DHS GPS Geo-masking (displacement): Urban clusters are displaced at a distance up to 2 kilometers 
(km). Rural clusters are displaced at a distance up to 5 km, with a further randomly selected 1% of 
the rural clusters displaced at up to 10 km. Details on the DHS geo-referenced data displacement 
process and the spatial variability of the resulting data are found in Burgert et al. 2013. 

Interpolation: Method for creating new data values within the range of known data points. 

Model-Based Geostatistics (MBG): A class of spatial statistical models for interpolating geo-located point 
data. The MBG models are generalized linear mixed models, which extend the flexibility of 
conventional generalized linear regression models (which enable various non-Gaussian data types 
such as count or proportion data to be fitted, via a link function, in Gaussian space) by using a 
multivariate normal distribution to represent spatial or spatiotemporal variation. 

Modeled surfaces: Specific output from the MBG methods used to create spatial interpolated maps with 
DHS data. 

Spatial interpolation (spatial interpolated maps): For this document, spatial interpolation refers to the 
general technique or concept of interpolation, but does not refer to the specific method we are using, 
that of Model-Based Geostatistics (MGB).  
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Preface 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 
on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 
HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports to meet the increasing 
interest in a spatial perspective on demographic and health data. The principal objectives of all DHS report 
series are to provide information for policy formulation at the international level and to examine individual 
country results in an international context. 

The topics in the DHS Spatial Analysis Reports are selected by The DHS Program in consultation with the 
U.S. Agency for International Development.  A range of methodologies are used, including geostatistical 
and multivariate statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 
survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 
used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 

Director, The DHS Program 
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Abstract 

Improved understanding of geographic variation and inequity in health status, wealth, and access to 
resources within countries is central to meeting sustainable development goals. The Demographic and 
Health Survey (DHS) Program’s modeled surface contributes to the greater need of the development 
community for small area estimations of health and demographics. The DHS Program is making publicly 
available a standard set of spatially modeled surfaces for each population-based survey with a select list of 
indicators relevant for health, demographic, and development decision-making. The modeled surfaces are 
created with geo-coded cluster information for current and future population-based DHS surveys and a 
selection of earlier surveys. The maps are publicly available for download on The DHS Program Spatial 
Data Repository (http://spatialdata.dhsprogram.com/). This guidance document will provide users with a 
deeper understanding of The DHS Program modeled surfaces and their potential use in decision-making. 
The DHS Program has adopted the Model-Based Geostatistics (MBG) approach to creating the modeled 
surfaces. This is a method for creating statistically rigorous interpolated surfaces that generate new data 
values for unsampled areas from sampled data points. Such an expansive number of modeled surfaces for 
a diverse group of health and demographic indicators has never been offered in the past and, as such, the 
potential uses are still nascent.  Many users will find new, innovative ways to use the modeled surfaces that 
are not discussed or fully analyzed in this document.  
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Executive Summary 

Improved understanding of geographic variation and inequity in health status, wealth, and access to 
resources within countries is central to meeting sustainable development goals. The Demographic and 
Health Survey (DHS) Program’s modeled surface contributes to the greater need of the development 
community for small area estimations of health and demographics. The DHS Program is making publicly 
available a standard set of spatially modeled surfaces for each population-based survey with a select list of 
indicators relevant for health, demographic, and development decision-making. The modeled surfaces are 
created with geo-coded cluster information for current and future population-based DHS surveys and a 
selection of surveys from earlier years. The maps are publicly available for download on The DHS Program 
Spatial Data Repository (http://spatialdata.dhsprogram.com/). 

This guidance document will provide users with a deeper understanding of The DHS Program modeled 
surfaces and their potential use in decision-making. This document is not a comprehensive review of the 
modeling process, which is discussed in other literature, and does not provide a complete list of the potential 
uses of modeled surfaces. The document was written for geospatial specialists and non-geospatial data 
specialists. Geospatial specialists will find key information on the creation of the modeled surfaces, the 
limitations of the modeled surfaces, and how to operationalize the modeled surfaces for use in various 
geospatial analyses. For the non-geospatial specialists, there is basic information about the modeled 
surfaces and their use in their data analysis activities. 

The approach adopted by The DHS Program is Model-Based Geostatistics (MBG), a method for creating 
statistically rigorous interpolated surfaces that generate new data values for unsampled areas from sampled 
data points. This activity builds on several years of work by The DHS Program to identify the opportunities 
and limitations in creating interpolated surfaces with DHS data and a pilot activity that used MBG to create 
modeled surfaces for three countries and four indicators. The modeled surfaces are produced with publicly 
available geo-referenced data from both The DHS Program and other relevant spatial data sources such as 
environmental rasters. This will facilitate replication and comparability across countries, which will 
promote informed policy and program decision-making. The output of the model is a 5 × 5 km pixel 
resolution modeled surface. In addition, there are corresponding map surfaces that estimate the uncertainty 
or potential error associated with the modeled surfaces.  

Understanding the limitations and assumptions of the modeling surfaces is essential for their proper use and 
interpretation. There are several limitations related to urban areas, temporality, and locational bias. In 
addition, there are considerable differences in the validity of modeling surfaces across different countries 
and among indicators within a country. This can be due to sampled location distribution, indicator cluster 
level case count, and the extent to which the covariates are drivers of the process being measured within 
that country. Finally, the modeling process did not specifically adjust the model to recreate the DHS regions 
or national level estimates present in the survey’s final report. 

The DHS Program modeled surfaces can be used to monitor and evaluate situations and programs, and can 
contribute to informed decision-making about future policies and programs. Included in this document is a 
discussion of possible approaches to operationalizing the modeled surfaces such as aggregation, burden 
estimate, and linkage with other data. Many users will find new, innovative ways to use the modeled 
surfaces that are not discussed or fully developed in this document. Such an expansive number of modeled 
surfaces for a diverse group of health and demographic indicators has never been offered in the past and, 
as such, the potential uses are still nascent. The DHS Program looks forward to learning how others use the 
modeled surfaces in the coming years.  
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Spatially modeled surfaces created by The DHS Program can help meet the needs of national and 
international communities for estimates that are more granular and spatially detailed than those currently 
provided by The DHS Program and most other sources of national level data. These types of maps, whether 
at 5 × 5 km grid scale or subsequently aggregated to appropriate sub-national decision-making units, can 
provide information needed for measuring geographic variation in health, demographic, and development 
indicators. The DHS Program’s spatially modeled surfaces offer additional information that will help 
decision-makers better understand the geographic disaggregation of key demographic and health indicators 
in the coming years. There is enormous potential for new, innovative uses of the modeled surfaces. It is 
only in a large community of users who share their experiences that this potential will be fully realized.   
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Introduction to This Guidance Document  

Since September 2016, The Demographic and Health Survey (DHS) Program has begun providing a 
standard set of indicator packages for spatially modeled surfaces to accompany current and future 
population-based DHS surveys with geo-coded cluster information, and a selection of surveys from earlier 
years. The maps are publicly available for download on The DHS Program Spatial Data Repository 
(http://spatialdata.dhsprogram.com). The maps are produced with a combination of publicly available DHS 
data and global external datasets, which are used in modeling as covariates, and use standard methods to 
promote comparability across countries and to facilitate policy and program decision- making. Although 
the creation of these surfaces is not new, their incorporation as part of a more formal decision-making 
processes is not yet mainstream. Little or no guidance is available for secondary users of the modeled 
surfaces to understand the opportunities and limitations in their use, despite increased demand for modeled 
map surfaces. Many groups have created surfaces for various purposes, although the operational use of 
these surfaces has yet to be thoroughly explored or widely used. The lack of published usage guidance and 
non-technical documentation stands in contrast to the growing demand for such material and the increased 
number of available surfaces across the fields of health and demographics.  

This guidance document will provide users with a deeper understanding of The DHS Program modeled 
surfaces and the potential use of these surfaces for decision-making. This document is not a comprehensive 
review of the modeling process, which is addressed in other literature (Gething et al. 2015), and does not 
provide a complete list of potential uses of the modeled surfaces. Since such an expansive number of 
modeled surfaces on a diverse group of health and demographic indicators has never been provided, the 
potential uses of such surfaces are nascent.  Many users will find new and innovative ways to use the 
modeled surfaces that are not discussed or explored in depth within this document. The DHS Program looks 
forward to learning how users use the modeled surfaces in the coming years.  

Intended audience of guidance document 

The document is intended for geospatial specialists and non-geospatial data specialists. 

• Geospatial specialists will find key information on the creation of the modeled surfaces, the 
limitations that exist in the modeled surface, and the approaches through which the modeled 
surfaces can be operationalized for use in various geospatial analyses. 

• Non-geospatial specialists will find basic information on the modeled surfaces and how they can 
utilize these surfaces in data analysis activities. 

