
DHS SPATIAL ANALYSIS
REPORTS 23

COMMUNITY IMPROVED 
SANITATION COVERAGE 
AND CHILDHOOD STUNTING

SEPTEMBER 2023

This publication was produced for review by the United States Agency for International Development (USAID). The report was prepared 
by Rose E. Donohue, Rachael Church, Shireen Assaf, and Benjamin K. Mayala.





DHS Spatial Analysis Reports No. 23 

Community Improved Sanitation Coverage  

and Childhood Stunting 

 

 

 

Rose E. Donohue1,2 

Rachael Church1,3 

Shireen Assaf1,2 

Benjamin K. Mayala1,2 

 

 

The DHS Program 

ICF 

Rockville, Maryland, USA 

 

September 2023 

 

 

 

 
1 The DHS Program 

2 ICF 
3 Avenir Health 

 

 

 

 

 

Corresponding author: Rose E. Donohue, The DHS Program, 530 Gaither Road, Suite 500, Rockville, 

MD 20850, USA; phone: 301-572-0507; fax: 301-407-6501; email: rose.donohue@icf.com



 

Acknowledgments: The authors wish to thank Sara Riese, Ryan Mahoney, and James Winter for their 

review of this report. 

Editor: Diane Stoy  

Document Production: Joan Wardell 

This study was implemented with support from the United States Agency for International Development 

(USAID) through The DHS Program (#720-OAA-18C-00083). The views expressed are those of the 

authors and do not necessarily reflect the views of USAID or the United States Government. 

The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate 

population, health, and nutrition programs. Additional information about The DHS Program can be 

obtained from ICF, 530 Gaither Road, Suite 500, Rockville, MD 20850 USA; telephone: +1 301-407-6500, 

fax: +1-301-407-6501, email: info@DHSprogram.com, internet: www.DHSprogram.com. 

Recommended citation: 

Donohue, Rose E., Rachael Church, Shireen Assaf, and Benjamin K. Mayala. 2023. Community Improved 

Sanitation Coverage and Childhood Stunting. DHS Spatial Analysis Reports No. 23. Rockville, Maryland, 

USA: ICF.



 

iii 

CONTENTS 

TABLES ........................................................................................................................................................ v 

FIGURES .................................................................................................................................................... vii 

PREFACE .................................................................................................................................................... ix 

ABSTRACT.................................................................................................................................................. xi 

ACRONYMS AND ABBREVIATIONS ...................................................................................................... xiii 

1 BACKGROUND AND OBJECTIVES .............................................................................................. 1 

1.1 Background ......................................................................................................................... 1 

1.2 Objectives ........................................................................................................................... 2 

2 DATA AND METHODS ................................................................................................................... 3 

2.1 Data ..................................................................................................................................... 3 

2.2 Visualization ........................................................................................................................ 3 

2.3 Geospatial Modeling ........................................................................................................... 3 

2.3.1 Geospatial covariates ............................................................................................ 4 

2.3.2 Overview of the modeling approach ...................................................................... 5 

2.3.3 Covariate modeling with stacked generalization .................................................... 6 

2.3.4 Model specification and development .................................................................... 7 

2.3.5 Pixel-level model estimates ................................................................................... 7 

2.3.6 Population at risk estimates ................................................................................... 7 

2.4 Multilevel Regression .......................................................................................................... 8 

2.4.1 Individual-level measures ...................................................................................... 8 

2.4.2 Community-level measures ................................................................................... 9 

2.4.3 Regression analysis ............................................................................................... 9 

3 RESULTS ...................................................................................................................................... 11 

3.1 Visualization ...................................................................................................................... 11 

3.1.1 Nigeria .................................................................................................................. 11 

3.1.1 Zambia ................................................................................................................. 13 

3.2 Geospatial Modeling ......................................................................................................... 15 

3.2.1 Nigeria .................................................................................................................. 15 

