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Glossary

DHS GPS Geo-masking (displacement): Urban clusters are displaced at a distance up to 2 kilometers
(km). Rural clusters are displaced at adistance up to 5 km, with afurther randomly selected 1% of
the rural clusters displaced at up to 10 km. Details on the DHS geo-referenced data displacement
process and the spatial variability of the resulting data are found in Burgert et al. 2013.

Inter polation: Method for creating new data values within the range of known data points.

M odel-Based Geostatistics (MBG): A classof spatial statistical modelsfor interpolating geo-located point
data. The MBG models are generalized linear mixed models, which extend the flexibility of
conventional generalized linear regression models (which enable various non-Gaussian data types
such as count or proportion data to be fitted, via a link function, in Gaussian space) by using a
multivariate normal distribution to represent spatial or spatiotemporal variation.

Modeled surfaces: Specific output from the MBG methods used to create spatial interpolated maps with
DHS data.

Spatial interpolation (spatial interpolated maps): For this document, spatia interpolation refers to the
general technique or concept of interpolation, but does not refer to the specific method we are using,
that of Model-Based Geostatistics (MGB).






Preface

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data
on fertility, family planning, maternal and child health, nutrition, mortality, environmental health,
HIV/AIDS, malaria, and provision of health services.

The DHS Spatial Analysis Reports supplement the other series of DHS reports to meet the increasing
interest in aspatial perspective on demographic and health data. The principal objectives of al DHS report
series are to provide information for policy formulation at the international level and to examine individual
country resultsin an international context.

Thetopicsin the DHS Spatial Analysis Reports are selected by The DHS Program in consultation with the
U.S. Agency for International Development. A range of methodologies are used, including geostatistical
and multivariate statistical techniques.

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and
survey specialists, particularly those engaged in work in low- and middie-income countries, and will be
used to enhance the quality and analysis of survey data.

Sunita Kishor

Director, The DHS Program
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Abstract

Improved understanding of geographic variation and inequity in health status, wealth, and access to
resources within countries is central to meeting sustainable development goals. The Demographic and
Health Survey (DHS) Program’s modeled surface contributes to the greater need of the development
community for small area estimations of health and demographics. The DHS Program is making publicly
available a standard set of spatially modeled surfaces for each population-based survey with a select list of
indicators relevant for health, demographic, and development decision-making. The modeled surfaces are
created with geo-coded cluster information for current and future population-based DHS surveys and a
selection of earlier surveys. The maps are publicly available for download on The DHS Program Spatial
Data Repository (http://spatial data.dhsprogram.com/). This guidance document will provide users with a
deeper understanding of The DHS Program modeled surfaces and their potential use in decision-making.
The DHS Program has adopted the Model-Based Geostatistics (MBG) approach to creating the modeled
surfaces. This is a method for creating statistically rigorous interpolated surfaces that generate new data
values for unsampled areas from sampled data points. Such an expansive number of modeled surfaces for
adiverse group of health and demographic indicators has never been offered in the past and, as such, the
potential uses are still nascent. Many userswill find new, innovative waysto use the model ed surfaces that
are not discussed or fully analyzed in this document.
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Executive Summary

Improved understanding of geographic variation and inequity in health status, wealth, and access to
resources within countries is central to meeting sustainable development goals. The Demographic and
Health Survey (DHS) Program’s modeled surface contributes to the greater need of the development
community for small area estimations of health and demographics. The DHS Program is making publicly
available a standard set of spatially modeled surfaces for each population-based survey with a select list of
indicators relevant for health, demographic, and development decision-making. The modeled surfaces are
created with geo-coded cluster information for current and future population-based DHS surveys and a
selection of surveysfrom earlier years. The maps are publicly available for download on The DHS Program
Spatial Data Repository (http://spatial data.dhsprogram.comy/).

This guidance document will provide users with a deeper understanding of The DHS Program modeled
surfaces and their potential use in decision-making. This document is not a comprehensive review of the
modeling process, which isdiscussed in other literature, and does not provide acompletelist of the potential
uses of modeled surfaces. The document was written for geospatial specialists and non-geospatial data
specialists. Geospatial specialists will find key information on the creation of the modeled surfaces, the
limitations of the modeled surfaces, and how to operationalize the modeled surfaces for use in various
geospatial analyses. For the non-geospatial specidlists, there is basic information about the modeled
surfaces and their use in their data analysis activities.

The approach adopted by The DHS Program is Model-Based Geostatistics (MBG), a method for creating
statistically rigorous interpolated surfaces that generate new data values for unsampled areas from sampled
data points. This activity builds on several years of work by The DHS Program to identify the opportunities
and limitations in creating interpolated surfaces with DHS data and a pilot activity that used MBG to create
model ed surfaces for three countries and four indicators. The modeled surfaces are produced with publicly
available geo-referenced data from both The DHS Program and other relevant spatial data sources such as
environmental rasters. This will facilitate replication and comparability across countries, which will
promote informed policy and program decision-making. The output of the model isa 5 x 5 km pixel
resolution modeled surface. In addition, there are corresponding map surfaces that estimate the uncertainty
or potentia error associated with the modeled surfaces.

Understanding the limitations and assumptions of the modeling surfacesis essential for their proper use and
interpretation. There are severa limitations related to urban areas, temporality, and locationa bias. In
addition, there are considerable differences in the validity of modeling surfaces across different countries
and among indicators within a country. This can be due to sampled location distribution, indicator cluster
level case count, and the extent to which the covariates are drivers of the process being measured within
that country. Finally, the modeling process did not specifically adjust the model to recreate the DHS regions
or national level estimates present in the survey’ s final report.

The DHS Program model ed surfaces can be used to monitor and eval uate situations and programs, and can
contribute to informed decision-making about future policies and programs. Included in this document is a
discussion of possible approaches to operationalizing the modeled surfaces such as aggregation, burden
estimate, and linkage with other data. Many users will find new, innovative ways to use the modeled
surfaces that are not discussed or fully developed in this document. Such an expansive number of modeled
surfaces for a diverse group of health and demographic indicators has never been offered in the past and,
as such, the potential uses are still nascent. The DHS Program |looks forward to learning how others use the
modeled surfaces in the coming years.
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Spatially modeled surfaces created by The DHS Program can help meet the needs of national and
international communities for estimates that are more granular and spatially detailed than those currently
provided by The DHS Program and most other sources of national level data. These types of maps, whether
at 5 x 5 km grid scale or subsequently aggregated to appropriate sub-national decision-making units, can
provide information needed for measuring geographic variation in health, demographic, and devel opment
indicators. The DHS Program’s spatially modeled surfaces offer additional information that will help
decision-makers better understand the geographic disaggregation of key demographic and health indicators
in the coming years. There is enormous potential for new, innovative uses of the modeled surfaces. It is
only in alarge community of users who share their experiences that this potential will be fully realized.

XVi



I ntroduction to This Guidance Document

Since September 2016, The Demographic and Heath Survey (DHS) Program has begun providing a
standard set of indicator packages for spatially modeled surfaces to accompany current and future
population-based DHS surveys with geo-coded cluster information, and a selection of surveys from earlier
years. The maps are publicly available for download on The DHS Program Spatial Data Repository
(http://spatia data.dhsprogram.com). The maps are produced with a combination of publicly available DHS
data and global external datasets, which are used in modeling as covariates, and use standard methods to
promote comparability across countries and to facilitate policy and program decision- making. Although
the creation of these surfaces is not new, their incorporation as part of a more formal decision-making
processes is not yet mainstream. Little or no guidance is available for secondary users of the modeled
surfaces to understand the opportunities and limitations in their use, despite increased demand for modeled
map surfaces. Many groups have created surfaces for various purposes, although the operational use of
these surfaces has yet to be thoroughly explored or widely used. The lack of published usage guidance and
non-technical documentation stands in contrast to the growing demand for such material and the increased
number of available surfaces across the fields of health and demographics.

This guidance document will provide users with a deeper understanding of The DHS Program modeled
surfaces and the potential use of these surfaces for decision-making. This document is not acomprehensive
review of the modeling process, which is addressed in other literature (Gething et al. 2015), and does not
provide a complete list of potential uses of the modeled surfaces. Since such an expansive number of
modeled surfaces on a diverse group of health and demographic indicators has never been provided, the
potential uses of such surfaces are nascent. Many users will find new and innovative ways to use the
modeled surfacesthat are not discussed or explored in depth within this document. The DHS Program |ooks
forward to learning how users use the modeled surfaces in the coming years.

| ntended audience of guidance document

The document is intended for geospatial specialists and non-geospatial data specialists.

o Geospatia specialists will find key information on the creation of the modeled surfaces, the
limitations that exist in the modeled surface, and the approaches through which the modeled
surfaces can be operationalized for use in various geospatial analyses.

o Non-geospatial specialists will find basic information on the modeled surfaces and how they can
utilize these surfaces in data analysis activities.

The document allows users to select sections that are relevant or most interesting to them while not reading
the entire document. Some users may find parts of the guidance document quite technical, especially
Section 3, which is not essential reading for all audiences. However, it is important for all users to
understand the limitations and assumptions, discussed in Section 4, which will enable them to use the
model ed surfaces appropriately.



Document structure

The document includes five main sections, each of which answers an overarching question:
1. Why is The DHS Program creating modeled surfaces?
2. What modeled surfacesis The DHS Program creating?
3. How are The DHS Program modeled surfaces created?
4. What are the limitations and assumptions of the modeled surfaces?
5. How can The DHS Program modeled surfaces be used?

Each section begins with a summary of the concepts discussed in the section, as well as “Key Questions.”
These questions highlight the important issues in each section with short answers that are addressed in
greater depth in the subsequent section.

What is The DHS Program?

The Demographic and Health Surveys (DHS) Program has long been aleader in collecting and providing
cluster-randomized survey data on core development indicators (http://dhsprogram.com/). In addition to
the standard open-source data files in which household and individual survey results can be tabulated by
first-order sub-national regions (province or state level) and urban/rural strata, most surveys now provide
geo-coded datafor individual survey clusters (enumeration areas (EAS)). Global Positioning System (GPS)
coordinates for DHS household survey clusters provide local scale information that can be linked with
survey outputs for quantifying demographic and health status heterogeneities and inequities.