The document allows users to select sections that are relevant or most interesting to them while not reading 
the entire document. Some users may find parts of the guidance document quite technical, especially 
Section 3, which is not essential reading for all audiences. However, it is important for all users to 
understand the limitations and assumptions, discussed in Section 4, which will enable them to use the 
modeled surfaces appropriately.  
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Document structure 

The document includes five main sections, each of which answers an overarching question: 

1. Why is The DHS Program creating modeled surfaces? 

2. What modeled surfaces is The DHS Program creating? 

3. How are The DHS Program modeled surfaces created? 

4. What are the limitations and assumptions of the modeled surfaces? 

5. How can The DHS Program modeled surfaces be used? 

Each section begins with a summary of the concepts discussed in the section, as well as “Key Questions.”  
These questions highlight the important issues in each section with short answers that are addressed in 
greater depth in the subsequent section.  

What is The DHS Program? 

The Demographic and Health Surveys (DHS) Program has long been a leader in collecting and providing 
cluster-randomized survey data on core development indicators (http://dhsprogram.com/). In addition to 
the standard open-source data files in which household and individual survey results can be tabulated by 
first-order sub-national regions (province or state level) and urban/rural strata, most surveys now provide 
geo-coded data for individual survey clusters (enumeration areas (EAs)). Global Positioning System (GPS) 
coordinates for DHS household survey clusters provide local scale information that can be linked with 
survey outputs for quantifying demographic and health status heterogeneities and inequities. 
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1 Why is The DHS Program Creating Modeled Surfaces? 

Summary 

The Demographic and Health Survey (DHS) Program’s modeled surfaces contribute to the larger need of 
the development community for small area estimations of health and demographics. Improved 
understanding of geographic variation and inequity in health status, wealth, and access to resources within 
countries is central to meeting sustainable development goals (SDGs). The DHS Program has adopted the 
Model-Based Geostatistics (MBG) approach to creating modeled surfaces. The MBG approach is a method 
for creating statistically rigorous interpolated surfaces that creates new data values for unsampled areas 
from sampled data points. This current activity builds upon several years of work by The DHS Program 
that focused on identifying the opportunities and limitations in creating interpolated surfaces with DHS data 
and conducting a pilot activity that used MBG for creating modeled surfaces for three countries and four 
indicators. 

  
 

  

Key Questions 

What is interpolation? 
Interpolation is a statistical approach in which predicted values are made for unsampled locations 
based on a weighted combination of nearby data points. See Section 1.2 

 
Would these surfaces replace a large survey? 
No, these modeled surfaces use The DHS Program survey data. Without that survey data, there 
would be no data available for creating the maps. See Section 1.3 
 
Can these surface methods allow for smaller survey sample sizes? 
These approaches may allow for smaller sample sizes in some countries, since large samples are not 
required for estimating the results at the administrative level. However, the precision of the estimates 
with smaller sample sizes yields more imprecise surfaces. The decision to utilize smaller sample sizes 
also depends on country needs and budget constraints. See Section 1.3 

 
Can you give information for places that are insecure and where we cannot go for a survey? 
Yes, these techniques allow for estimates in places not surveyed. These areas would not be modeled 
with as much certainty as other areas that were sampled. However, depending on their size and the 
type of insecurity present, these areas may have different, unique health and demographic outcomes 
that are not necessarily present in the areas that were surveyed. See Section 1.3 
 
Why has this not been done by The DHS Program before?  
The modeling techniques used for these surfaces and applied to health and demographic indicators 
are relatively new and until recently, have been developed by academic groups as proof of concepts 
rather than for policy and decision-making. In addition, these modeling techniques rely on external 
spatial covariates that have become more common and publicly available in recent years. The 
techniques have also been streamlined to require less computational power as greater computational 
power has become more available. See Section 1.4 
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1.1 Context 

Improved understanding of geographic variation and inequity in health status, wealth, and access to 
resources within countries is increasingly recognized as central to meeting the SDGs. Development and 
health indicators assessed at national levels can often conceal important inequities in smaller 
administrative/geographic areas, often with the rural poor the least well represented. As international 
funding for health and development comes under pressure, the ability to target limited resources to 
underserved groups becomes more crucial. At the same time, gaps exist in progress toward achieving targets 
for key global health indicators. Monitoring demographic, access, and health status inequalities for targeting 
interventions and measuring progress towards health and development goals such as the SDGs require a 
reliable, detailed, and disaggregated evidence base. In addition, as national governments decentralize and 
policy decisions are made at the local level within small administrative areas, there is a growing need to 
utilize existing data to accurately target, monitor, and evaluate the impact of programs in smaller geographic 
areas. Three approaches currently allow for population-based survey indicator estimates for small 
geographic units.  

1. Scaling-up the nationally representative survey data collection process by increasing the sample 
size, survey costs, and survey time needed to create a representative sample at the desired 
administrative level.  

2. Use of data from routine health information systems from health facilities or communities. 

3. Small area estimation including spatially interpolated maps that use modeling and statistical 
techniques to predict values for small geographic units. 

The first approach is often not feasible in an increasingly resource-constrained environment. The quality of 
the data in the second option is not always reliable. The data are not easily accessible, and are not usually 
nationally representative. It is the third approach with spatial interpolation that has attracted increased 
interest in recent years.  

1.2 Basics of spatial interpolation 

The term geostatistics refers to a collection of statistical tools that aid in the understanding and modeling 
of spatial variability. The principal motivation is predicting unsampled values dispersed in space 
(interpolation) (Figure 1). The most widely used tool, Kriging, is an interpolation approach in which 
predicted values are made for unsampled locations based on a weighted combination of nearby data points. 
Unlike more simple interpolation algorithms, Kriging provides optimum accuracy of predicted values by 
identifying the most suitable weights for each data point. This is achieved by characterizing the degree of 
correlation between points across space with a variogram function. 

Bayesian inference is a method of statistical inference based on Bayes’ theorem. This allows the 
combination of any prior knowledge with new information.  Bayesian inference is widely used as a flexible, 
theoretically rigorous approach to fitting statistical models that are based on sampled datasets.  

Bayesian geostatistics refers to the implementation of geostatistical models with Bayesian methods of 
inference. Uncertainty in the data from sampling variation and in the fitted model parameters (such as the 
shape of the variogram or autocorrelation function, and relationships with covariates) is inferred and 
propagated, so that it can be measured in the output predictions. In practical terms, this provides a 
convenient way of propagating uncertainty through all stages of the model fit, and representing this 
uncertainty in mapped outputs as a posterior distribution for each predicted pixel value. 
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Figure 1. Interpolation process 

 
 

1.3 Spatial interpolation and household surveys 

Spatial interpolation techniques for estimating values at small geographic units do not replace the need for 
nationally representative household surveys. The key input into the spatial interpolation modeling process 
is the indicator value for each geo-referenced DHS location. These techniques may allow for smaller sample 
sizes in some countries, since large samples are not required for estimating the results at small geographic 
units. However, estimates with smaller sample sizes yield more imprecise map surfaces. Ultimately, the 
sample size is dependent on factors that include the types of indicators being measured (rare events such as 
mortality require a larger sample size), the level of representativeness in the sample (national versus a sub-
national area), other survey requirements needs, and budget constraints.  

Spatial interpolation techniques do allow for estimating indicator values in locations that were not surveyed 
in general and in areas excluded from a survey due to insecurity. However, large areas that were not sampled 
would not be modeled with as much certainty as other areas that were sampled. In addition, depending on 
their size and the type of insecurity present, these areas may have different, unique health and demographic 
outcomes that are not necessarily present in the surveyed areas. 

1.4 Previous relevant work by The DHS Program 

1.4.1 DHS Spatial Analysis Report 9 

The DHS Program convened a meeting of key stakeholders in June 2013 to discuss the use of geographic 
data from DHS population-based surveys for spatial interpolation. This meeting took place within the 
following context: 

• Advances in technology that included faster computing power, more accessible GPS data, and less 
expensive hardware. 

• Desire of decision-makers to use data at small administrative units and other relevant geographic 
areas (livelihood zones). 

• Increased use and adoption of DHS data in spatial modeling techniques generally and more 
specifically, in interpolation techniques.  
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Participants also discussed the particularities of the DHS household survey geo-referenced data, which 
could limit some applications. The DHS Spatial Analysis Report 9 (SAR 9) (Burgert 2014) summarizes 
key discussions and recommendations from that meeting that also included indicator selection, methods, 
and limitations.  

1.4.2 DHS Spatial Analysis Report 11 

After meeting in June 2013, The DHS Program began exploring the potential use of Bayesian MBG for the 
production of interpolated modeled surfaces from the DHS population-based survey GPS-located cluster 
data. As a proof of concept, the MBG methods were tested on four indicators in three DHS country surveys: 
Ghana DHS 2008, Tanzania DHS 2010, and Uganda DHS 2011. The four indicators included prevalence 
of HIV testing in women (during the last 12 months), prevalence of stunting and anemia in children, and 
household access to improved sanitation. The DHS Spatial Analysis Report 11 (SAR 11) (Gething et al. 
2015) summarizes the detailed results of this proof of concept activity, and includes the assessment of 
method validity, covariates, and uncertainty. In general, with the exception of the HIV testing indicator, the 
models performed reasonably well for all indicators with small bias values and average errors less than 20 
percentage points and closer to 10 percentage points in most cases (Figure 2). Low mean square error (MSE) 
values indicate that the model fit with minimal overall bias. Not surprisingly, the geographic variations in 
a variable such as access to HIV testing, which has principally non-biophysical drivers, were less receptive 
to capture by the suite of principally environmental covariates, with generally lower predictive R-squared 
(PR2) values. Despite this, overall absolute errors (MAE) were relatively low.  