3.2.2 Zambia ................................................................................................................. 16 

3.3 Multilevel Regression ........................................................................................................ 18 

3.3.1 Nigeria .................................................................................................................. 18 

3.3.2 Zambia ................................................................................................................. 19 

4 DISCUSSION AND CONCLUSIONS ............................................................................................ 23 

4.1 Visualization ...................................................................................................................... 23 

4.2 Geospatial Modeling ......................................................................................................... 24 

4.3 Multilevel Regression ........................................................................................................ 24 

4.4 Conclusions ....................................................................................................................... 26 

REFERENCES ............................................................................................................................................ 27 

APPENDIX .................................................................................................................................................. 33 

 





 

v 

TABLES 

Table 1 Geospatial covariates used to develop the models in this study ............................... 4 

Table 2 Number of clusters in each region grouped by the percentage of the de jure 

population with access to improved sanitation, Nigeria ........................................... 11 

Table 3 Number of clusters in each region grouped by the percentage of the de jure 

population with access to improved sanitation, Zambia .......................................... 13 

Table 4 Association of community-improved sanitation coverage and childhood stunting 

using multilevel logistic regression, Nigeria ............................................................. 19 

Table 5 Association of community improved sanitation coverage and childhood stunting 

using multilevel logistic regression, Zambia ............................................................ 21 

 

Appendix Table 1 Association of household access to improved sanitation and childhood stunting 

using multilevel logistic regression, Nigeria ............................................................. 33 

Appendix Table 2 Association of household access to improved sanitation and childhood stunting 

using multilevel logistic regression, Zambia ............................................................ 34 

Appendix Table 3 Association of community improved sanitation coverage and childhood stunting 

using multilevel logistic regression by region, Nigeria ............................................. 35 

Appendix Table 4 Association of community improved sanitation coverage and childhood stunting 

using multilevel logistic regression by region, Zambia ............................................ 36 





 

vii 

FIGURES 

Figure 1 Geospatial modeling process flowchart ..................................................................... 6 

Figure 2 Maps that depict community sanitation coverage for Nigeria 2018 DHS: (a) cluster-

level improved sanitation coverage estimates overlaid on the regional estimates 

that represent the percentage of the de jure population with access to improved 

sanitation facilities; and (b) the proportion of clusters in each region classified by 

their community improved sanitation coverage (0–20%, 21–40%, 41–60%, 61–80%, 

81–99%, and 100%) ................................................................................................ 12 

Figure 3 Maps that depict community sanitation coverage for Zambia 2018 DHS: (a) cluster-

level improved sanitation coverage estimates overlaid on the regional estimates 

that represent the percentage of the de jure population with access to improved 

sanitation facilities; and (b) the proportion of clusters in each region classified by 

their community improved sanitation coverage (0–20%, 21–40%, 41–60%, 61–80%, 

81–99%, and 100%) ................................................................................................ 14 

Figure 4 Modeled surfaces for (a) the percentage of the de jure population using an 

improved sanitation facility; (b) width of the 95% uncertainty interval; (c) the 

population count in 2018 obtained from WorldPop; and (d) the estimated population 

at risk ........................................................................................................................ 16 

Figure 5 Modeled surfaces for (a) the percentage of the de jure population using an 

improved sanitation facility; (b) width of the 95% uncertainty interval; (c) the 

population count in 2018 obtained from WorldPop; and (d) the estimated population 

at risk ........................................................................................................................ 17 

 





 

ix 

PREFACE 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 

on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 

HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports that respond to the increasing 

interest in a spatial perspective on demographic and health data. The principal objectives of all the DHS 

report series are to provide information for policy formulation at the international level and to examine 

individual country results in an international context. 