1 WhyisThe DHS Program Creating Modeled Surfaces?

Summary

The Demographic and Health Survey (DHS) Program’s modeled surfaces contribute to the larger need of
the development community for smal area estimations of health and demographics. Improved
understanding of geographic variation and inequity in health status, wealth, and access to resources within
countriesis central to meeting sustainable development goals (SDGs). The DHS Program has adopted the
M odel-Based Geostatistics (MBG) approach to creating modeled surfaces. The MBG approach is amethod
for creating statistically rigorous interpolated surfaces that creates new data values for unsampled areas
from sampled data points. This current activity builds upon several years of work by The DHS Program
that focused on identifying the opportunities and limitationsin creating interpol ated surfaces with DHS data
and conducting a pilot activity that used MBG for creating modeled surfaces for three countries and four
indicators.

Key Questions

What is interpolation?
Interpolation is a statistical approach in which predicted values are made for unsampled locations
based on a weighted combination of nearby data points. See Section 1.2

Would these surfaces replace a large survey?
No, these modeled surfaces use The DHS Program survey data. Without that survey data, there
would be no data available for creating the maps. See Section 1.3

Can these surface methods allow for smaller survey sample sizes?

These approaches may allow for smaller sample sizes in some countries, since large samples are not
required for estimating the results at the administrative level. However, the precision of the estimates
with smaller sample sizes yields more imprecise surfaces. The decision to utilize smaller sample sizes
also depends on country needs and budget constraints. See Section 1.3

Can you give information for places that are insecure and where we cannot go for a survey?
Yes, these techniques allow for estimates in places not surveyed. These areas would not be modeled
with as much certainty as other areas that were sampled. However, depending on their size and the
type of insecurity present, these areas may have different, unique health and demographic outcomes
that are not necessarily present in the areas that were surveyed. See Section 1.3

Why has this not been done by The DHS Program before?

The modeling techniques used for these surfaces and applied to health and demographic indicators
are relatively new and until recently, have been developed by academic groups as proof of concepts
rather than for policy and decision-making. In addition, these modeling techniques rely on external
spatial covariates that have become more common and publicly available in recent years. The
technigues have also been streamlined to require less computational power as greater computational
power has become more available. See Section 1.4



1.1 Context

Improved understanding of geographic variation and inequity in health status, wealth, and access to
resources within countries is increasingly recognized as central to meeting the SDGs. Development and
health indicators assessed at national levels can often conceal important inequities in smaller
administrative/geographic areas, often with the rura poor the least well represented. As international
funding for health and development comes under pressure, the ability to target limited resources to
underserved groups becomes more crucial. At the sametime, gaps exist in progresstoward achieving targets
for key global health indicators. Monitoring demographic, access, and health statusinequalitiesfor targeting
interventions and measuring progress towards health and development goals such as the SDGs require a
reliable, detailed, and disaggregated evidence base. In addition, as national governments decentralize and
policy decisions are made at the local level within small administrative areas, there is a growing need to
utilize existing datato accurately target, monitor, and eval uate the impact of programsin smaller geographic
areas. Three approaches currently allow for population-based survey indicator estimates for small
geographic units.

1. Scaing-up the nationally representative survey data collection process by increasing the sample
size, survey costs, and survey time needed to create a representative sample at the desired
administrative level.

2. Use of datafrom routine health information systems from health facilities or communities.

3. Small area estimation including spatially interpolated maps that use modeling and statistical
techniques to predict values for small geographic units.

Thefirst approach is often not feasible in an increasingly resource-constrained environment. The quality of
the data in the second option is not always reliable. The data are not easily accessible, and are not usually
nationally representative. It is the third approach with spatial interpolation that has attracted increased
interest in recent years.

1.2 Basicsof spatial interpolation

The term geostatistics refers to a collection of statistical tools that aid in the understanding and modeling
of spatial variability. The principa motivation is predicting unsampled values dispersed in space
(interpolation) (Figure 1). The most widely used tool, Kriging, is an interpolation approach in which
predicted values are made for unsampled locations based on a weighted combination of nearby data points.
Unlike more simple interpolation algorithms, Kriging provides optimum accuracy of predicted values by
identifying the most suitable weights for each data point. Thisis achieved by characterizing the degree of
correlation between points across space with a variogram function.

Bayesian inference is a method of statistical inference based on Bayes theorem. This alows the
combination of any prior knowledge with new information. Bayesian inferenceiswidely used asaflexible,
theoretically rigorous approach to fitting statistical models that are based on sampled datasets.

Bayesian geostatistics refers to the implementation of geostatistical models with Bayesian methods of
inference. Uncertainty in the data from sampling variation and in the fitted model parameters (such as the
shape of the variogram or autocorrelation function, and relationships with covariates) is inferred and
propagated, so that it can be measured in the output predictions. In practical terms, this provides a
convenient way of propagating uncertainty through all stages of the modd fit, and representing this
uncertainty in mapped outputs as a posterior distribution for each predicted pixel value.



Figure 1. Interpolation process
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1.3 Spatial interpolation and household surveys

Spatial interpolation techniques for estimating values at small geographic units do not replace the need for
nationally representative household surveys. The key input into the spatial interpolation modeling process
istheindicator valuefor each geo-referenced DHS location. These techniques may allow for smaller sample
sizes in some countries, since large samples are not required for estimating the results at small geographic
units. However, estimates with smaller sample sizes yield more imprecise map surfaces. Ultimately, the
sample size is dependent on factors that include the types of indicators being measured (rare events such as
mortality require alarger sample size), the level of representativeness in the sample (national versus a sub-
national area), other survey requirements needs, and budget constraints.

Spatia interpolation techniques do allow for estimating indicator valuesin locations that were not surveyed
ingeneral and in areas excluded from asurvey dueto insecurity. However, large areas that were not sampled
would not be modeled with as much certainty as other areas that were sampled. In addition, depending on
their size and the type of insecurity present, these areas may have different, unique health and demographic
outcomes that are not necessarily present in the surveyed areas.

1.4 Previousrelevant work by The DHS Program

1.4.1 DHS Spatial Analysis Report 9

The DHS Program convened a meeting of key stakeholders in June 2013 to discuss the use of geographic
data from DHS population-based surveys for spatial interpolation. This meeting took place within the
following context:

e Advancesin technology that included faster computing power, more accessible GPS data, and less
expensive hardware.

o Desire of decision-makers to use data at small administrative units and other relevant geographic
areas (livelihood zones).

e Increased use and adoption of DHS data in spatial modeling techniques generally and more
specifically, in interpolation techniques.



Participants also discussed the particularities of the DHS household survey geo-referenced data, which
could limit some applications. The DHS Spatial Analysis Report 9 (SAR 9) (Burgert 2014) summarizes
key discussions and recommendations from that meeting that also included indicator selection, methods,
and limitations.

1.4.2 DHS Spatial Analysis Report 11

After meeting in June 2013, The DHS Program began exploring the potential use of Bayesian MBG for the
production of interpolated modeled surfaces from the DHS population-based survey GPS-located cluster
data. Asaproof of concept, the MBG methods were tested on four indicatorsin three DHS country surveys:
Ghana DHS 2008, Tanzania DHS 2010, and Uganda DHS 2011. The four indicators included prevalence
of HIV testing in women (during the last 12 months), prevalence of stunting and anemia in children, and
household access to improved sanitation. The DHS Spatial Analysis Report 11 (SAR 11) (Gething et a.
2015) summarizes the detailed results of this proof of concept activity, and includes the assessment of
method validity, covariates, and uncertainty. In general, with the exception of the HIV testing indicator, the
models performed reasonably well for all indicators with small bias values and average errors less than 20
percentage points and closer to 10 percentage pointsin most cases (Figure 2). Low mean square error (M SE)
values indicate that the model fit with minimal overall bias. Not surprisingly, the geographic variationsin
avariable such as accessto HIV testing, which has principally non-biophysical drivers, were less receptive
to capture by the suite of principally environmental covariates, with generally lower predictive R-squared
(PR2) values. Despite this, overall absolute errors (MAE) were relatively low.

In addition, the report explores the impact of DHS GPS located cluster geo-masking on the production of
interpolated surfaces. The 5 x 5 km pixel resolution was chosen to reduce the impact of the geo-masking
of DHS survey GPS |ocated clusters on the final model surface and to match the resolution of the covariate
inputs of the model. Finally, the report investigated the potential for novel methodol ogies and covariates to
address the challenge of mapping within urban areas. The full model output from the proof of concept
activity included 12 modeled surfaces with 5 x 5 km pixel squares on the predicted mapped surface and
uncertainty map surface.

Figure 2. Summary of validation statistics for pilot activity
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2 What Modeled Surfacesis The DHS Program Creating?

Summary

The DHS Program is making publicly available a standard set of spatially modeled surfaces for
each population-based survey for a select list of indicators (Table 1). Each modeled surface will be
produced with standardized geostatistical modeling methods (a type of spatial interpolation) and a
standardized set of covariates across countries (Table 2). The modeled surfaces are produced with publicly
available geo-referenced data from both The DHS Program and other relevant spatial data sources
(environmental rasters) (Table 2). Thiswill facilitate replication and comparability across countries, which
in turn will promote informed policy and program decision-making. There will also be corresponding
map surfaces with estimates of the uncertainty or potential error associated with the modeled surfaces.
Themaps are publicly available for download on The DHS Program Spatiad Data Repository at
http://spati al data.dhsprogram.com/.

Key Questions

Why are you not using the detailed census data from my country as a model input?

The DHS Program chose to use a standardized approach that would be applicable across different
countries and over time. This means that globally available covariate datasets are being used instead
of country specific data such as census data or other country health data. Country datasets are not
always publically available and using standardized global datasets is easier when producing a large
number of datasets over time. See Section 2.1

Can you do this for my specific topic?