In addition, the report explores the impact of DHS GPS located cluster geo-masking on the production of 
interpolated surfaces. The 5 × 5 km pixel resolution was chosen to reduce the impact of the geo-masking 
of DHS survey GPS located clusters on the final model surface and to match the resolution of the covariate 
inputs of the model. Finally, the report investigated the potential for novel methodologies and covariates to 
address the challenge of mapping within urban areas. The full model output from the proof of concept 
activity included 12 modeled surfaces with 5 × 5 km pixel squares on the predicted mapped surface and 
uncertainty map surface.  

Figure 2. Summary of validation statistics for pilot activity 
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2 What Modeled Surfaces is The DHS Program Creating? 

Summary 

The DHS Program is making publicly available a standard set of spatially modeled surfaces for 
each population-based survey for a select list of indicators (Table 1). Each modeled surface will be 
produced with standardized geostatistical modeling methods (a type of spatial interpolation) and a 
standardized set of covariates across countries (Table 2). The modeled surfaces are produced with publicly 
available geo-referenced data from both The DHS Program and other relevant spatial data sources 
(environmental rasters) (Table 2). This will facilitate replication and comparability across countries, which 
in turn will promote informed policy and program decision-making. There will also be corresponding 
map surfaces with estimates of the uncertainty or potential error associated with the modeled surfaces. 
The maps are publicly available for download on The DHS Program Spatial Data Repository at 
http://spatialdata.dhsprogram.com/. 

  

Key Questions 

Why are you not using the detailed census data from my country as a model input? 
The DHS Program chose to use a standardized approach that would be applicable across different 
countries and over time. This means that globally available covariate datasets are being used instead 
of country specific data such as census data or other country health data. Country datasets are not 
always publically available and using standardized global datasets is easier when producing a large 
number of datasets over time. See Section 2.1 

 
Can you do this for my specific topic? 
Theoretically, the modeling approach can be applied to a broad range of topics, although there are 
limitations for certain types of indicators that may not be modeled as well with these techniques. 
These limitations are summarized in this section and explained more completely in SAR 9 (Burgert 
2014). See Section 2.1.1 

 
Why is only one survey sample used instead of all surveys conducted in a country?  
Incorporating surveys from multiple time points requires the use of spatiotemporal interpolation that is 
considerably more complex and often requires temporally varying covariates that are not always 
available. In addition, the availability of multiple surveys varies between countries and their 
incorporation would have led to less standardization between countries. For simplicity and 
consistency, only one survey per year was modeled. See Section 2.1.2 

 
Do covariates have the same timeframe as the survey? 
The covariates have various timeframes although they are generally close in time to the survey date. 
Table 2 summarizes the details of the covariates used in the modeling. See Section 2.1.3 
 
Are map datasets publicly available? Where can I download them? 
Yes, the modeled surfaces are publicly available for download from The DHS Program Spatial Data 
Repository at http://spatialdata.dhsprogram.com/. See Section 2.2 
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2.1 Standardized modeled surfaces 

There is an important distinction between creating the “best possible maps” for a specific country and 
“standardized maps” for the whole world or a set of countries. Construction of the best possible map for a 
given country might entail the use of numerous country-specific covariate datasets (such as national census 
data) as well as bespoke mapping resolution and methodologies. While they might potentially optimize 
map accuracy, these country-specific components would inevitably prevent direct comparison between 
maps from other countries with different components. Only those covariates available as global products 
were included in the models to ensure a standardized approach across all countries. Further, The DHS 
Program uses publicly available geo-referenced data both from the DHS (GPS locations) and from external 
covariate sources so that the surfaces can be reproducible. In practice, this meant that the covariates (Table 
2) were derived primarily from satellite remote sensing, although such data have been widely used and 
shown to perform as useful predictors of a wide range of social, economic, and health indicators.  

2.1.1 Selection of indicators for standard map set 

All indicators that can be derived from a DHS dataset may not be appropriate for use in a modeled surface 
creation process. The DHS Spatial Analysis Report 9 (SAR 9) (Burgert 2014) summarizes the following 
indicator characteristics for selecting indicators that are suitable for any type of the spatial interpolation 
technique: 

• Indicator measures well in DHS surveys and is a robust measurement that is not subject to 
significant recall error. 

• Indicator does not measure a rare event such as neonatal mortality. This is important because the 
first step in the model surface process requires calculation of the indicator at the cluster level. A 
relatively rare event may have many locations with zero data. Although zero or generally small 
numerator/denominator values at locations are accepted in the model, too many instances of zero 
in a dataset will lead to surfaces with considerable uncertainty that limits the surface’s use. 

• Indicator is spatially heterogeneous and varies across geographical space. 

• Indicator has a specific reference period—not an indefinite reference period or reference period 
that is spatially linked to the outcome (ever tested for HIV versus fever in the past two weeks). 

• Indicator is not temporally or micro-seasonally restricted and, therefore, is not likely to change 
substantially over the course of data collection, which can last many months.  For example, school 
attendance and the use of mosquito nets were excluded due to temporality concerns. This means 
that locations may be surveyed in the same physical area at different points in time. In addition, 
across an entire country, different seasonal determinates may complicate the understanding of 
certain temporally related indicators. For example, campaign-based activities such as vaccinations 
or bednet distribution may also occur at different times in different places. 

• Indicator relates to the current location of the respondent, and not maternal mortality by the 
sisterhood method that relies on interviewing respondents about the survival of all their adult 
sisters. 

With these criteria as a guide, an initial set of 15 indicators was selected to create spatial map surfaces using 
DHS data for public release in September 2016. These indicators are summarized in Table 1. The standard 
indicator definition was used for each indicator with national estimates compared against The DHS API 
(http://api.dhsprogram.com/) values before modeling began. Additional details on the individual indicators 
and how they are collected are available on The DHS Program website (http://dhsprogram.com/). These 
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indicators were relevant to the larger development community including the SDGs and other programmatic 
priorities, and important for balancing household and individual (women, men, and children) indicators. 
This list may change over time, with indicators added or deleted as their relevance to the larger development 
community are assessed, and their overall utility in potential decision-making is further understood. Not all 
indicators are available for each survey, either because the appropriate data are not available (not all 
countries conduct the men’s survey) or the indicator is collected in a non-standard manner in the country 
such as 3-year versus 5-year estimates.  

Table 1. Summary of indicators included in September 2016 data release 

Indicator Definition 

Population living in households 
using an improved water source 

Percentage of the de jure population living in households whose main 
source of drinking water is an improved source 

Population living in households 
using no toilet facility (practicing 
open defecation) 

Percentage of the de jure population living in households whose main 
type of toilet facility is no facility (open defecation) 

Persons with access to an ITN Percentage of the de facto household population who could sleep 
under an ITN if each ITN in the household were used by up to two 
people 

Married women currently using any 
modern method of contraception 

Percentage of currently married or in union women currently using any 
modern method of contraception 

Demand for family planning satisfied 
by modern methods 

Percentage of demand for family planning satisfied by modern methods 
is calculated as the number of currently married women using modern 
methods of family planning divided by the number of currently married 
women with demand for family planning (either with unmet need or 
currently using any family planning) 

Unmet need for family planning Percentage of currently married or in union women with an unmet need 
for family planning 

Women 15-49 with any anemia Percentage of women classified as having any anemia (<12.0 g/dl for 
non-pregnant women and <11.0 g/dl for pregnant women) 

Antenatal visits for pregnancy: 4+ 
visits 

Percentage of women who had a live birth in the five years preceding 
the survey who had 4+ antenatal care visits 

Place of delivery: Health facility   Percentage of live births in the five years preceding the survey 
delivered at a health facility 

Women who are literate Percentage of women age 15-49 who are literate   
DPT3 vaccination received Percentage of children 12-23 months who had received a third dose of 

DPT 
Measles vaccination received Percentage of children 12-23 months who had received Measles 

vaccination 
Children stunted Percentage of children under age five years stunted (below -2 SD of 

height-for-age according to the WHO standard) 
Men who are literate Percentage of men age 15-49 who are literate  
Tobacco use among men Percentage of men age 15-49 who use tobacco 

 

2.1.2 DHS data considerations 

In most DHS household surveys, the sampling clusters are the primary sampling unit (PSU), which includes 
preexisting geographic areas known as census enumeration areas (EAs). The boundaries of the EAs are 
defined by the country’s census bureau, as are the urban and rural status of each cluster. An EA can be a 
city block or apartment building in urban areas, while in rural areas an EA is typically a village or group of 
villages. The population and size of sampled clusters vary between and within countries. Typically, clusters 
contain 100-300 households, of which 20-30 households are randomly selected for survey participation. 
The estimated center of each cluster is recorded as a latitude/longitude coordinate, which is obtained from 
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a GPS receiver or derived from public online maps or gazetteers. The actual physical size or boundaries of 
the survey cluster are publically available, although in recent years it has become more common for 
countries to have census EA boundary files that are used to calculate the center of the EA.  