The topics in this series are selected by The DHS Program in consultation with the U.S. Agency for 

International Development. A range of methodologies are used, including geostatistical and multivariate 

statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 

survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 

used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 

Director, The DHS Program 
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ABSTRACT 

Lack of access to improved sanitation facilities remains a global problem, with an estimated 1.1 billion 

individuals estimated to have no access to an improved sanitation facility in 2020. Poor sanitation has been 

linked to a variety of deleterious health outcomes that include malnutrition, diarrheal diseases, acute 

respiratory infections, and many neglected tropical diseases such as schistosomiasis, soil-transmitted 

helminthiases, and trachoma. Although individual access to improved sanitation in households can prevent 

exposure to fecal contamination in an individual’s household, there is growing awareness that the shared 

community environment can be contaminated when other households lack access to improved sanitation 

facilities. Thus, there is growing interest in exploring and evaluating the impact of community-level 

sanitation coverage on individual health outcomes. In this report, we present maps to visualize community 

improved sanitation coverage and use geospatial modeling to identify areas at risk. We evaluate the 

association between childhood stunting and household-level and community-level improved sanitation by 

using multilevel logistic regression on 2018 DHS surveys from Nigeria and Zambia. 

Our findings suggest that community improved sanitation coverage should be considered when evaluating 

sanitation-related health outcomes. We find that although household sanitation access was not associated 

with childhood stunting in either of the adjusted regression models, community improved sanitation 

coverage was significantly and inversely associated with childhood stunting in Nigeria. However, we note 

the limitations of estimating community sanitation coverage with DHS cluster-level data. All households 

in a community do not have sanitation data and the lack of household GPS coordinates precludes any 

analyses that consider the proximity to other households in a community. We present different 

visualizations and tools that use DHS data which may be useful to researchers and policymakers. We create 

maps that depict the variation in cluster-level estimates in different regions and offer suggestions for using 

these maps. We offer guidance on how the modeled surfaces in this report and those available in the Spatial 

Data Repository can be used by policymakers to aid in decisionmaking and by researchers to provide 

estimates of community sanitation measures in locations that are not sampled by a DHS survey. 

Key words: community sanitation, improved sanitation, stunting, sanitation coverage 
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1 BACKGROUND AND OBJECTIVES 

1.1 Background 

In 2020, approximately 1.1 billion individuals globally lacked access to an improved sanitation facility, 

defined as a facility which hygienically separates human waste from human contact. Among this 

population, 494 million practiced open defecation, while 616 million had access only to an unimproved 

sanitation facility.1 Lack of access to improved sanitation has been linked to a variety of deleterious health 

outcomes that include malnutrition, diarrheal diseases, acute respiratory infections, and many neglected 

tropical diseases (NTDs) such as schistosomiasis, soil-transmitted helminthiases (STH), and trachoma.2-4 

Improved sanitation access betters health outcomes by preventing exposure to feces, the most dangerous 

of human excreta, and the fecal-oral transmission pathways of diarrheal diseases and many NTDs.2 

Repeated episodes of diarrhea and STH infections are two of the major biological mechanisms that underlie 

stunting, along with environmental enteric dysfunction.5 The health burden imposed by poor sanitation is 

substantial. A recent study attributed 564,308 diarrheal deaths and 29,548,404 disability-adjusted life years 

(DALYs) to poor sanitation globally in 2019.6 

Studies that explored the association between poor sanitation and sanitation-related outcomes at the 

household-level have found inconsistent results, although the totality of the evidence generally suggests 

that there is an association between poor household sanitation and health outcomes. A meta-analysis found 

that access to household sanitation was protective against diarrhea, NTDs that included some STH 

infections, trachoma, schistosomiasis, and height-for-age. However, this study noted high heterogeneity 

and poor-quality evidence.7 Another recent meta-analysis found that 72% of studies showed a significant 

association between childhood stunting and lack of sanitation.8 Some studies that evaluated multiple DHS 

datasets in Ethiopia and Nepal found that household access to improved sanitation was a significant 

predictor of childhood stunting for some but not all survey years.9,10 

There has been growing interest in considering community-level sanitation in research and intervention 