Theoretically, the modeling approach can be applied to a broad range of topics, although there are
limitations for certain types of indicators that may not be modeled as well with these techniques.
These limitations are summarized in this section and explained more completely in SAR 9 (Burgert
2014). See Section 2.1.1

Why is only one survey sample used instead of all surveys conducted in a country?
Incorporating surveys from multiple time points requires the use of spatiotemporal interpolation that is
considerably more complex and often requires temporally varying covariates that are not always
available. In addition, the availability of multiple surveys varies between countries and their
incorporation would have led to less standardization between countries. For simplicity and
consistency, only one survey per year was modeled. See Section 2.1.2

Do covariates have the same timeframe as the survey?
The covariates have various timeframes although they are generally close in time to the survey date.
Table 2 summarizes the details of the covariates used in the modeling. See Section 2.1.3

Are map datasets publicly available? Where can | download them?
Yes, the modeled surfaces are publicly available for download from The DHS Program Spatial Data
Repository at http://spatialdata.dhsprogram.com/. See Section 2.2




2.1 Standardized modeled surfaces

There is an important distinction between creating the “best possible maps’ for a specific country and
“standardized maps’ for the whole world or a set of countries. Construction of the best possible map for a
given country might entail the use of numerous country-specific covariate datasets (such as national census
data) as well as bespoke mapping resolution and methodologies. While they might potentially optimize
map accuracy, these country-specific components would inevitably prevent direct comparison between
maps from other countries with different components. Only those covariates available as global products
were included in the models to ensure a standardized approach across al countries. Further, The DHS
Program uses publicly available geo-referenced data both from the DHS (GPS locations) and from external
covariate sources so that the surfaces can be reproducible. In practice, this meant that the covariates (Table
2) were derived primarily from satellite remote sensing, although such data have been widely used and
shown to perform as useful predictors of awide range of social, economic, and health indicators.

2.1.1 Selection of indicatorsfor standard map set

All indicators that can be derived from a DHS dataset may not be appropriate for use in a modeled surface
creation process. The DHS Spatial Analysis Report 9 (SAR 9) (Burgert 2014) summarizes the following
indicator characteristics for selecting indicators that are suitable for any type of the spatial interpolation
technique:

e Indicator measures well in DHS surveys and is a robust measurement that is not subject to
significant recall error.

e Indicator does not measure arare event such as neonatal mortality. This is important because the
first step in the model surface process requires calculation of the indicator at the cluster level. A
relatively rare event may have many locations with zero data. Although zero or generally small
numerator/denominator values at locations are accepted in the model, too many instances of zero
in adataset will lead to surfaces with considerable uncertainty that limits the surface’s use.

e Indicator is spatialy heterogeneous and varies across geographical space.

e Indicator has a specific reference period—not an indefinite reference period or reference period
that is spatially linked to the outcome (ever tested for HIV versus fever in the past two weeks).

e Indicator is not temporaly or micro-seasonally restricted and, therefore, is not likely to change
substantially over the course of data collection, which can last many months. For example, school
attendance and the use of mosquito nets were excluded due to temporality concerns. This means
that locations may be surveyed in the same physical area at different points in time. In addition,
across an entire country, different seasonal determinates may complicate the understanding of
certain temporally related indicators. For example, campaign-based activities such as vaccinations
or bednet distribution may also occur at different timesin different places.

e Indicator relates to the current location of the respondent, and not materna mortality by the
sisterhood method that relies on interviewing respondents about the survival of all their adult
sisters.

With these criteriaas aguide, aninitial set of 15 indicators was selected to create spatial map surfacesusing
DHS datafor public release in September 2016. These indicators are summarized in Table 1. The standard
indicator definition was used for each indicator with national estimates compared against The DHS API
(http://api.dhsprogram.com/) values before modeling began. Additional details on the individual indicators
and how they are collected are available on The DHS Program website (http://dhsprogram.com/). These




indicators were relevant to the larger devel opment community including the SDGs and other programmatic
priorities, and important for balancing household and individua (women, men, and children) indicators.
Thislist may change over time, with indicators added or deleted astheir relevanceto thelarger development
community are assessed, and their overall utility in potential decision-making is further understood. Not all
indicators are available for each survey, either because the appropriate data are not available (not all
countries conduct the men’s survey) or the indicator is collected in a non-standard manner in the country
such as 3-year versus 5-year estimates.

Table 1. Summary of indicators included in September 2016 data release

Indicator

Definition

Population living in households
using an improved water source

Population living in households
using no toilet facility (practicing
open defecation)

Persons with access to an ITN

Married women currently using any
modern method of contraception

Demand for family planning satisfied
by modern methods

Unmet need for family planning
Women 15-49 with any anemia
Antenatal visits for pregnancy: 4+
visits

Place of delivery: Health facility

Women who are literate
DPT3 vaccination received

Measles vaccination received
Children stunted

Men who are literate
Tobacco use among men

Percentage of the de jure population living in households whose main
source of drinking water is an improved source

Percentage of the de jure population living in households whose main
type of toilet facility is no facility (open defecation)

Percentage of the de facto household population who could sleep
under an ITN if each ITN in the household were used by up to two
people

Percentage of currently married or in union women currently using any
modern method of contraception

Percentage of demand for family planning satisfied by modern methods
is calculated as the number of currently married women using modern
methods of family planning divided by the number of currently married
women with demand for family planning (either with unmet need or
currently using any family planning)

Percentage of currently married or in union women with an unmet need
for family planning

Percentage of women classified as having any anemia (<12.0 g/dl for
non-pregnant women and <11.0 g/dl for pregnant women)

Percentage of women who had a live birth in the five years preceding
the survey who had 4+ antenatal care visits

Percentage of live births in the five years preceding the survey
delivered at a health facility

Percentage of women age 15-49 who are literate

Percentage of children 12-23 months who had received a third dose of
DPT

Percentage of children 12-23 months who had received Measles
vaccination

Percentage of children under age five years stunted (below -2 SD of
height-for-age according to the WHO standard)

Percentage of men age 15-49 who are literate

Percentage of men age 15-49 who use tobacco

2.1.2 DHSdata considerations

In most DHS household surveys, the sampling clusters are the primary sampling unit (PSU), which includes
preexisting geographic areas known as census enumeration areas (EAS). The boundaries of the EAs are
defined by the country’s census bureau, as are the urban and rural status of each cluster. An EA can be a
city block or apartment building in urban areas, while in rural areas an EA istypically avillage or group of
villages. The population and size of sampled clusters vary between and within countries. Typicaly, clusters
contain 100-300 households, of which 20-30 households are randomly selected for survey participation.
The estimated center of each cluster is recorded as alatitude/longitude coordinate, which is obtained from



aGPSreceiver or derived from public online maps or gazetteers. The actual physical size or boundaries of
the survey cluster are publically available, although in recent years it has become more common for
countries to have census EA boundary files that are used to calculate the center of the EA.

To ensure confidentiality, the geo-coded cluster locations are geo-masked (displaced) prior to dataset
release (Burgert et al. 2013). Urban clusters are displaced to a distance up to two km. Rural clusters are
displaced up to adistance up to five km, with afurther randomly selected 1% of the rural clusters displaced
at a distance up to ten km. The modeled surface creation process uses the geo-masked datasets that are
made publicly available by The DHS Program.

The modeling approach used asingle survey asthe DHS input. It is possibleto create spatiotemporal models
that use multiple survey inputsto create a single surface. This approach can increase the model’ s predictive
power but requires a number of other considerations such as the time of surveys and timing of covariates.
For the purposes of the DHS standard spatially modeled surfaces, a single survey year approach simplified
the model processing and interpretation.

2.1.3 Geospatial covariate considerations

An important aspect of geostatistical modeling is the exploitation of geospatial covariates that are relevant
or related to the indicator of interest, can partially explain variation in that indicator, and alow for more
accurate predictions across the map. As discussed above, globa covariate datasets were used instead of
country-specific data, since this ensures standardization across countries. A suite of geospatial covariates
was chosen from existing libraries that have previously demonstrated broad utility in geospatial mapping
(Gething et al. 2015; Weiss et al. 2014). The geospatial data sources described in Table 2 were obtained in
a variety of spatial resolutions and geographic extents. (Details on the covariates are available on each
dataset’s website provided in the table.) In addition, the land-sea templates differed dightly between
products, so that the precise definition of coastlines and the inclusion or exclusion of small islands and
peninsulas was not consistent. These factors precluded the direct use of these datain asingle spatial model.
To overcome these incompatibilities and to generate a fully standardized suite of input grids on an
identically defined geographic template, a processing chain was devel oped with the following stages:

1. Eachinput data source was re-projected, where necessary, by using a standardized equirectangular
Plate Carrée projection under the World Geodetic System 1984 coordinate system.

2. Input grids that were defined at differing spatial resolutions were re-sampled to 5 x 5 km.
3. Gridswere either extended or clipped to match a standardized country extent.

4. A bespoke algorithm was devel oped that compared each rectified and re-sampled grid to a“ master”
land-sea template for each country. This used a simple interpolation and/or clipping procedure to
align new grids to this master template, which ensured that all coastlines were perfectly consistent
on a pixel-by-pixel basis.