To ensure confidentiality, the geo-coded cluster locations are geo-masked (displaced) prior to dataset 
release (Burgert et al. 2013). Urban clusters are displaced to a distance up to two km. Rural clusters are 
displaced up to a distance up to five km, with a further randomly selected 1% of the rural clusters displaced 
at a distance up to ten km. The modeled surface creation process uses the geo-masked datasets that are 
made publicly available by The DHS Program. 

The modeling approach used a single survey as the DHS input. It is possible to create spatiotemporal models 
that use multiple survey inputs to create a single surface. This approach can increase the model’s predictive 
power but requires a number of other considerations such as the time of surveys and timing of covariates. 
For the purposes of the DHS standard spatially modeled surfaces, a single survey year approach simplified 
the model processing and interpretation. 

2.1.3 Geospatial covariate considerations 

An important aspect of geostatistical modeling is the exploitation of geospatial covariates that are relevant 
or related to the indicator of interest, can partially explain variation in that indicator, and allow for more 
accurate predictions across the map. As discussed above, global covariate datasets were used instead of 
country-specific data, since this ensures standardization across countries. A suite of geospatial covariates 
was chosen from existing libraries that have previously demonstrated broad utility in geospatial mapping 
(Gething et al. 2015; Weiss et al. 2014). The geospatial data sources described in Table 2 were obtained in 
a variety of spatial resolutions and geographic extents. (Details on the covariates are available on each 
dataset’s website provided in the table.) In addition, the land-sea templates differed slightly between 
products, so that the precise definition of coastlines and the inclusion or exclusion of small islands and 
peninsulas was not consistent. These factors precluded the direct use of these data in a single spatial model. 
To overcome these incompatibilities and to generate a fully standardized suite of input grids on an 
identically defined geographic template, a processing chain was developed with the following stages:  

1. Each input data source was re-projected, where necessary, by using a standardized equirectangular 
Plate Carrée projection under the World Geodetic System 1984 coordinate system. 

2. Input grids that were defined at differing spatial resolutions were re-sampled to 5 × 5 km. 

3. Grids were either extended or clipped to match a standardized country extent.  

4. A bespoke algorithm was developed that compared each rectified and re-sampled grid to a “master” 
land-sea template for each country. This used a simple interpolation and/or clipping procedure to 
align new grids to this master template, which ensured that all coastlines were perfectly consistent 
on a pixel-by-pixel basis. 

The geospatial covariates can be static (one point in time), multi-temporal (multiple spatial layers 
representing several consistently spaced points in time), or synoptic (over a long time period and 
summarized to show a long-term average or other general trends). The time period (date) that the covariates 
represent vary and do not necessarily match the exact time period of the DHS survey being modeled.  
Possible limitations of the covariates within the model are discussed further in Section 4.1.2. 
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Table 2. Summary of covariates used in modeling for September 2016 data release 

Short name Description Original Data Source Temporal Date 

Access Travel time to cities with > 50k 
via all transport methods  

http://forobs.jrc.ec.europa.eu  Static  2000 

Aridity Mean annual aridity  http://csi.cgiar.org/Aridity/  Synoptic  1950−2000 
NTL VIIRS nighttime lights−2012  http://ngdc.noaa.gov/eog/  Static  2012 
Elevation  SRTM Near−global digital 

elevation models (DEMs)  
http://webmap.ornl.gov/  Static  2000 

EVI  Enhanced vegetation index  http://modis.gsfc.nasa.gov/  Multitemporal  2001−2014 
GPW  GPW population density http://sedac.ciesin.columbia.edu/  Static  2010 
LST.day  Land surface temperature in 

the daytime  
http://modis.gsfc.nasa.gov/  Multitemporal  2001−2014 

LST.delta  Land surface temperature 
daily fluctuation range  

http://modis.gsfc.nasa.gov/  Multitemporal  2001−2014 

LST.night  Land surface temperature in 
the nighttime  

http://modis.gsfc.nasa.gov/  Multitemporal 2001−2014 

PET  Mean annual potential 
evapotranspiration  

http://csi.cgiar.org/Aridity/  Synoptic  1950−2000 

PRECIP  Average monthly rainfall  http://www.worldclim.org/  Synoptic  1950−2000 
TCB  Tasseled−cap brightness  http://modis.gsfc.nasa.gov/  Multitemporal  2001−2014 
TCW  Tasseled−cap wetness  http://modis.gsfc.nasa.gov/  Multitemporal  2001−2014 

 

2.2 Availability of modeled surfaces 

The modeled surfaces are publicly available for download on The DHS Program Spatial Data Repository 
(http://spatialdata.dhsprogram.com/). Figure 3 shows the website. A table summarizing the data available 
at the time of visit is available for download from the site; this indicates the country survey year available 
and the indicators are available for each. 

The download package is a ZIPPED folder that contains 5 components: 

• Point estimate modeled surface at 5 × 5 km resolution (GeoTIFF format) 

• Uncertainty estimate modeled surface at 5 × 5 km resolution (GeoTIFF format) 

• Image of mean estimate modeled surface (PNG format) 

• Image of uncertainty estimate modeled surface (PNG format) 

• Indicator specific document on modeling procedures (PDF format) 
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Figure 3. Screenshot of modeled surface download website 
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2.2.1 Model surfaces dataset and associated files naming conventions 

The modeled surface package naming conventions follow a standard derived from The DHS Program API 
(application program interface). The API provides standard names for country surveys and indicators, and 
allows users to find corresponding information about the country survey and associated information on the 
specific indicator. Each dataset has a standard naming convention that identifies the country, survey year, 
indicator, type of data, and version number. The fields are described below. 

• Field 1: SurveyID (From DHS API, see http://api.dhsprogram.com/rest/dhs/surveys?f=html) 

• Field 2: SDRID (Short form of Indicator Id from DHS API, see http://api.dhsprogram.com/ 
rest/dhs/indicators?returnFields=IndicatorId,SDRID,Label,Definition&f=html) 

• Field 3: MS (modeled surfaces) 

• Field 4: TYPE (either MEAN for point estimate or CI for uncertainty estimate) 

• Field 5: v# (Dataset version number should be “v01” in most cases unless a dataset was reissued) 

These fields are combined for each component of the data packages. These are described in Table 3 with 
an example for the Ghana 2008 DHS survey and the children under age 5 stunted indicator. 

Table 3. Modeled surface naming conventions 

 Generic Example 

Folder name SurveyID _SDRID_MS_v# GH2008DHS_CNNUTSCHA2_MS_v01 
Datasets  SurveyID _SDRID_MS_TYPE_v# GH2008DHS_CNNUTSCHA2_MS_MEAN_v01 

GH2008DHS_CNNUTSCHA2_MS_CI_v01 
Image files SurveyID _SDRID_MS_TYPE_v# GH2008DHS_CNNUTSCHA2_MS_MEAN_v01 

GH2008DHS_CNNUTSCHA2_MS_CI_v01 
Documentation  SurveyID _SDRID_MS_v# GH2008DHS_CNNUTSCHA2_MS_v01  

 

2.2.2 Attribution 

The DHS modeled surface datasets are publically available, free of charge. You must give appropriate credit 
when using the DHS modeled surface datasets. Data users should cite the Spatial Data Repository as the 
source of all derived analyses, reports, publications, presentations, and other products. To use the 
recommended citation, simply replace the accessed date with the actual date of download. 

For a single modeled surface dataset: 

Spatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces. 
SurveyID_SDR-API_ID_MS_v#. ICF. Funded by the United States Agency for International 
Development (USAID). Available from spatialdata.dhsprogram.com. [Accessed DAY MONTH 
YEAR] 

 
For multiple modeled surface datasets: 

Spatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces. ICF. 
Funded by the United States Agency for International Development (USAID). Available 
from spatialdata.dhsprogram.com. [Accessed DAY MONTH YEAR] 
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3 How are The DHS Program Modeled Surfaces Created? 

Summary 

This section describes the preparation of point geo-referenced survey cluster data on each selected DHS 
indicator, the assembly and exploration of a suite of gridded geospatial covariate layers, and the use of these 
inputs in a series of bespoke Bayesian model-based geostatistical (MBG) models to generate final modeled 
surfaces for each indicator. The output of the model is a 5 × 5 km pixel resolution modeled surface. A more 
in-depth description of the modeling process can be found in SAR 11 (Gething et al. 2015).  