programs related to sanitation-related health outcomes. Although household sanitation may protect 

household members from exposure to their own waste at home, other community members who lack 

improved sanitation facilities can contaminate the shared environment. In addition, fecal pathogens in the 

community can enter the household via humans, animals, and flies.11,12 Some studies have found that 

community-level sanitation coverage was more important than household access to sanitation for childhood 

stunting outcomes.13,14 Researchers have also posited that one reason interventions that can improve 

sanitation have not resulted in the expected improvements in health outcomes is the low community-level 

sanitation coverage in the intervention communities.11,15 

Although many studies with DHS data have evaluated the association between individual or 

household-level predictors and different health outcomes, few have explored the community-level 

predictors. The DHS Program conducts surveys at the household-level, and samples groups of adjacent 

households known as clusters. Clusters are preexisting, geographic groupings within the population, and in 

most surveys, census enumeration areas (EA) become the survey clusters. An EA is usually a city block in 

an urban area. In rural areas, an EA is usually a village, part of a village, or a group of small villages.16 In 
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this report, we use clusters as a proxy for community, which allowed us to use the DHS data to explore 

community-level improved sanitation. 

1.2 Objectives 

This report uses data from the 2018 Nigeria DHS and the 2018 Zambia DHS to explore various aspects of 

community improved sanitation coverage. The report uses geospatial data products from The DHS 

Program’s Spatial Data Repository (SDR) that include survey boundaries, indicator data, and geospatial 

covariates. This provides data users with examples of how they can use DHS geospatial data products in 

practice. 

First, we produce maps to visualize community improved sanitation coverage using DHS data. We then 

leverage the community improved sanitation coverage data with geospatial modeling methods to estimate 

the community improved sanitation coverage in non-surveyed locations. We further combine the modeled 

estimates with population count data to estimate the population count without access to improved sanitation. 

Finally, we seek to add to existing knowledge by using multilevel logistic regression to evaluate how 

improved access to household sanitation and community improved sanitation coverage are associated with 

one sanitation-related health outcome, childhood stunting. 
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2 DATA AND METHODS 

2.1 Data 

This report used data from two recent DHS surveys, the Nigeria 2018 DHS and the Zambia 2018 DHS. 

These countries have poor sanitation outcomes. The estimated percentage of the de jure population with 

access to an improved sanitation facility was 53.4% for Nigeria and 54.0% for Zambia in 2018. Both 

countries demonstrated substantial geographic variation in improved sanitation access. In Nigeria, DHS 

subnational estimates ranged from 17.2% in Ebonyi State to 93.1% in Abia State. In Zambia, improved 

sanitation subnational estimates ranged from 6.2% in the Western Province to 80.0% in Lusaka Province. 

In Nigeria, 22.9% of the population had no access to a toilet, while 23.7% of the population had access to 

an unimproved sanitation facility. 34.3% of the population was classified as having access to basic 

sanitation service, defined as having an improved sanitation facility that is not shared with other households. 

In Zambia, 9.8% of the population had no access to a toilet, 36.2% of the population had access to an 

unimproved sanitation facility, and 32.9% had access to basic sanitation service. 

Both countries also had stunting prevalence that exceeded the ‘very high’ threshold established for public 

health significance of ≥30%.17 Based on the 2018 DHS data, an estimated 36.8% of children under-5 in 

Nigeria and 34.6% of children under-5 in Zambia were stunted. 

2.2 Visualization 

We developed two maps to visualize community improved sanitation coverage for DHS data. We first 

classified the clusters by the percentage of the de jure population living in the cluster with access to 

improved sanitation, which we refer to as the community improved sanitation coverage. The clusters were 

overlaid on a choropleth map that showed the regional estimate for the percentage of the de jure population 

with access to improved sanitation. For Nigeria, the regional estimates represent the six geopolitical zones, 

while for Zambia, the regional estimates represent the ten provinces. The color scheme of the cluster and 

subnational estimates are the same for ease of interpretation. 