The geospatial covariates can be static (one point in time), multi-temporal (multiple spatial layers
representing several consistently spaced points in time), or synoptic (over a long time period and
summarized to show along-term average or other general trends). The time period (date) that the covariates
represent vary and do not necessarily match the exact time period of the DHS survey being modeled.
Possible limitations of the covariates within the model are discussed further in Section 4.1.2.
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Table 2. Summary of covariates used in modeling for September 2016 data release

Short name Description Original Data Source Temporal Date

Access Travel time to cities with > 50k  http://forobs.jrc.ec.europa.eu Static 2000

via all transport methods

Aridity Mean annual aridity http://csi.cgiar.org/Aridity/ Synoptic 1950-2000

NTL VIIRS nighttime lights—2012 http://ngdc.noaa.gov/eog/ Static 2012

Elevation SRTM Near—-global digital http://webmap.ornl.gov/ Static 2000
elevation models (DEMs)

EVI Enhanced vegetation index http://modis.gsfc.nasa.gov/ Multitemporal  2001-2014

GPW GPW population density http://sedac.ciesin.columbia.edu/ Static 2010

LST.day Land surface temperature in http://modis.gsfc.nasa.gov/ Multitemporal  2001-2014
the daytime

LST.delta Land surface temperature http://modis.gsfc.nasa.gov/ Multitemporal  2001-2014
daily fluctuation range

LST.night Land surface temperature in http://modis.gsfc.nasa.gov/ Multitemporal 2001-2014
the nighttime

PET Mean annual potential http://csi.cgiar.org/Aridity/ Synoptic 1950-2000
evapotranspiration

PRECIP Average monthly rainfall http://www.worldclim.org/ Synoptic 1950-2000

TCB Tasseled—cap brightness http://modis.gsfc.nasa.gov/ Multitemporal  2001-2014

TCW Tasseled-cap wetness http://modis.gsfc.nasa.gov/ Multitemporal 2001-2014

2.2 Availability of modeled surfaces

The modeled surfaces are publicly available for download on The DHS Program Spatial Data Repository
(http://spatial data.dhsprogram.conV/). Figure 3 shows the website. A table summarizing the data available
at the time of visit is available for download from the site; this indicates the country survey year available

and the indicators are available for each.

The download package is a ZIPPED folder that contains 5 components:

e Point estimate modeled surface at 5 x 5 km resolution (GeoTIFF format)

e Uncertainty estimate modeled surface at 5 x 5 km resolution (GeoTIFF format)

e Image of mean estimate modeled surface (PNG format)

e Image of uncertainty estimate modeled surface (PNG format)

e Indicator specific document on modeling procedures (PDF format)
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Figure 3. Screenshot of modeled surface download website
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2.2.1 Model surfaces dataset and associated files naming conventions

The modeled surface package naming conventions follow a standard derived from The DHS Program API
(application program interface). The API provides standard names for country surveys and indicators, and
allows usersto find corresponding information about the country survey and associated information on the
specific indicator. Each dataset has a standard naming convention that identifies the country, survey year,
indicator, type of data, and version number. The fields are described below.

e Field 1: SurveylD (From DHS API, see http://api.dhsprogram.com/rest/dhs/surveys?f=html)

e Field 2: SDRID (Short form of Indicator Id from DHS API, see http://api.dhsprogram.com/
rest/dhs/indicators?returnFields=Indicatorld,SDRID,L abel ,Definition& f=html)

e Field 3: MS (modeled surfaces)

e Field 4: TYPE (either MEAN for point estimate or Cl for uncertainty estimate)
o Field 5: v# (Dataset version number should be “v0O1” in most cases unless a dataset was reissued)

These fields are combined for each component of the data packages. These are described in Table 3 with
an example for the Ghana 2008 DHS survey and the children under age 5 stunted indicator.

Table 3. Modeled surface naming conventions

Generic Example
Folder name SurveylD SDRID_MS_v# GH2008DHS_CNNUTSCHA2_MS_v01
Datasets SurveylD _SDRID_MS_TYPE_v# GH2008DHS_CNNUTSCHA2_MS_MEAN_v01
GH2008DHS_CNNUTSCHA2_MS_CI_v01
Image files SurveylD _SDRID_MS_TYPE_v# GH2008DHS_CNNUTSCHA2_MS_MEAN_v01
GH2008DHS_CNNUTSCHA2_MS_CI_v01
Documentation SurveylD _SDRID_MS_v# GH2008DHS_CNNUTSCHA2_MS_v01

2.2.2 Attribution

The DHS modeled surface datasets are publically available, free of charge. Y ou must give appropriate credit
when using the DHS modeled surface datasets. Data users should cite the Spatial Data Repository as the
source of all derived analyses, reports, publications, presentations, and other products. To use the
recommended citation, simply replace the accessed date with the actual date of download.

For asingle modeled surface dataset:

Spoatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces.
SurveylD_SDR-API_ID_MS v#. ICF. Funded by the United States Agency for International
Development (USAID). Available from spatialdata.dhsprogram.com. [Accessed DAY MONTH
YEAR]

For multiple modeled surface datasets:

Spatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces. |CF.
Funded by the United Sates Agency for International Development (USAID). Available
from spatialdata.dhsprogram.com. [ Accessed DAY MONTH YEAR]
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3 HowareThe DHS Program Modeled Surfaces Created?

Summary

This section describes the preparation of point geo-referenced survey cluster data on each selected DHS
indicator, the assembly and exploration of asuite of gridded geospatial covariate layers, and the use of these
inputsin a series of bespoke Bayesian model-based geostatistical (MBG) models to generate final modeled
surfaces for each indicator. The output of the model isa5 x 5 km pixel resolution modeled surface. A more
in-depth description of the modeling process can be found in SAR 11 (Gething et al. 2015).

Key Questions

Can | replicate these modeled surfaces myself?

All the details of the model inputs (covariates) and general model structure are shared in this and
other accompanying documents. In theory, with the right skills, you can create your own modeled
surfaces; however, your surfaces may look different from The DHS Program surfaces because certain
modeling decisions take place in the model cycle that may change the final outcome. See Section 3.1

Which covariates form each map?

All covariates are used as input for every map. However, a fitting procedure is used that automatically
weighs the influence of each covariate according to how much useful information it contains on the
indicator of interest. The associated documentation for each surface describes the relative
contribution of each covariate in the final fitted model (expressed as a percentage). See Section 3.1.3

Why do areas have different levels of error?

Error in this context refers to the ability of the model to predict the correct value of an indicator in a
particular place. This depends on multiple factors such as the number of cluster locations in the
survey, the density of survey clusters around a prediction location, the number of case count
respondents within each cluster, the strength of correlations between covariates and the indicator,
and the inherent degree of spatial variation displayed by the indicator. The overall predictive ability of
the model is summarized in the mean absolute error validation statistic. See Section 3.3

Can the mean estimate value and uncertainty maps be displayed simultaneously?
Yes, there are several different ways to display the data simultaneously. See Section 3.3
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3.1 Explanation of modeled surface creation process

Figure 4 illustrates the DHS modeled surface creation process from the model inputs to the model outputs.
The processis further described for each numbered step in the figure in the subsequent sections.

The details of the approach are explained in the Spatia Analysis Report 11 (Gething et a. 2015). A
Bayesian model—based geostatistical (MBG) approach (Diggle and Ribeiro 2007; Diggle, Tawn, and
Moyeed 1998) was used to generate the model ed surfaces. Building on techniques originally conceived for
detailed mapping of malaria prevalence (Gething et al. 2011; Hay et al. 2009), MBG models represent the
observed variation in cluster-level survey data using four components.

311

Sampling error, which can often be large given the small sample sizes in individua clusters, is
represented with a standard sampling model; this is usualy the binomial when the indicator in
question is a proportion.

Some non-sampling variation can be explained using fixed effects, whereby a multivariate
regression relationship is defined by linking the indicator variable with a suite of geospatial
covariates.

Additional non-sampling errors not explained by the fixed effects are usually spatially auto-
correlated, and are represented by using arandom effects component. A spatial multivariate normal
distribution known as a Gaussian Process is employed and parameterized by a spatial covariance
function.

Any remaining variation not captured by these components is represented with a simple Gaussian
noise term equivalent to that employed in a standard non-spatial linear model.

Mode inputs (Steps 1 & 2)

Two types of data are used into the modeled surface process (Step 1 and 2 in Figure 4).

1

DHS cluster level observations: The cluster level numerator and denominator for the indicator are
created with the publicly available DHS data (individua and household recode files). This
information is then linked to the cluster level GPS location data.

Geospatia covariates: A range of covariate gridsisincluded as possible explanatory covariates. An
important aspect of geostatistical modeling is the exploitation of geospatial covariates that are
correlated with the outcome of interest, can partially explain variation in that response, and allow
for more accurate predictions across the map. As described above, a suite of covariates was chosen
from existing libraries at the University of Oxford, based on factors that have previously been
shown to correlate with demographic and health indicators in different settings. The covariates are
standardized to a5 x 5 km raster grid within auniform coastline.
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Figure 4. Schematic diagram summarizing the DHS modeled surface creation process
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3.1.2 Data statistics (Step 3)
Three basic analyses explored the characteristics of the raw data (Step 3 in Figure 4).

Cluster-level observations: A map showing the location and observed values of the indicator for
each geo-located DHS survey cluster, wherein each cluster is represented by a dot (Figure 5,
Panel A).

Histogram: A simple empirical histogram to assess statistical distribution which is useful in
interpreting the indicator and resulting maps (Figure 5, Panel B). Histograms with values across a
large number of indicator values will result in a map with a spectrum of values while maps with
the majority of values grouped together will produce a map with a more uniform look.

Variogram: The spatial autocorrelation structure present across clusters is assessed via an
empirical variogram (Figure 5, Pand C). A variogram plots semi-variance (the average
dissimilarity in theindicator values between two cluster points) against spatial lag (the geographical
distance separating two points). Where dataare spatially structured, acharacteristic variogram form
will show steadily increasing semi-variance with increasing lag. Conversely, data with no spatial
structure leads to aflat variogram. Variables with greater spatial autocorrelation tend to be more
amenable to spatial interpolation and more reliable maps.

Figure 5. Example of data statistics
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3.1.3 Modd fit (Step 4)

After considering the preliminary data statistics, the next step in the modeling processis parameterizing the
model to determine the set of model parameter values that lead to the best possible fit with the data (Step 4
in Figure 4). The MBG models have three categories of parameters, which involve determining the
characteristics of the Gaussian process (random effects), the nature and magnitude of the contribution of
each covariate (fixed effects), and the uncorrelated residual error (the non-spatial component). The spatial
Gaussian processisgoverned by aspatial covariance function (the Matern function wasused for flexibility)
which is parameterized by a scale parameter (which determines the spatial distance over which points are
autocorrelated) and a variance parameter (which determines the magnitude of that autocorrelation) (see
Table 4, model parameters).The fixed effects have a more complex parameter structure that allows for non-
linear relationships between the covariates and the response variable as well as interactions between them.
A “regularization” approach allows the full suite of covariates to be used in the model without the risk of
over-fitting. All covariates remain in the model although their relative contributionsto the final predictions
can belarge or aimost zero in order to maximize predictive performance. These contributions are described
as a percent covariate contribution (see Table 4, covariate contributions). This approach differs dightly
from the approach described in SAR 11 in which there was an initial covariate selection process with only
the selected covariates included in the final model. The new approach provides consistently higher
performance and has the additional advantage of reducing the subjective input of an analyst in refining the
selection of covariates. The uncorrelated residual error is parameterized by a single variance parameter (see
Table 4, model parameters). All parameters are jointly estimated in a single fitting exercise using Bayesian
inference with vague priors.