Key Questions 

Can I replicate these modeled surfaces myself? 
All the details of the model inputs (covariates) and general model structure are shared in this and 
other accompanying documents. In theory, with the right skills, you can create your own modeled 
surfaces; however, your surfaces may look different from The DHS Program surfaces because certain 
modeling decisions take place in the model cycle that may change the final outcome. See Section 3.1 

 
Which covariates form each map? 
All covariates are used as input for every map. However, a fitting procedure is used that automatically 
weighs the influence of each covariate according to how much useful information it contains on the 
indicator of interest. The associated documentation for each surface describes the relative 
contribution of each covariate in the final fitted model (expressed as a percentage). See Section 3.1.3 

 
Why do areas have different levels of error? 
Error in this context refers to the ability of the model to predict the correct value of an indicator in a 
particular place. This depends on multiple factors such as the number of cluster locations in the 
survey, the density of survey clusters around a prediction location, the number of case count 
respondents within each cluster, the strength of correlations between covariates and the indicator, 
and the inherent degree of spatial variation displayed by the indicator. The overall predictive ability of 
the model is summarized in the mean absolute error validation statistic. See Section 3.3 

 
Can the mean estimate value and uncertainty maps be displayed simultaneously? 
Yes, there are several different ways to display the data simultaneously. See Section 3.3 
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3.1 Explanation of modeled surface creation process 

Figure 4 illustrates the DHS modeled surface creation process from the model inputs to the model outputs. 
The process is further described for each numbered step in the figure in the subsequent sections.  

The details of the approach are explained in the Spatial Analysis Report 11 (Gething et al. 2015). A 
Bayesian model−based geostatistical (MBG) approach (Diggle and Ribeiro 2007; Diggle, Tawn, and 
Moyeed 1998) was used to generate the modeled surfaces. Building on techniques originally conceived for 
detailed mapping of malaria prevalence (Gething et al. 2011; Hay et al. 2009), MBG models represent the 
observed variation in cluster-level survey data using four components. 

• Sampling error, which can often be large given the small sample sizes in individual clusters, is 
represented with a standard sampling model; this is usually the binomial when the indicator in 
question is a proportion.  

• Some non-sampling variation can be explained using fixed effects, whereby a multivariate 
regression relationship is defined by linking the indicator variable with a suite of geospatial 
covariates.  

• Additional non-sampling errors not explained by the fixed effects are usually spatially auto-
correlated, and are represented by using a random effects component. A spatial multivariate normal 
distribution known as a Gaussian Process is employed and parameterized by a spatial covariance 
function.  

• Any remaining variation not captured by these components is represented with a simple Gaussian 
noise term equivalent to that employed in a standard non-spatial linear model.  

3.1.1 Model inputs (Steps 1 & 2) 

Two types of data are used into the modeled surface process (Step 1 and 2 in Figure 4). 

1. DHS cluster level observations: The cluster level numerator and denominator for the indicator are 
created with the publicly available DHS data (individual and household recode files). This 
information is then linked to the cluster level GPS location data. 

2. Geospatial covariates: A range of covariate grids is included as possible explanatory covariates. An 
important aspect of geostatistical modeling is the exploitation of geospatial covariates that are 
correlated with the outcome of interest, can partially explain variation in that response, and allow 
for more accurate predictions across the map. As described above, a suite of covariates was chosen 
from existing libraries at the University of Oxford, based on factors that have previously been 
shown to correlate with demographic and health indicators in different settings. The covariates are 
standardized to a 5 × 5 km raster grid within a uniform coastline.  
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Figure 4. Schematic diagram summarizing the DHS modeled surface creation process  
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3.1.2 Data statistics (Step 3) 

Three basic analyses explored the characteristics of the raw data (Step 3 in Figure 4).  

• Cluster-level observations: A map showing the location and observed values of the indicator for 
each geo-located DHS survey cluster, wherein each cluster is represented by a dot (Figure 5, 
Panel A). 

• Histogram: A simple empirical histogram to assess statistical distribution which is useful in 
interpreting the indicator and resulting maps (Figure 5, Panel B). Histograms with values across a 
large number of indicator values will result in a map with a spectrum of values while maps with 
the majority of values grouped together will produce a map with a more uniform look.  

• Variogram: The spatial autocorrelation structure present across clusters is assessed via an 
empirical variogram (Figure 5, Panel C). A variogram plots semi-variance (the average 
dissimilarity in the indicator values between two cluster points) against spatial lag (the geographical 
distance separating two points). Where data are spatially structured, a characteristic variogram form 
will show steadily increasing semi-variance with increasing lag. Conversely, data with no spatial 
structure leads to a flat variogram. Variables with greater spatial autocorrelation tend to be more 
amenable to spatial interpolation and more reliable maps. 

Figure 5. Example of data statistics 
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3.1.3 Model fit (Step 4) 

After considering the preliminary data statistics, the next step in the modeling process is parameterizing the 
model to determine the set of model parameter values that lead to the best possible fit with the data (Step 4 
in Figure 4). The MBG models have three categories of parameters, which involve determining the 
characteristics of the Gaussian process (random effects), the nature and magnitude of the contribution of 
each covariate (fixed effects), and the uncorrelated residual error (the non-spatial component). The spatial 
Gaussian process is governed by a spatial covariance function (the Matern function was used for  flexibility) 
which is parameterized by a scale parameter (which determines the spatial distance over which points are 
autocorrelated) and a variance parameter (which determines the magnitude of that autocorrelation) (see 
Table 4, model parameters).The fixed effects have a more complex parameter structure that allows for non-
linear relationships between the covariates and the response variable as well as interactions between them. 
A “regularization” approach allows the full suite of covariates to be used in the model without the risk of 
over-fitting. All covariates remain in the model although their relative contributions to the final predictions 
can be large or almost zero in order to maximize predictive performance. These contributions are described 
as a percent covariate contribution (see Table 4, covariate contributions).  This approach differs slightly 
from the approach described in SAR 11 in which there was an initial covariate selection process with only 
the selected covariates included in the final model. The new approach provides consistently higher 
performance and has the additional advantage of reducing the subjective input of an analyst in refining the 
selection of covariates. The uncorrelated residual error is parameterized by a single variance parameter (see 
Table 4, model parameters). All parameters are jointly estimated in a single fitting exercise using Bayesian 
inference with vague priors. 

Table 4. Example of model parameters, covariate contributions, and validation statistics 

Model parameters 

Covariance function Matern 
Spatial scale of correlation (km) 70.9 
Variance of spatially structured component 0.5 
Variance of non-spatial component 0.58 
 

Covariate contributions 

Mean annual aridity 12% 
VIIRS nighttime lights−2012 8% 
Enhanced vegetation index 4% 
SRTM near−global digital elevation models (DEMs) 14% 
GPW population density 4% 
Land surface temperature in the daytime  18% 
Land surface temperature daily fluctuation range 4% 
Land surface temperature in the nighttime 6% 
Mean annual potential evapotranspiration 6% 
Tasseled−cap brightness 6% 
Tasseled−cap wetness 9% 
Travel time to cities with > 50k via all transport methods 6% 
Average monthly rainfall 6% 

Validation statistics 

Correlation 88% 
Mean absolute error 9% 
Mean square error 1% 
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3.1.4 Model validation (Step 5) 

Model validation and the corresponding statistics are an important measure of the predictive performance 
of the geostatistical model (Step 5 in Figure 4). Performance is assessed by out-of-sample validation that 
includes a four-fold, hold-out procedure in which 25% of the data points were randomly withdrawn from 
the dataset.  The model is then run in full with the remaining 75% of data, and the predicted values at the 
locations of the hold-out data compared to their observed values. This process is repeated four times without 
replacement so that every data point is held out one time throughout the four validation runs. Standard 
validation statistics are then computed as measures of model precision: 

• Degree of linear association between the observed and predicted values (correlation, COR). 

• Mean absolute error (MAE) that quantifies model precision, which is the average magnitude of 
difference between observed and predicted values. This is computed in the same units as the 
variable being predicted; for example, if the indicator is a rate expressed on a scale from 0-100%, 
the MAE will also be a value between 0-100%. 

• Mean square error (MSE) that indicates the model’s accuracy, and encapsulates bias and error with 
values close to zero an indication that the model is more accurate and close to one less accurate.  

Examples of these statistics are shown in Table 4 (validation statistics). Figure 6 below shows a scatterplot 
with the distribution of actual (observed) versus predicted points from the model. 