The second map uses the “pie chart” symbology in ArcGIS Pro to visualize the variation in clusters within 

and between regions. After calculating the community improved sanitation coverage for each cluster, we 

classified each cluster into a group based on the cluster’s percentage: 0–20%, 21–40%, 41–60%, 61–80%, 

81–99%, and 100% community improved sanitation coverage. We calculated the number of clusters in each 

of these groups for every region. We then used the chart symbology in ArcGIS Pro to create a pie chart for 

each region that showed the proportion of clusters in the 0–20%, 21–40%, 41–60%, 61–80%, 81–99%, and 

100% community improved sanitation coverage groups. 

2.3 Geospatial Modeling 

DHS surveys are generally designed to provide estimates of indicators at the national and largest 

subnational (Admin 1) levels. However, these estimates can conceal geographic variation that exists at 

lower levels and higher spatial resolutions, which is important for the effective implementation of health 

programs and interventions. In this analysis, we employ a geospatial modeling approach to provide 

estimates of the percentage of the de jure population with access to an improved sanitation facilities across 
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the entire country, with a spatial resolution of 5 x 5 km resolution. Each 5 x 5 km area is referred to as a 

pixel. Our primary objective was to provide prevalence predictions at a fine spatial resolution for Zambia 

and Nigeria. After creating a modeled surface that estimated the percentage of the population with improved 

sanitation access in each pixel, we further extend these estimates by combining them with population count 

data to calculate the population at risk. 

The methodology used in this analysis is similar to previous analyses of water and sanitation,18 childhood 

diarrhea disease,19 vaccination coverage,20 and HIV.21 This method was utilized because it has been shown 

to improve the predictive accuracy of geospatial modeling. We provide details of this approach in the next 

sections. 

2.3.1 Geospatial covariates 

In this analysis, we included the following socioeconomic, environmental, and health-related covariates to 

improve the predictions of improved sanitation (Table 1). 

Table 1 Geospatial covariates used to develop the models in this study 

Covariates 

Spatial 

resolution Source 

Travel time to nearest settlement >50,000 inhabitants 5 x 5 km Malaria Atlas Project 

Aridity 10 x 10 km Climatic Research Unit gridded Time Series (CRUTS) 

Diurnal temperature range 10 x 10 km CRUTS 

Potential evapotranspiration (PET) 10 x 10 km CRUTS 

Daily maximum temperature 10 x 10 km CRUTS 

Elevation 1 x 1 km NOAA 

Enhanced vegetation index (EVI) 5 x 5 km NASA 

Daytime land surface temperature (LST) 5 x 5 km NASA 

Diurnal difference in LST 5 x 5 km NASA 

Nighttime LST 5 x 5 km NASA 

Population distribution 1 x 1 km WorldPop 

 

 

The geospatial covariates were selected because they present factors or proxies for factors that previous 

studies have identified as associated with various DHS indicators, including the population with access to 

an improved sanitation facilities.18,22,23,24 

The covariates were obtained from a variety of data sources, and have different spatial references, 

projections, extents, and dimensions. Therefore, a series of essential spatial processing steps were 

undertaken, which involved: 

▪ Reprojection: All data layers were reprojected to align with a consistent coordinate reference system, 

which was the widely used World Geodetic System 1984. 

▪ Masking: Done to an extent that encompassed the boundaries of the study area; and 

▪ Resampling: To facilitate uniform analysis, the input covariate rasters were resampled to align the 

spatial resolution of the covariate to the 5 km × 5 km resolution used in modeling. 



 

5 

For the population covariates, a summation method was employed for resampling, while those originally 

available at a 5 × 5 km resolution required no further adjustments. Other covariates underwent resampling 

with bilinear interpolation. These technical processing steps were executed using the 'raster' and 'shapefiles' 

packages within the R software environment,25 which ensured rigorous data preparation for the subsequent 

analysis. 