Table 4. Example of model parameters, covariate contributions, and validation statistics

Model parameters

Covariance function Matern
Spatial scale of correlation (km) 70.9
Variance of spatially structured component 0.5
Variance of non-spatial component 0.58
Covariate contributions
Mean annual aridity 12%
VIIRS nighttime lights=2012 8%
Enhanced vegetation index 4%
SRTM near-global digital elevation models (DEMs) 14%
GPW population density 4%
Land surface temperature in the daytime 18%
Land surface temperature daily fluctuation range 4%
Land surface temperature in the nighttime 6%
Mean annual potential evapotranspiration 6%
Tasseled-cap brightness 6%
Tasseled—-cap wetness 9%
Travel time to cities with > 50k via all transport methods 6%
Average monthly rainfall 6%
Validation statistics

Correlation 88%
Mean absolute error 9%
Mean square error 1%
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3.1.4 Model validation (Step 5)

Model validation and the corresponding statistics are an important measure of the predictive performance
of the geostatistical model (Step 5 in Figure 4). Performance is assessed by out-of-sample validation that
includes a four-fold, hold-out procedure in which 25% of the data points were randomly withdrawn from
the dataset. The model is then run in full with the remaining 75% of data, and the predicted values at the
locations of the hold-out data compared to their observed values. This processisrepeated four timeswithout
replacement so that every data point is held out one time throughout the four validation runs. Standard
validation statistics are then computed as measures of model precision:

e Degree of linear association between the observed and predicted values (correlation, COR).

e Mean absolute error (MAE) that quantifies model precision, which is the average magnitude of
difference between observed and predicted values. This is computed in the same units as the
variable being predicted; for example, if the indicator is a rate expressed on a scale from 0-100%,
the MAE will also be a value between 0-100%.

e Mean square error (MSE) that indicates the model’ s accuracy, and encapsulates bias and error with
values close to zero an indication that the model is more accurate and close to one |ess accurate.

Examples of these statistics are shown in Table 4 (validation statistics). Figure 6 below shows a scatterplot
with the distribution of actual (observed) versus predicted points from the model.

Figure 6. Example of validation scatterplot
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3.1.5 Mode outputs (Step 6)

In the download package, the model has two map surface outputs with 5 x 5 km pixel resolution (Step 6 in
Figure 4): the point estimate surface and the model uncertainty surface. The MBG models generate
estimates of the variable of interest at each location on a gridded surface. For each of those pixels, the full
model output is a posterior distribution for the predicted indicator that represents a complete model of the
uncertainty around the estimated value. These can be summarized with a point estimate (such as the
posterior mean) to generate a mapped surface. Additional summary statistics from each posterior
distribution can then be mapped to illustrate the degree of uncertainty associated with each predicted value.
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e Point Estimate Surface: The map plots the modeled point estimate value for each 5x5 km pixel
based on geo-located, cluster-level data from the survey. This value effectively represents the
expected value of the indicator within that 5 x 5 km region. Since the indicators being modeled are
rates (preval ence or proportion variables), all rates|ie on a scale between 0 and 1 (or 0% and 100%)
(Figure 7, |€ft).

e Maodel Uncertainty Surface: Anaccompanying uncertainty map summarizesthe level of certainty
associated with the values shown in the point estimate map by displaying the full width of the 95%
credible interval (also called confidence interval or Cl) for each pixel value (Figure 7, right). In a
situation with complete uncertainty about a pixel's value, the 95% Cl would span the entire range
and the true value could lie anywhere between zero and one. Conversely, when a variable is
predicted with very high certainty, the width of the 95% CI might be very narrow. In other words,
there is a 95% probability that the true value lies within a narrow range of possible values; this
indicates that the prediction has low uncertainty.

Figure 7. Example of point estimate surface and model uncertainty surface

Point Estimate [— | Model Uncertainty EE T

0 100 Su rfa ce 0 100
Surface Indicator (%) wg';fgg',z'gﬁ% )

3.2 Example of modeled surface documentation

The following pages describe an example of the modeled surface documentation included in each zip file
that can be downloaded from The DHS Program Spatial Data Repository website. Each indicator country
survey has its own document with the figures and information relevant for that modeled surface. The main
text, which is standard across all documents, helps users understand the information in the figures.
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Persons with access to an ITN
Kenya 2014 Demographic and Health Survey

The DHS Program

The Demographic and Health Survey (DHS) Program has been a leader in collecting and providing cluster-randomized survey data cn core
development indicators since 1984. DHS surveys are configured to provide indicator estimates at the national and in more recent surveys first level
administrative level. In more recent years, the availability of the Global Positioning System (GPS) coordinates for DHS household survey clusters
provides highly local scale information that can be linked with survey outputs for quantifying demographic and health status heterogeneities and
inequities. In 2016, The DHS Program started publically providing a standard set of spatially modeled map surfaces. The surfaces use publicly
available spatial covariate data, are standardized across countries, and are comparable in order to facilitate policy and program decision-making
at levels below the current survey representative sub-national areas. The DHS Program is funded by the U 8. Agency for International
Development (USAID) (http://dhsprogram.com/}.

Indicator definition: Persons with access to an ITN

Full definition: Percentage of the de facto household population who could sleep under an ITN if each ITN in the household were used
by up to two people

Numerator: De facto household populaticn who could sleep under an ITN if each ITN in the household were used by up to twe people
Denominator: De facto househeld population

AP ID: ML_ITNA_P_ACC

Geospatial modelling

A Bayesian model-based geostatistical (MBG) approach (Diggle and Ribeiro 2007; Diggle, Tawn, and Moyeed 1998) was used to generate the
interpolated surfaces shown below. Building on technigues originally conceived for detailed mapping of malaria prevalence (Hay et al., 2008,
Gething et al 2011}, MBG models represent the cbserved variation in cluster—level survey data using four components. (i) Sampling error, which
can often be large given the small sample sizes in individual clusters, is represented using a standard sampling model, usually the binomial. (ii)
Some non-sampling variation can often be explained using fixed effects, whereby a multivariate regressicn relationship is defined linking the
indicator variable with a suite of geospatial covariates. (iii) Additional non—-sampling errors not explained by the fixed effects are usually spatially
autocorrelated, and this is represented using a random effects component. A spatial multi-variate normal distribution known as a Gaussian
Process is employed, parameterized by a spatial covariance function. (iv). Finally, any remaining variation not captured by these components is
represented using a simple Gaussian noise term equivalent to that employed in a standard non-spatial linear medel This approach is explained in
full in the DHS Spatial Analysis Reports Ne. 11 (Gething et al, 2015).

Maps

MBG models generate estimates of the variable of interest at each location on a gridded surface. The maps below were defined on a grid where
each individual pixel measures approximately 5x5 km. The full model cutput is, for each of those pixel, a posterior distribution for the predicted
indicator, representing a complete medel of the uncertainty around the estimated value. These can be summarized using a peint estimate (such as
the posterior mean) to generate a mapped surface (as shown in Figure 1). Additional summary statistics frem each posterior districution can also
be mapped fo illustrate the degree of uncertainty associated with each predicted value. Figure 2 shows one such metric of uncertainty — the width
of the 95% credible intervals, with large values representing areas of the highest uncertainty, and vice versa.

Figure 1. Interpolated surface for the indicator. II Figure 2. Uncertainty surface for the indicator. i-
The map plots the point estimate for each 5x5 The map plots the uncertainty for each pixel,

km pixel based on geo-located clustar-level o il O measured using the width of the 95% credible 0 Uncertainty '9°
data from the survey. Indicator (%) intervals. (width of 95% CI'(% ))

This document can be cited as follows: Spatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces. KE2014DHS_MLITNAPACC_MS vO1
ICF International. Funded by the United States Agency for Intemational Development (USAID). Available from com. [ DAY MONTH YEAR]
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Data statistics

Figure 3 shows the location and observed values cf the indicator for each geo-located DHS survey cluster. Two basic exploratory analyses were
undertaken to explore the characteristics cf these raw data. First, a simple empirical histogram were generated tc assess statistical distribution
which can be useful in interpreting the indicator and resulting maps. This is shown in Figure 4 (top}. Second, the spatial autocorrelation structure
present in the indicator values across clusters was assessed via an empirical variogram {Figure 4 (bottom)). A variogram plots semivariance (the
average dissimilarity in the indicator values between two cluster points) against spatial lag (the geographical distance separating two points).
Where data are spatially structured, a characteristic variogram form is for semivariance to steadily increase with increasing lag. Conversely, data
with no spatial structure lead to a flat variogram. Variables with greater spatial autocorrelation tend to be more amenable to spatial interpolation
and more reliable maps.
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Figure 3. Cluster-level chservations of the :— Figure 4. Histogram {top} and variogram (bottom) of the cluster-level

indicator. These geo—located data formed the
basis for the modeled interplated surface.

100 indicator data from the survey.

Indicator (%)

Geospatial covariates

An important aspect of geostatistical modeling is the exploitation of geospatial covariates that are correlated with the indicator of interest, and thus
partially explain variation in that indicater, allowing more accurate predictions across the map. A suite of geospatial covariates were chosen from
existing libraries that have previously demonstrated broad utility in geospatial mapping (Weiss et al 2014, Gething et al, 201%) - listed in full in
Table 1. A 'regularization’ approach was used which allows a large suite of covariates to be used in the model witout risking over—fitting: all
covariates remain in the medel but their relative contributions to the final predictions can be large or aimost zero in order to maximize predictive
performance. Table 2 describes the relative contributicns of each covariate to the predictions presented here.