Figure 6. Example of validation scatterplot 

 

3.1.5 Model outputs (Step 6) 

In the download package, the model has two map surface outputs with 5 × 5 km pixel resolution (Step 6 in 
Figure 4): the point estimate surface and the model uncertainty surface. The MBG models generate 
estimates of the variable of interest at each location on a gridded surface. For each of those pixels, the full 
model output is a posterior distribution for the predicted indicator that represents a complete model of the 
uncertainty around the estimated value. These can be summarized with a point estimate (such as the 
posterior mean) to generate a mapped surface. Additional summary statistics from each posterior 
distribution can then be mapped to illustrate the degree of uncertainty associated with each predicted value.  
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• Point Estimate Surface: The map plots the modeled point estimate value for each 5x5 km pixel 
based on geo-located, cluster-level data from the survey. This value effectively represents the 
expected value of the indicator within that 5 × 5 km region. Since the indicators being modeled are 
rates (prevalence or proportion variables), all rates lie on a scale between 0 and 1 (or 0% and 100%) 
(Figure 7, left). 

• Model Uncertainty Surface: An accompanying uncertainty map summarizes the level of certainty 
associated with the values shown in the point estimate map by displaying the full width of the 95% 
credible interval (also called confidence interval or CI) for each pixel value (Figure 7, right). In a 
situation with complete uncertainty about a pixel's value, the 95% CI would span the entire range 
and the true value could lie anywhere between zero and one. Conversely, when a variable is 
predicted with very high certainty, the width of the 95% CI might be very narrow. In other words, 
there is a 95% probability that the true value lies within a narrow range of possible values; this 
indicates that the prediction has low uncertainty. 

Figure 7. Example of point estimate surface and model uncertainty surface  

 
 

3.2 Example of modeled surface documentation 

The following pages describe an example of the modeled surface documentation included in each zip file 
that can be downloaded from The DHS Program Spatial Data Repository website. Each indicator country 
survey has its own document with the figures and information relevant for that modeled surface. The main 
text, which is standard across all documents, helps users understand the information in the figures.
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3.3 Model surface uncertainty and interpretation 

An important element of the model surface output is the uncertainty estimates. The prediction uncertainty 
maps provide an indication of the likely precision of the mean estimate for each grid square (pixel level). 
The uncertainty surface helps users understand the robustness of an estimate at any given location on the 
map.  Uncertainty can vary across a modeled surface for several reasons such as the sparseness of DHS 
point location data, rareness of the indicator being estimated, and the extent to which the model explains 
the variance. More uncertainty in a location indicates that the model poorly estimates the indicator value in 
that location, while less uncertainty indicates that the model is better able to estimate the indicator value in 
that location. This uncertainty of the modeled surface is provided as a standard output in the form of a raster 
surface with each grid square (pixel) value representing the width of the 95% CI of the point estimate 
indicator value for that pixel. It is possible to have very low confidence width values and values that are 
equivalent to a 95% CI of 0% to 100%. These uncertainty surfaces are separate from the validation statistics, 
which provide a summary of the overall model performance rather than the precision at different locations. 
Although the relationship between them is complex, generally a model with good validation statistics (high 
correlation, low MAE and MSE) would also have lower levels of uncertainty on a pixel-by-pixel basis, and 
vice-versa. 

When using the modeled surfaces for decision-making, it is important to consider the uncertainty of the 
estimate. The interpretation of the uncertainty values for a modeled surface is not obvious, and is often 
ignored by users. However, it is an important element of the model and is worth consideration by users, 
who can gain a general sense of the model’s uncertainty and the difference in uncertainty in specific areas. 
Individual users must decide on an acceptable level of uncertainty depending on the given context or 
indicator, and the amount of uncertainty that they are willing to accept.  

Figure 8 illustrates several ways that the uncertainty surface can be transformed to be more useful in the 
decision-making process. Displaying the uncertainty surface as a continuous value with a divergent color 
scheme (Figure 8 Panel A) allows users to identify areas with more or less certainty. Another approach 
requires the user to select a credible interval threshold with the amount of error they are willing to accept 
such as 10%. The map can then display those areas that meet the threshold and those that do not.  It is also 
possible to super-impose those areas that do not meet the threshold onto the mean estimate map either as a 
mask or hatching (Figure 8 Panel B and C). 

Unlike the point estimate interpolated surface, it is not appropriate to aggregate (average) the uncertainty 
surface to larger geographic polygons (areas) by a simple averaging method and then using these results 
directly as an estimate of the 95% CI of the aggregated mean estimate value for the same area. Since the 
uncertainty is evaluated at the pixel level (the certainty of the mean estimate at that pixel only), it cannot 
be averaged over a larger area because the level of error is not independent across pixels. There may be 
some ways to account for this problem of joint probabilities that occur in the aggregation of the uncertainty 
surface, but it would be necessary to know the exact purpose and level of aggregation needed for the 
indicator (Gething, Patil, and Hay 2010). This is appropriate when making a single specific map for 
analytical purposes, although the purpose and level of aggregation will vary for every user of The DHS 
Program modeled surfaces. It may be appropriate to aggregate the uncertainty surface to larger geographic 
areas if the relative uncertainty is being evaluated versus the absolute width of the 95% CI. Averaging the 
95% CI for a given area and then comparing it to other areas can provide a sense if one area is likely to 
have more or less uncertainty when compared to other areas. Operationalizing this might involve calculating 
the average width of the 95% CI values for the geographic areas of interest (by averaging the pixel values 
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within the geographic unit), creating terciles of the values, and then displaying them as high, medium, and 
low relative uncertainty without any actual values (Figure 8 Panel D, E, and F). 

Figure 8. Examples of model uncertainty surface visualization 
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4 What are the Limitations and Assumptions of the Modeling 
Surfaces? 

Summary 

Understanding the limitations and assumptions of the modeling surfaces is essential for their proper use and 
appropriate interpretation. There are several model limitations related to urban areas, temporality, and 
locational bias. In addition, there can be considerable differences in modeling surface validity across 
different countries and among indicators within a country. This may be due to sampled location distribution, 
indicator cluster level case count, and the extent to which the covariates are drivers of the process being 
measured within that country. Finally, the modeling process did not specifically adjust the model to recreate 
the DHS Regions or national level estimates present in the survey final report. 

  

Key Questions 

Are some geographic areas modeled better or worse than others? 
The pilot modeling activity (SAR 11) indicated that urban areas were not as well modeled as other 
areas of a country. This is due in part to the large heterogeneity in urban areas that may not be 
captured by the covariate library as well as the impact of the 0-2 km geo-masking (displacement) of 
the urban geo-coded cluster location. See Section 4.2 
 
Why do areas have different levels of error across indicators and countries? 
Error in this context refers to the ability of the model to predict the correct value of an indicator in a 
particular place. This depends on multiple factors such as the density of survey clusters around a 
prediction location, the sample size (number of case count respondents) within each cluster, data 
points available and location in the survey (more data points provide better predictions), the strength 
of correlations between covariates and indicators, the indicator and covariate association, and the 
inherent degree of spatial variation displayed by the indicator. The overall predictive ability of the 
model is summarized in the mean absolute error validation statistic. See Section 4.2 
 
Are maps comparable across different countries? 
Yes, the maps are comparable between different countries but limitations remain as described in 
earlier sections; these include the varying amount of error in the map and the predictive ability of the 
model. See Section 4.2 
 
Can I recreate the DHS final report national or sub-national estimates from the modeled surface 
map?  
The modeling process did not specifically adjust the model to recreate the DHS regions or national level 
estimates present in the survey final report. In many cases, the modeled surface aggregated values will 
be within the 95% CI of the DHS final report estimates. See Section 4.3 
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4.1 Model limitations 

There are several assumptions and limitations that must be considered when using and interpreting the 
spatial modeled surfaces. These relate to urban areas, temporality, and locational bias. 

4.1.1 Urban areas 

A key limitation of the modeling approach is urban area mapping. In all national-level spatially modeled 
surfaces created in the pilot and described in SAR 11, urban areas were predicted with relatively uniform 
values (Figure 9). This is due in part to the size of the final pixel resolution and the availability of urban 
specific covariates, which may differ from those in rural areas. In reality, large urban areas typically exhibit 
substantial heterogeneities in health and development indicators that occur at shorter scales than the 5 km 
pixel diameter. This is an important issue since close to 50% of residents in the majority of countries that 
were mapped reside in urban areas and the population in urban areas is growing. The SAR 11 report 
explored some possible approaches to mitigating these factors including using higher resolution covariates 
in urban areas (Gething et al. 2015). Specific conclusions related to urban areas should be considered 
carefully and with an understanding that the predicted 5 × 5 km value of urban pixels represents a mean 
that cannot show the considerable within-pixel variability. 

Figure 9. Example of urban area point estimates surface and model uncertainty surface 
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4.1.2 Temporality 

There are several temporal or seasonal limitations and assumptions that apply when considering a modeled 
surface. These limitations are similar to the temporal issues that exist in selecting an indicator described in 
Section 2.1.1.  Issues include the survey timing, length of the fieldwork, and covariate timing. These are 
particularly relevant for temporally bounded indicators or those related to the time when the survey was 
conducted such as the rainy season or school year.  

A recent review of 18 recent DHS surveys indicates that fieldwork typically lasts between 2 to 9 months, 
with an average of 5 months. The dates of survey fieldwork are available on the DHS website 
(http://dhsprogram.com/). The length of fieldwork varies between countries, and this variation can have an 
impact on specific indicators within a country. For example, if a particular indicator has a seasonal 
association with the survey date in any particular cluster, the location will not be the same as other parts of 
the country and nearby locations may not be surveyed at the same time.  

The timing of the raster covariate datasets is an additional limitation on the model map surfaces. Although 
some geospatial covariates may not vary greatly within a given year or over many years, some may vary 
considerably. Table 2 summarizes the temporal nature of each raster and their date(s) of collection. The use 
of the standard covariates instead of the best covariates for any given country means that the timing of any 
given covariate may not align exactly with the survey dates. This could reduce the predictive ability of the 
model.  

4.1.3 Locational bias 

There are two potential sources of locational bias in the modeled surface. The first relates to the error 
associated with the measurement of the centroid of the cluster point location; the other is the assumption 
that the event measured by a specific indicator occurred at a given cluster point location. 

As mentioned previously, the DHS cluster location data used in the spatial modeling process are an 
estimated center of the survey cluster, a point location that actually represents an area of unknown size with 
fairly large variability across a country, especially between urban and rural locations. In addition, these 
point locations are geo-masked from 0-2 km in urban locations and 0-5 km in rural locations, with 1% of 
rural locations up to 10 km (Burgert et al. 2013). These two issues add spatial error to the model although 
previous work discussed in SAR 11 has shown that the impact of displacement on modeling error is small 
(Gething et al. 2015). 

The methods used to produce the modeled surfaces assume that an event measured by an indicator occurred 
in the place the survey took place.  However, the event could have occurred in a different place. This type 
of bias occurs when an event takes place in a different location from that of the respondent being 
interviewed. The bias can be minimized if the reference period is given proper consideration. For example, 
shorter reference periods such as one year versus a lifetime are likely to reduce locational bias. The intended 
purpose of the modeled surface may also be relevant when considering locational bias. For example, if an 
interpolated surface of women age 15-49 who were tested for HIV in the past 12 months was created, the 
surface may or may not accurately measure the impact of an HIV testing campaign in a specific area. Some 
respondents may have been tested for HIV in a different location from the one where they were interviewed. 
However, if the surface was to be used to target future campaigns in areas with low levels of HIV testing, 
it might be a good targeting tool. In contrast, some indicators do not have locational bias because the 
indicator is only reflective of the place where the survey took place. Examples include household assets, 
access to water, and sanitation practices. 
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4.2 Difference in modeling across indicators and countries 

The ability of the MGB process to accurately predict any given indicator depends on several factors. First, 
each indicator has different inherent properties such as the overall amount of variation across the country, 
the extent to which this is spatially autocorrelated (with more autocorrelation reflecting a more organized 
geographic pattern that is easier to predict), and the statistical distribution of values (with bi-modal, heavily 
skewed, or other unusual distributions more difficult to predict accurately). Second, the extent to which the 
environmental covariates are correlated with the indicator will influence the predictive accuracy, with 
higher correlations allowing for greater accuracy. Third, the density of cluster points and the sample size 
(number of respondents) at each cluster will have an important effect, with denser surveys and larger sample 
sizes yielding greater accuracy. Given these factors, some indicators will be predicted with greater accuracy 
in some countries than in others. Figure 10 show validation scatter plots and validation statistics for stunting 
in children in three countries.  

Figure 10. Validation scatter plots and validation statistics for stunting in children 

 

 

4.3 Aggregation of point estimate interpolated surface to DHS national level 
or sub-national areas 

The modeled surfaces can aggregate up from the 5 × 5 km pixel resolution to different administrative levels 
or other geographic areas. However, the modeling process did not specifically adjust the model to recreate 
the DHS regions or national level estimates in the survey final report. In many cases, the aggregated data 
should be within the 95% CI of the estimate generated directly from the primary DHS survey data files. 
Table 5 shows a summary of data created in the SAR 11 pilot study for the child stunting indicator in 
Tanzania. The datasets estimate and upper/lower bound of the 95% CI represent the estimate value and 
95% CI obtained when the indicator is calculated directly from the DHS recode dataset. The point estimate 
averaged value column is the aggregated estimate from the map surface.  This is the average pixel value for 
that region. With child stunting in Tanzania, there are 26 regions, of which 12 map surface estimates are 
within the 95% CI credible of the dataset estimate (shown in green). Six regions are less than two percentage 
points of the 95% CI (yellow), while all other estimates were between two percentage points to ten 
percentage points above the dataset estimate. Examination of the other indicators in Tanzania, Ghana, and 
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Uganda created in SAR11 showed similar mixed results with no obvious pattern, although specific regions 
and some indicators were generally better estimates than others. 

Table 5. Data versus model surface estimate for child stunting in Tanzania by DHS region 

Region 
Dataset 

Estimate 
Dataset Upper 

bound 
Dataset Lower 

bound 
Point Estimate 

Averaged Value 

Dodoma 59.0 51.7 65.9 54.5 
Arusha 41.5 35.9 47.2 52.8 
Kilimanjaro 28.9 20.3 39.3 41.8 
Tanga 48.8 39.7 58.0 47.4 
Morogoro 40.9 33.7 48.5 51.5 
Pwani 29.3 23.0 36.5 42.9 
Dar es Salaam 15.7 9.3 25.2 28.3 
Lindi 50.0 41.2 58.9 56.7 
Mtwara 41.2 35.1 47.5 48.3 
Ruvuma 46.1 40.5 51.7 51.8 
Iringa 50.8 42.1 59.4 58.3 
Mbeya 41.4 29.2 54.6 55.7 
Singida 38.5 32.0 45.4 46.9 
Tabora 30.9 27.3 34.7 44.0 
Rukwa 49.7 39.1 60.2 51.1 
Kigoma 47.9 42.1 53.8 51.8 
Shinyanga 42.5 36.9 48.3 48.9 
Kagera 43.1 36.9 49.6 49.2 
Mwanza 40.1 34.5 45.9 41.4 
Mara 30.2 25.3 35.7 39.7 
Manyara 46.5 40.7 52.3 50.2 
Unguja North 38.8 32.2 45.8 36.3 
Unguja South 25.6 19.7 32.4 33.3 
Town West 19.4 14.0 26.3 20.5 
Pemba North 37.3 29.3 46.0 38.3 
Pemba South 29.0 23.5 35.2 38.0 
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5 How can The DHS Program Modeled Surfaces be Used? 

Summary 

The following section provides an overview of the use of interpolated surfaces to monitor and evaluate 
situations and programs, and to contribute to informed decision-making about future policies and programs. 
Included in this section is a discussion of possible approaches for operationalizing the modeled surfaces 
and the limitations to these approaches.  

 

 

  

Key Questions 

Can I use these maps to advocate for program support? 
Yes, these modeled surfaces can evaluate areas where programs were active in the past or identify 
areas of need for future programs. See Section 5.1 

 
Can I compare my program intervention areas to other areas of the country?  
Yes, the modeled surface can be summarized to represent administrative or other geographic zones, 
and then compared to non-intervention areas. See Section 5.1. 

 
How can I make this useable for my level of decision making, the 5 × 5 km pixel do not 
correspond to areas useful for program decision-making? 
The data can be aggregated to any number of higher-level administrative units, programmatic activity 
areas, or operational areas such as health facility catchments or livelihood zones. See Section 5.2 
 
Can the modeled surfaces be used with other data such as health facility or population density 
to make program decisions? 
Yes, many geographic data sources can be overlaid in a single map to augment understanding of the 
map context. In addition, the data can be linked specifically to intervention points or areas. See 
Section 5.2.3 
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5.1 Decision-making with modeled surfaces 

Spatially modeled surfaces can help in several ways to improve decision-making for many development 
sectors that include health, population, nutrition, and water and sanitation programs on multiple levels.  

1. Monitoring and evaluation: analysis and evaluation of past initiatives (applied use) or 
understanding existing situations. 

2. Program planning: future planning of appropriate programs and policies. There are some 
approaches that apply to both approaches such as having contextual information for improved map 
understanding.  

Monitoring and evaluation specialists can use the data in the modeled surfaces to evaluate past programs 
or to better understand existing situations. Such evaluations can help to understand deviations from the 
norm, attribute cause, or to conduct impact evaluations, which analyze what would have happened to the 
population of an area if a program had not implemented. Transforming model map surface to useful 
products (operationalization) 

The modeled surfaces can be used for many different decision-making purposes as described in the previous 
section. However, the surfaces usually need to be transformed or operationalized by the data user.  This 
operationalization can be done in many ways, three of which are discussed in this section: aggregation, 
burden estimate, and linkage to other data. 

Table 6 summarizes the possible approaches for both monitoring and evaluation, and program planning. 
These include understanding deviation from the norm, comparing intervention areas to non-intervention 
areas, estimation of burden, and linking with other data for contextual understanding. Program managers 
can also use modeled surfaces to plan, target, and develop interventions and programs that aim to improve 
situations in targeted geographic areas. Interventions can be targeted more precisely, which saves money, 
time, and human resources in the search for the most effective outcomes.  