Access Travel time to cities with > 50k via all transport methods. hitp:/fforobs.jrc.ec.europa.eu Static 2000
Aridity Mean annual aridity http:#/csi.cgiar.crg/Aridity/ Synoptic 1950-2000
NTL VIIRS Nighttime Lights-2012 http:/ingde. noaa. govieog! Static 2012
Elevation SRTM Near-global Digital Elevation Models (DEMs) http:/fwebmap.ornl.gov/ Static 2000
EVI Enhanced vegetation index http//modis gsfc nasa gow/ Multitemporal ~ 2001-2014
GPW GPW population density hitp:/fsedac.ciesin.columbia. eduf Static 2010
LST.day Land surface temperature in the daytime http://medis. gsfc. nasa.gov/ Multitemporal 2001-2014
LST.delta Land surface temperaturedaily fluctuation range http://modis.gsfe. nasa.gov/ Multitemporal 2001-2014
LST.night Land surface temperature in the nighttime http:#/medis. gsfc.nasa.gov/ Multitemporal ~ 2001-2014
PET Mean annual Potential Evapotranspiration http://csi cgiar org/Aridity/ Synoptic 1850-2000
PRECIP Average monthly rainfall http:/hwww. worldclim.org/ Synoptic 1950-2000
TCB Tasseled-cap brightness http:#/medis.gsfc. nasa.gov/ Multitemporal 2001-2014
TCW Tasseled-cap wetness hitp:/fmodis. gsfe.nasa.gov/ Multitemporal ~ 2001-2014

Table 1. Further details of geospatial covariates included in the model

This document can be cited as folkews: Spatial Data Repository, The Demographic and Health Surveys Program. Modeled Surfaces. KE2014DHS_MLITNAPACC_MS_vD1
ICF International. Funded by the United States Agency for International Development (USAID). Available from i com. [2 DAY MONTH YEAR]
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Model fit and validation

The predictive perfermance of the geostatistical model was assessed via out-of-sample validation. This consisted of a four—fold hold-out
procedure whereby 25% of the data points were randomly withdrawn from the dataset, the model run in full using the remaining 75% of data, and
the predicted values at the locations of the hold—out data compared to their observed values. This was repeated four times without replacement
such that every data point was held out once across the four validation runs. Standard validation statistics were computed as measures of model
precision (mean absolute error, MAE), bias (mean square error, MSE), and the degree of linear association between observed and predicted
values (correlation, COR). The MAE quantifies model precision, while the MSE indicates how biased the model is, with values close to zero
providing an indication that the model is unbiased. These statistics are listed in Table 2, and a scatterplot showing the distribution of observed
versus predicted points in Figure 5.

Model parameters

Covariance function Matern
Spatial scale of correlation (Km} 70.9
Variance of spatially structured component 0.5
Variance of non-spatial component 0.58
Mean annual aridity 12%
VIIRS Nighttime Lights—2012 8%
Enhanced vegetation index 4%
SRTM Near—global Digital Elevation Models (DEMs) 14%
w GPW population density 4%
2 Land surface temperature in the daytime 18%
Land surface temperature daily fluctuation range 4%
Land surface temperature in the nighttime 6%
Mean annual Potential Evapotranspiration 6%
Tasseled—-cap brightness 6%
Tasseled-cap wetness 9%
Travel time to cities with = 50k via all transport methods 6%
Average monthly rainfall 6%
0 0% 04 o8 08 Correlation 88%
Predicted Mean absolute error 9%
Mean square error 1%
Figure 5. Validation scatterplot. For each point in the out-of-sample Table 2. Model fit and validati istics. Detailed are the relative
validation exercise, the observed value is plotted against the predicted contributions of ech covariate to the final model fit, and the results of the
value, with the 1:1 line shown for reference. validation exercise.

Model surface uncertainty and interpretation

The ability of the MGB process to accurately predict any given indicator is dependent on several factors. First, each indicator will have different
inherent properties such as the overall amount of variation across the country, the extent to which this is spatially autocorrelated (with more
autocorrelation meaning a more organized gecgraphic pattern that is easier to predict). and the statistical distribution of values (with bi-modal,
heavily skewed, or other unusual distributions often being more difficult to predict accurately}. Second, the extent to which the environmental
covariates are correlated with the indicator will influence predictive accuracy, with higher correlaticns allowing greater accuracy. Third, the density
of cluster points and the sample size (e.g. number of respondents) at each cluster will have an important effect, with denser surveys and larger
sample sizes yielding greater accuracy. Given these factors, it is expected that some indicators will be predicted with greater accuracy in some
countries than in cthers. An important element of the model surface outputs is therefore the uncertainty estimates. Uncertainty takes into account
the error in the mean estimate and is estimated for each grid square (pixel level). The uncertainty surface helps users understand the robustness
of an estimate at any given area on the map. This uncertainty of the modeled surface is shown in Figure 2 with each grid square {pixel) value
representing the width of the 85% credible interval (Cl) of the mean estimate value for that pixel. It is possible to have very low confidence width
values while it is also possible to have values that are equivalent to a 95% Cl of 0%—100%.
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3.3 Model surface uncertainty and interpretation

An important element of the model surface output is the uncertainty estimates. The prediction uncertainty
maps provide an indication of the likely precision of the mean estimate for each grid square (pixel level).
The uncertainty surface helps users understand the robustness of an estimate at any given location on the
map. Uncertainty can vary across a modeled surface for severa reasons such as the sparseness of DHS
point location data, rareness of the indicator being estimated, and the extent to which the model explains
the variance. More uncertainty in alocation indicates that the model poorly estimates the indicator valuein
that location, while less uncertainty indicates that the model is better able to estimate the indicator valuein
that location. This uncertainty of the modeled surfaceis provided as astandard output in the form of araster
surface with each grid square (pixel) value representing the width of the 95% CI of the point estimate
indicator value for that pixel. It is possible to have very low confidence width values and values that are
equivalent to a95% CI of 0% to 100%. These uncertainty surfaces are separate from the validation statistics,
which provide asummary of the overall model performance rather than the precision at different locations.
Although the relationship between them is complex, generally amodel with good validation statistics (high
correlation, low MAE and M SE) would also have lower levels of uncertainty on a pixel-by-pixel basis, and
vice-versa.

When using the modeled surfaces for decision-making, it is important to consider the uncertainty of the
estimate. The interpretation of the uncertainty values for a modeled surface is not obvious, and is often
ignored by users. However, it is an important element of the model and is worth consideration by users,
who can gain ageneral sense of the model’ s uncertainty and the difference in uncertainty in specific areas.
Individual users must decide on an acceptable level of uncertainty depending on the given context or
indicator, and the amount of uncertainty that they are willing to accept.

Figure 8 illustrates several ways that the uncertainty surface can be transformed to be more useful in the
decision-making process. Displaying the uncertainty surface as a continuous value with a divergent color
scheme (Figure 8 Panel A) allows users to identify areas with more or less certainty. Another approach
requires the user to select a credible interval threshold with the amount of error they are willing to accept
such as 10%. The map can then display those areas that meet the threshold and those that do not. It isalso
possible to super-impose those areas that do not meet the threshold onto the mean estimate map either asa
mask or hatching (Figure 8 Panel B and C).

Unlike the point estimate interpolated surface, it is not appropriate to aggregate (average) the uncertainty
surface to larger geographic polygons (areas) by a ssmple averaging method and then using these results
directly as an estimate of the 95% CI of the aggregated mean estimate value for the same area. Since the
uncertainty is evaluated at the pixel level (the certainty of the mean estimate at that pixel only), it cannot
be averaged over alarger area because the level of error is not independent across pixels. There may be
some way's to account for this problem of joint probabilities that occur in the aggregation of the uncertainty
surface, but it would be necessary to know the exact purpose and level of aggregation needed for the
indicator (Gething, Patil, and Hay 2010). This is appropriate when making a single specific map for
analytical purposes, although the purpose and level of aggregation will vary for every user of The DHS
Program modeled surfaces. It may be appropriate to aggregate the uncertainty surface to larger geographic
areas if the relative uncertainty is being evaluated versus the absolute width of the 95% CI. Averaging the
95% ClI for a given area and then comparing it to other areas can provide a sense if one areais likely to
have more or less uncertai nty when compared to other areas. Operationalizing thismight involve cal culating
the average width of the 95% CI values for the geographic areas of interest (by averaging the pixel values
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within the geographic unit), creating terciles of the values, and then displaying them as high, medium, and
low relative uncertainty without any actual values (Figure 8 Panel D, E, and F).

Figure 8. Examples of model uncertainty surface visualization

Examples of Model Uncertainty Surface Vizualization
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4 What are the Limitations and Assumptions of the Modeling
Surfaces?

Summary

Understanding the limitations and assumptions of the modeling surfacesis essential for their proper use and
appropriate interpretation. There are several model limitations related to urban areas, temporality, and
locational bias. In addition, there can be considerable differences in modeling surface validity across
different countries and among indicators within acountry. Thismay be due to sampled location distribution,
indicator cluster level case count, and the extent to which the covariates are drivers of the process being
measured within that country. Finally, the modeling process did not specifically adjust the model to recreate
the DHS Regions or national level estimates present in the survey final report.

Key Questions

Are some geographic areas modeled better or worse than others?

The pilot modeling activity (SAR 11) indicated that urban areas were not as well modeled as other
areas of a country. This is due in part to the large heterogeneity in urban areas that may not be
captured by the covariate library as well as the impact of the 0-2 km geo-masking (displacement) of
the urban geo-coded cluster location. See Section 4.2

Why do areas have different levels of error across indicators and countries?

Error in this context refers to the ability of the model to predict the correct value of an indicator in a
particular place. This depends on multiple factors such as the density of survey clusters around a
prediction location, the sample size (number of case count respondents) within each cluster, data
points available and location in the survey (more data points provide better predictions), the strength
of correlations between covariates and indicators, the indicator and covariate association, and the
inherent degree of spatial variation displayed by the indicator. The overall predictive ability of the
model is summarized in the mean absolute error validation statistic. See Section 4.2

Are maps comparable across different countries?