5.2 Transforming model map surface to useful products (operationalization) 

The modeled surfaces can be used for many different decision-making purposes as described in the previous 
section. However, the surfaces usually need to be transformed or operationalized by the data user.  This 
operationalization can be done in many ways, three of which are discussed in this section: aggregation, 
burden estimate, and linkage to other data. 
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Table 6. Approaches for monitoring and evaluating past programs with modeled surfaces 

Goal Summary 

Monitoring 
& 

Evaluation 
Program 
Planning 

Understanding deviations 
from the norm  

With widespread health and social problems, it can be 
difficult to determine which areas are better off than others. 
In addition, it can be difficult to discern whether new 
observations at a location are anomalous or within 
expected bounds. The uncertainty measures provided in 
the predictive surfaces provide a means by which one can 
evaluate whether observed differences between locations 
are meaningful in the context of the broader scale. 

 
 

Comparing intervention 
areas to non-intervention 
areas (demonstrating 
success of 
program/securing 
advocates) 

Impact evaluations compare the outcomes of a program 
against a counterfactual to show how an area would have 
developed (or stagnated) without the program; this 
validates the value of the program, which can help with 
finding advocates for future interventions. 

 
 

Overlay data for better 
contextual placement 

Prevalence surfaces in combination with high-resolution 
population estimates make it possible to estimate the total 
numbers of individuals within certain categories. These 
predictions could then be used with other GIS measures 
and survey data, such as the placement of roads or 
staffing levels at facilities, to determine optimal positioning 
for new schools or the optimal resources needed in a new 
health facility. 

  

Improved program targeting 
and planning  

Program managers will be able to answer questions such 
as: Where do I need to put effort to obtain the most 
effective outcomes? Where is the greatest need for a 
certain intervention? Where are certain factors present to 
implement specific actions? 

  

Improving burden estimates  Currently, national level or coarse administrative unit level 
mapping masks heterogeneities and misses possible 
hotspots and inequalities. There is potential for the 
modeled surfaces to better identify these and to work with 
population maps to more accurately quantify and map 
burdens of disease and other health related issues. 
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5.2.1 Aggregation 

Aggregation from the point estimate model surface pixels to administrative areas, such as provinces, 
districts, or other relevant policy areas such as livelihood zones, is one of the main ways that modeled 
surfaces can be operationalized for use in decision-making. The aggregation, also called averaging or zonal 
statistics, can be completed in two ways: 

1. Simple mean zonal statistics: values for the polygon are calculated by using the average value of 
all the grid squares (or portions of grid squares) within the area. 

2. Population weighted mean zonal statistics: use similar methods but take into account the likely 
population in each grid square and the contribution of each grid square to the estimate for the whole 
area.  

Figure 11 illustrates the aggregation process inputs, the point estimate surface, and administrative units (in 
this case, districts in Rwanda). The point estimates are aggregated by simple averaging to the administrative 
units to produce a new map that illustrates the mean estimate value for each unit. 

The weighted population approach is likely to provide a more directly appropriate result when decisions 
are focused on optimizing impact across populations.  However, this approach also requires additional data 
and computational steps. It is important to remember that input data used for the population weighting may 
need to be standardized to the grid squares locations and pixel size/resolution used in the DHS modeled 
surfaces. Further considerations of the population data are discussed in the “Burden Estimate” section. 

Figure 11. Example of modeled surface aggregation to administrative units 
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5.2.2 Burden estimates 

Burden estimates begin with the prevalence estimate from the modeled surface and convert it into 
population count (numbers of individuals) affected. The choice of population data can influence the results. 
Several different groups have worked on producing modeled surfaces of population density. It is essential 
that the correct reference population layer be used for the denominator estimation that includes country, 
age-range, and gender. The limits also include the denominator population from which the indicator is being 
estimated. For vaccination, the denominator would be children age 12-23 months, and for delivery in a 
health facility, pregnant women. Figure 12 illustrates the burden estimate process for DPT3 vaccination in 
Ghana starting from the two inputs (1) point estimate surface (Panel A) and (2) population density surface 
(from WorldPop) (Panel B), and the final output of number of children unvaccinated (Panel C). The number 
of children vaccinated is calculated by taking the inverse of the multiplying the percent of vaccinated by 
the number of children. 

Publicly available population datasets with some options for accounting for population distribution and 
gender include: WorldPop (http://www.worldpop.org.uk/) and Gridded Population of the World (GPW) 
(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). The WorldPop are population raster surfaces 
that are re-sampled and estimated using some methods similar to those being used in the DHS modeled 
surfaces that include the use of spatial covariates.  The GPW uses a real weighting to distribute the 
population across space with only census data and no additional covariates. Estimating the portion of the 
population at risk can be done by using census data (where available) and DHS or other household surveys 
that include detailed population structure data.  Those data can be applied to the population raster to estimate 
the number of individuals at risk (such as number of children under age 5 within the population). This can 
cause issues of collinearity (two inputs to the same model being highly correlated) in the burden estimates, 
although this is minimal given the overall modeling process used for both the population surfaces and The 
DHS Program modeled surfaces.  

Figure 12. Illustration of burden estimate calculation process 
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5.2.3 Linkage with other data 

The modeled surfaces can be linked with other geospatial data to enhance understanding of context and 
needs.  The two most common approaches are point data extraction and inclusion of the modeled surface 
point estimate values to create an analytically relevant modeled surface that combines several DHS modeled 
surfaces or other program-relevant surfaces. 

Point extraction is most useful when the data available for linkage are point data (point locations with 
known latitude and longitude) and when the data are not from a program area polygon where the 
aggregation techniques might be applied.  For example, a program worked in certain areas of a district, and 
the GPS location of the villages where the program was implemented are available. In this case, a buffer 
extraction may allow for understanding the value of one or many indicators around a given location.  It is 
important to note that a point extraction of values can be somewhat misleading, and that an area around the 
point would provide a better sense of the context.  This extracted buffer value can then be included as an 
input to a more standard analysis.  

Combining several DHS modeled surfaces or combining DHS modeled surfaces with other relevant 
modeled surfaces has analytical potential, although careful considerations must be made for collinearity of 
the data inputs.  The DHS modeled surfaces are created with a suite of covariates (see Table 2 for summary 
of possible covariates in the model, and refer to the indicator documentations for the specific covariates 
included in that surface for that specific indicator).  Including any of those covariates with the DHS modeled 
surfaces to create another combined surface could lead to collinearity in the dataset. Use of the covariate 
table within the documentation will provide some guidance about the collinearity that may be likely with 
the correlation between the surface and a similar covariate included in the model. 

Figure 13. Illustration of value extraction from modeled surface to village locations 
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5.3 Use considerations and limitations 

There are a few key considerations that may limit the use of the modeled surfaces in certain areas or for 
certain decisions. The previous section outlined some of the limitations of the modeled surfaces related to 
size of the urban areas, temporality, locational bias, and differences in indicator modeling and model 
uncertainty.   

Comparisons or decisions about large urban areas where the model has considerable homogeneity do not 
allow for smaller scale understanding of the differences that may exist within these areas. Thus, fine-scale 
planning or decisions based on using the modeled surfaces within these areas would be potentially 
erroneous.  However, decision-making focused on the relative need of some areas as compared to other 
areas of a country than urban areas could be analyzed as a large combined unit.  

The timing of the survey and the relationship to the other data in use, such as program intervention activities, 
needs to be carefully considered, along with the reference period of the indicator.  For example, if an 
antenatal care (ANC) activity began in a certain area of Ghana in early 2013 and the program manager 
would like to compare the results from that area with other areas using the 2014 DHS modeled surface for 
ANC 4+ visits, the results would be a somewhat misleading outcome. The ANC 4+ indicator captures data 
on births that occurred in the last 5 years, which in this case would be 1-2 years of the program and 3 or 
more years when the program was not active. 

When evaluating the impact of a program, it is important to know what other programs may have been 
active in the same areas or in the control areas in order to have a complete understanding of the program at 
the time of the survey. 
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Final Thoughts 

Spatially modeled surfaces based on the MBG approach can help meet the needs of national and 
international communities for more granular, spatially detailed estimates than those currently provided by 
The DHS Program and most other national level data sources. These types of maps, whether at 5 × 5 km 
grid scale or subsequently aggregated to appropriate sub-national decision-making units, can provide 
information that is needed for measuring geographic variation in health indicators. The DHS Program’s 
spatially modeled surfaces will be one source of additional information that will help decision-makers better 
understand the geographic disaggregation of key demographic and health indicators in the coming years. 
There is enormous potential for new, innovative uses of the modeled surfaces, but it is only in a large 
community of users who are sharing their experiences that this potential will be fully realized. Users are 
encouraged to submit their cases and other feedback to The DHS Program. 
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