Yes, the maps are comparable between different countries but limitations remain as described in
earlier sections; these include the varying amount of error in the map and the predictive ability of the
model. See Section 4.2

Can | recreate the DHS final report national or sub-national estimates from the modeled surface
map?

The modeling process did not specifically adjust the model to recreate the DHS regions or national level
estimates present in the survey final report. In many cases, the modeled surface aggregated values will
be within the 95% CI of the DHS final report estimates. See Section 4.3
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4.1 Modd limitations

There are severa assumptions and limitations that must be considered when using and interpreting the
spatial modeled surfaces. These relate to urban areas, temporality, and locational bias.

4.1.1 Urban areas

A key limitation of the modeling approach is urban area mapping. In all national-level spatially modeled
surfaces created in the pilot and described in SAR 11, urban areas were predicted with relatively uniform
values (Figure 9). Thisis due in part to the size of the final pixel resolution and the availability of urban
specific covariates, which may differ from thosein rural areas. In reality, large urban areas typically exhibit
substantia heterogeneities in health and development indicators that occur at shorter scales than the 5 km
pixel diameter. Thisis an important issue since close to 50% of residents in the majority of countries that
were mapped reside in urban areas and the population in urban areas is growing. The SAR 11 report
explored some possible approaches to mitigating these factors including using higher resolution covariates
in urban areas (Gething et al. 2015). Specific conclusions related to urban areas should be considered
carefully and with an understanding that the predicted 5 x 5 km value of urban pixels represents a mean
that cannot show the considerable within-pixel variability.

Figure 9. Example of urban area point estimates surface and model uncertainty surface
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4.1.2 Temporality

There are several temporal or seasonal limitations and assumptions that apply when considering a modeled
surface. These limitations are similar to the temporal issues that exist in selecting an indicator described in
Section 2.1.1. Issues include the survey timing, length of the fieldwork, and covariate timing. These are
particularly relevant for temporally bounded indicators or those related to the time when the survey was
conducted such as the rainy season or school year.

A recent review of 18 recent DHS surveys indicates that fieldwork typically lasts between 2 to 9 months,
with an average of 5 months. The dates of survey fieldwork are available on the DHS website
(http://dhsprogram.com/). The length of fieldwork varies between countries, and this variation can have an
impact on specific indicators within a country. For example, if a particular indicator has a seasond
association with the survey date in any particular cluster, the location will not be the same as other parts of
the country and nearby locations may not be surveyed at the same time.

Thetiming of the raster covariate datasets is an additional limitation on the model map surfaces. Although
some geospatial covariates may not vary greatly within a given year or over many years, some may vary
considerably. Table 2 summarizes the temporal nature of each raster and their date(s) of collection. The use
of the standard covariates instead of the best covariates for any given country means that the timing of any
given covariate may not align exactly with the survey dates. This could reduce the predictive ability of the
model.

4.1.3 Locational bias

There are two potential sources of locational bias in the modeled surface. The first relates to the error
associated with the measurement of the centroid of the cluster point location; the other is the assumption
that the event measured by a specific indicator occurred at a given cluster point location.

As mentioned previously, the DHS cluster location data used in the spatial modeling process are an
estimated center of the survey cluster, a point location that actually represents an area of unknown size with
fairly large variability across a country, especially between urban and rural locations. In addition, these
point locations are geo-masked from 0-2 km in urban locations and 0-5 km in rural locations, with 1% of
rural locations up to 10 km (Burgert et a. 2013). These two issues add spatial error to the model athough
previous work discussed in SAR 11 has shown that the impact of displacement on modeling error is small
(Gething et al. 2015).

The methods used to produce the modeled surfaces assume that an event measured by an indicator occurred
in the place the survey took place. However, the event could have occurred in a different place. Thistype
of bias occurs when an event takes place in a different location from that of the respondent being
interviewed. The bias can be minimized if the reference period is given proper consideration. For example,
shorter reference periods such as oneyear versus alifetime are likely to reducelocationa bias. The intended
purpose of the modeled surface may aso be relevant when considering locational bias. For example, if an
interpolated surface of women age 15-49 who were tested for HIV in the past 12 months was created, the
surface may or may not accurately measure theimpact of an HIV testing campaign in a specific area. Some
respondents may have been tested for HIV in adifferent location from the one where they wereinterviewed.
However, if the surface was to be used to target future campaigns in areas with low levels of HIV testing,
it might be a good targeting tool. In contrast, some indicators do not have locationa bias because the
indicator is only reflective of the place where the survey took place. Examples include household assets,
access to water, and sanitation practices.
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4.2 Differencein modeling acrossindicatorsand countries

The ability of the MGB process to accurately predict any given indicator depends on several factors. First,
each indicator has different inherent properties such as the overall amount of variation across the country,
the extent to which thisis spatially autocorrelated (with more autocorrelation reflecting a more organized
geographic pattern that is easier to predict), and the statistical distribution of values (with bi-modal, heavily
skewed, or other unusual distributions more difficult to predict accurately). Second, the extent to which the
environmental covariates are correlated with the indicator will influence the predictive accuracy, with
higher correlations alowing for greater accuracy. Third, the density of cluster points and the sample size
(number of respondents) at each cluster will have an important effect, with denser surveysand larger sample
sizesyielding greater accuracy. Given thesefactors, someindicatorswill be predicted with greater accuracy
in some countries than in others. Figure 10 show validation scatter plots and validation statistics for stunting
in children in three countries.

Figure 10. Validation scatter plots and validation statistics for stunting in children
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4.3 Aggregation of point estimate interpolated surface to DHS national level
or sub-national areas

The modeled surfaces can aggregate up from the 5 x 5 km pixel resolution to different administrative levels
or other geographic areas. However, the modeling process did not specifically adjust the model to recreate
the DHS regions or national level estimates in the survey final report. In many cases, the aggregated data
should be within the 95% CI of the estimate generated directly from the primary DHS survey data files.
Table 5 shows a summary of data created in the SAR 11 pilot study for the child stunting indicator in
Tanzania. The datasets estimate and upper/lower bound of the 95% CI represent the estimate value and
95% CI obtained when the indicator is calculated directly from the DHS recode dataset. The point estimate
averaged value column isthe aggregated estimate from the map surface. Thisisthe average pixel valuefor
that region. With child stunting in Tanzania, there are 26 regions, of which 12 map surface estimates are
within the 95% CI credible of the dataset estimate (shown in green). Six regions are less than two percentage
points of the 95% CI (yellow), while all other estimates were between two percentage points to ten
percentage points above the dataset estimate. Examination of the other indicators in Tanzania, Ghana, and
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Uganda created in SAR11 showed similar mixed results with no obvious pattern, although specific regions
and some indicators were generally better estimates than others.

Table 5. Data versus model surface estimate for child stunting in Tanzania by DHS region

Dataset Dataset Upper Dataset Lower Point Estimate

Region Estimate bound bound Averaged Value
Dodoma 59.0 51.7 65.9 54.5
Arusha 41.5 35.9 47.2 52.8
Kilimanjaro 28.9 20.3 39.3 41.8
Tanga 48.8 39.7 58.0 47.4
Morogoro 40.9 33.7 48.5 51.5
Pwani 29.3 23.0 36.5 429
Dar es Salaam 15.7 9.3 25.2 28.3
Lindi 50.0 41.2 58.9 56.7
Mtwara 41.2 35.1 47.5 48.3
Ruvuma 46.1 40.5 51.7 51.8
Iringa 50.8 42.1 59.4 58.3
Mbeya 41.4 29.2 54.6 55.7
Singida 38.5 32.0 45.4 46.9
Tabora 30.9 27.3 34.7 44.0
Rukwa 49.7 39.1 60.2 51.1
Kigoma 47.9 42.1 53.8 51.8
Shinyanga 425 36.9 48.3 48.9
Kagera 43.1 36.9 49.6 49.2
Mwanza 40.1 34.5 45.9 41.4
Mara 30.2 25.3 35.7 39.7
Manyara 46.5 40.7 52.3 50.2
Unguja North 38.8 32.2 45.8 36.3
Unguja South 25.6 19.7 32.4 33.3
Town West 194 14.0 26.3 20.5
Pemba North 37.3 29.3 46.0 38.3
Pemba South 29.0 235 35.2 38.0
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5 How can The DHS Program M odeled Surfaces be Used?

Summary

The following section provides an overview of the use of interpolated surfaces to monitor and evaluate
situations and programs, and to contribute to informed decision-making about future policies and programs.
Included in this section is a discussion of possible approaches for operationalizing the modeled surfaces
and the limitations to these approaches.

Key Questions

Can | use these maps to advocate for program support?
Yes, these modeled surfaces can evaluate areas where programs were active in the past or identify
areas of need for future programs. See Section 5.1

Can | compare my program intervention areas to other areas of the country?
Yes, the modeled surface can be summarized to represent administrative or other geographic zones,
and then compared to non-intervention areas. See Section 5.1.

How can | make this useable for my level of decision making, the 5 x 5 km pixel do not
correspond to areas useful for program decision-making?

The data can be aggregated to any number of higher-level administrative units, programmatic activity
areas, or operational areas such as health facility catchments or livelihood zones. See Section 5.2

Can the modeled surfaces be used with other data such as health facility or population density
to make program decisions?

Yes, many geographic data sources can be overlaid in a single map to augment understanding of the
map context. In addition, the data can be linked specifically to intervention points or areas. See
Section 5.2.3
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5.1 Decision-making with modeled surfaces

Spatially modeled surfaces can help in several ways to improve decision-making for many development
sectors that include health, population, nutrition, and water and sanitation programs on multiple levels.

1. Monitoring and evaluation: analysis and evaluation of past initiatives (applied use) or
understanding existing situations.

2. Program planning: future planning of appropriate programs and policies. There are some
approaches that apply to both approaches such as having contextual information for improved map
understanding.

Monitoring and evaluation specialists can use the data in the modeled surfaces to evaluate past programs
or to better understand existing situations. Such evaluations can help to understand deviations from the
norm, attribute cause, or to conduct impact evaluations, which analyze what would have happened to the
population of an area if a program had not implemented. Transforming model map surface to useful
products (operationalization)

The modeled surfaces can be used for many different decision-making purposes as described in the previous
section. However, the surfaces usually need to be transformed or operationalized by the data user. This
operationalization can be done in many ways, three of which are discussed in this section: aggregation,
burden estimate, and linkage to other data.

Table 6 summarizes the possible approaches for both monitoring and evaluation, and program planning.
These include understanding deviation from the norm, comparing intervention areas to non-intervention
areas, estimation of burden, and linking with other data for contextual understanding. Program managers
can also use modeled surfaces to plan, target, and develop interventions and programs that aim to improve
situations in targeted geographic areas. | nterventions can be targeted more precisely, which saves money,
time, and human resources in the search for the most effective outcomes.

5.2 Transforming model map surfaceto useful products (oper ationalization)

The modeled surfaces can be used for many different decision-making purposes as described in the previous
section. However, the surfaces usually need to be transformed or operationalized by the data user. This
operationalization can be done in many ways, three of which are discussed in this section: aggregation,
burden estimate, and linkage to other data.
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Table 6. Approaches for monitoring and evaluating past programs with modeled surfaces

Goal

Summary

Monitoring
&
Evaluation

Program
Planning

Understanding deviations
from the norm

Comparing intervention
areas to non-intervention
areas (demonstrating
success of
program/securing
advocates)

Overlay data for better
contextual placement

Improved program targeting
and planning

Improving burden estimates

With widespread health and social problems, it can be

difficult to determine which areas are better off than others.

In addition, it can be difficult to discern whether new
observations at a location are anomalous or within
expected bounds. The uncertainty measures provided in
the predictive surfaces provide a means by which one can
evaluate whether observed differences between locations
are meaningful in the context of the broader scale.

Impact evaluations compare the outcomes of a program
against a counterfactual to show how an area would have
developed (or stagnated) without the program; this
validates the value of the program, which can help with
finding advocates for future interventions.

Prevalence surfaces in combination with high-resolution
population estimates make it possible to estimate the total
numbers of individuals within certain categories. These
predictions could then be used with other GIS measures
and survey data, such as the placement of roads or
staffing levels at facilities, to determine optimal positioning
for new schools or the optimal resources needed in a new
health facility.

Program managers will be able to answer questions such
as: Where do | need to put effort to obtain the most
effective outcomes? Where is the greatest need for a
certain intervention? Where are certain factors present to
implement specific actions?

Currently, national level or coarse administrative unit level
mapping masks heterogeneities and misses possible
hotspots and inequalities. There is potential for the
modeled surfaces to better identify these and to work with
population maps to more accurately quantify and map
burdens of disease and other health related issues.

v
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5.2.1 Aggregation

Aggregation from the point estimate model surface pixels to administrative areas, such as provinces,
districts, or other relevant policy areas such as livelihood zones, is one of the main ways that modeled
surfaces can be operationalized for use in decision-making. The aggregation, also called averaging or zonal
statistics, can be completed in two ways:

1. Simple mean zona statistics: values for the polygon are calculated by using the average value of
all the grid squares (or portions of grid squares) within the area.

2. Population weighted mean zonal statistics: use similar methods but take into account the likely

population in each grid square and the contribution of each grid square to the estimate for the whole
area.

Figure 11 illustrates the aggregation process inputs, the point estimate surface, and administrative units (in
this case, districtsin Rwanda). The point estimates are aggregated by simple averaging to the administrative
units to produce a new map that illustrates the mean estimate value for each unit.

The weighted population approach is likely to provide a more directly appropriate result when decisions
are focused on optimizing impact across populations. However, this approach also requires additional data
and computational steps. It isimportant to remember that input data used for the population weighting may
need to be standardized to the grid squares locations and pixel size/resolution used in the DHS modeled
surfaces. Further considerations of the population data are discussed in the “ Burden Estimate” section.

Figure 11. Example of modeled surface aggregation to administrative units

Point Estimate Surface Aggregation Example

Point Estimate Surface
Percent
me High :100%

Point Estimate Aggregation
to District Bourr]qdaries

@ or%-92%
() 81%-90%
Household access | | 71%-80%
to improved water () 61%-70%
source @ 0% -60%

Rwanda Districts Boundaries
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5.2.2 Burden estimates

Burden estimates begin with the prevalence estimate from the modeled surface and convert it into
population count (numbers of individuals) affected. The choice of population data can influence the results.
Severa different groups have worked on producing modeled surfaces of population density. It is essential
that the correct reference population layer be used for the denominator estimation that includes country,
age-range, and gender. Thelimits also include the denominator population from which the indicator isbeing
estimated. For vaccination, the denominator would be children age 12-23 months, and for delivery in a
health facility, pregnant women. Figure 12 illustrates the burden estimate process for DPT3 vaccination in
Ghana starting from the two inputs (1) point estimate surface (Panel A) and (2) population density surface
(from WorldPop) (Panel B), and thefinal output of number of children unvaccinated (Panel C). The number
of children vaccinated is calculated by taking the inverse of the multiplying the percent of vaccinated by
the number of children.

Publicly available population datasets with some options for accounting for population distribution and
gender include: WorldPop (http://www.worldpop.org.uk/) and Gridded Population of the World (GPW)
(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). The WorldPop are population raster surfaces
that are re-sampled and estimated using some methods similar to those being used in the DHS modeled
surfaces that include the use of spatial covariates. The GPW uses a real weighting to distribute the
population across space with only census data and no additional covariates. Estimating the portion of the
population at risk can be done by using census data (where available) and DHS or other household surveys
that include detailed population structure data. Those data can be applied to the popul ation raster to estimate
the number of individuals at risk (such as number of children under age 5 within the population). This can
cause issues of collinearity (two inputs to the same model being highly correlated) in the burden estimates,
athough thisis minimal given the overall modeling process used for both the population surfaces and The
DHS Program model ed surfaces.

Figure 12. lllustration of burden estimate calculation process

Example of Burden Estimate Calculation
A B ' c
X
- a
7 / - s -
. Point Estimate Population ' I Population
p— 5 12-24 Months 12-24 Months
- 38% e 410 [
-0 0
Point Estimate by Pixel Population Density Burden Estimate
Percent of DPT3 Vaccination Childern 12-24 months Number of Unvaccinated
among Children 12-24 months (WorldPop Adjusted Data) children 12-24 months
(Calculated as the inverse of Ax B)
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5.2.3 Linkage with other data

The modeled surfaces can be linked with other geospatial data to enhance understanding of context and
needs. The two most common approaches are point data extraction and inclusion of the modeled surface
point estimate valuesto create an analytically relevant model ed surface that combines several DHS modeled
surfaces or other program-relevant surfaces.

Point extraction is most useful when the data available for linkage are point data (point locations with
known latitude and longitude) and when the data are not from a program area polygon where the
aggregation techniques might be applied. For example, a program worked in certain areas of adistrict, and
the GPS location of the villages where the program was implemented are available. In this case, a buffer
extraction may allow for understanding the value of one or many indicators around a given location. Itis
important to note that a point extraction of values can be somewhat misleading, and that an area around the
point would provide a better sense of the context. This extracted buffer value can then be included as an
input to a more standard analysis.

Combining severa DHS modeled surfaces or combining DHS modeled surfaces with other relevant
modeled surfaces has analytical potential, although careful considerations must be made for collinearity of
the datainputs. The DHS modeled surfaces are created with a suite of covariates (see Table 2 for summary
of possible covariates in the model, and refer to the indicator documentations for the specific covariates
included in that surface for that specific indicator). Including any of those covariateswith the DHS modeled
surfaces to create another combined surface could lead to collinearity in the dataset. Use of the covariate
table within the documentation will provide some guidance about the collinearity that may be likely with
the correlation between the surface and a similar covariate included in the model.

Figure 13. lllustration of value extraction from modeled surface to village locations

Literacy among women
=i Modeled
r Village| Surface
ID Value
4 63%
6 74%
8 70%
Percent
- 98% 9 73%
: 10 68%
18%’ 17 74%
Point Estimate Surface Village locations Extraction

Output Table
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5.3 Useconsderations and limitations

There are a few key considerations that may limit the use of the modeled surfaces in certain areas or for
certain decisions. The previous section outlined some of the limitations of the modeled surfaces related to
size of the urban areas, temporality, locational bias, and differences in indicator modeling and model
uncertainty.

Comparisons or decisions about large urban areas where the model has considerable homogeneity do not
allow for smaller scale understanding of the differences that may exist within these areas. Thus, fine-scale
planning or decisions based on using the modeled surfaces within these areas would be potentialy
erroneous. However, decision-making focused on the relative need of some areas as compared to other
areas of a country than urban areas could be analyzed as alarge combined unit.

Thetiming of the survey and the relationship to the other datain use, such as program intervention activities,
needs to be carefully considered, along with the reference period of the indicator. For example, if an
antenatal care (ANC) activity began in a certain area of Ghana in early 2013 and the program manager
would like to compare the results from that area with other areas using the 2014 DHS modeled surface for
ANC 4+ visits, the results would be a somewhat misleading outcome. The ANC 4+ indicator captures data
on births that occurred in the last 5 years, which in this case would be 1-2 years of the program and 3 or
more years when the program was not active.

When evaluating the impact of a program, it is important to know what other programs may have been
activein the same areas or in the control areasin order to have a complete understanding of the program at
the time of the survey.
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Final Thoughts

Spatially modeled surfaces based on the MBG approach can help meet the needs of national and
international communities for more granular, spatially detailed estimates than those currently provided by
The DHS Program and most other national level data sources. These types of maps, whether at 5 x 5 km
grid scale or subsequently aggregated to appropriate sub-national decision-making units, can provide
information that is needed for measuring geographic variation in health indicators. The DHS Program’s
spatially modeled surfaceswill be one source of additional information that will hel p decision-makers better
understand the geographic disaggregation of key demographic and health indicators in the coming years.
There is enormous potential for new, innovative uses of the modeled surfaces, but it is only in a large
community of users who are sharing their experiences that this potential will be fully realized. Users are
encouraged to submit their cases and other feedback to The DHS Program.
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