2.3.2 Overview of the modeling approach 

Figure 1 provides a conceptual outline of the geospatial modeling framework employed to model DHS 

indicators and produce the pixel level estimates. The approach involved the following steps: 

Step 1 We aggregated individual-level DHS survey data to the finest spatial resolution (latitude and 

longitude) that represented the location of the survey cluster. 

Step 2 Both covariates and the cluster (point) level data were imported into the R environment for 

statistical computing. We then applied the “raster” package to extract the corresponding covariate 

pixel values at each survey cluster point. 

Step 3 The point level data (from Step 2), along with their associated covariates, were integrated into a 

stacked generalization ensemble model, elaborated in Section 2.3.2. 

Step 4 Prediction surfaces produced by the ensemble model were then utilized as covariates to calibrate 

the final geospatial Bayesian model. The outputs of the final model are pixel-level mean estimates 

with associated uncertainty at a 5 x 5 km resolution. 
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Figure 1 Geospatial modeling process flowchart 

 
 

2.3.3 Covariate modeling with stacked generalization 

In many applications, generic geospatial modeling is sufficient to produce a highly predictive model. 

However, when modeling outcomes in which the underlying process is linked to the covariates and 

demographic parameters through complex non-linearities and interactions, a simple linear mean of the form 

𝛽𝑋 can be insufficient. To address this, we use a stacked generalization approach, which preprocesses 

covariates by using highly predictive machine learning techniques. 

Stacked generalization is a general ensemble modeling approach that combines multiple model algorithmic 

methods to produce a meta-model that has equal or better predictive performance relative to a single 

modeling approach. We adopted this approach to capture the potential complex interactions and non-linear 

effects among the geospatial covariates.26 

Our selection of machine learning (submodels) includes three approaches: (1) GAM: generalized additive 

model;27 (2) LASSO: least absolute shrinkage and selection operator regression;28 and (3) XGBOOST: 

gradient boosting.29 These submodels were fitted to the improved sanitation survey data with geospatial 

covariates (described in Table 1) as explanatory predictors. Submodels were fit in R using the mgcv, 

xgboost, and glmne packages.25 
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2.3.4 Model specification and development 

We modeled improved sanitation as 𝑌𝑖, the number of ‘positive’ individuals among those sampled at cluster 

location 𝑠𝑖 , 𝑖 = 1, … 𝑛, using a binomial spatial regression with a logit link function.30,31 If 𝑁𝑖  is the total 

number of individuals sampled at cluster 𝑠𝑖 , the model can be written as: 

𝑌𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝑝𝑖) 

𝑙𝑜𝑔𝑖𝑡( 𝑝𝑖) = 𝛽0 +  𝛽Χ𝑖 + 𝜔𝑖 + 𝜀𝑖 

𝜔𝑖 ~ 𝐺𝑃(0, Σ) 

Where: 

- 𝛽0 denotes the intercept, 

- 𝑝𝑖 is the probability, representing the underlying prevalence at cluster 𝑠𝑖, 

- 𝑋𝑖 = (𝑋𝑖1,𝑋𝑖2, … 𝑋𝑖𝑚) is the vector of logit-transformed covariates for location 𝑠𝑖 obtained from 

the submodels (GAM, LASSO, and XGBOOST) generated from the stacked generalization 

modeling (as described in Section 3.3.2), 

- 𝛽 = (𝛽1, 𝛽2, … 𝛽𝑚) vector of regression coefficients on the submodels represent their respective 

predictive weighting and are constrained to the sum of one,26 

- 𝜔𝑖 is a correlated spatial error term, accounting for spatial autocorrelation between data points, and 

- 𝜀𝑖  ~ 𝛮(0, 𝜎𝑛𝑢𝑔
2  ) is an independent error term known as the nugget effect. 

The spatial error term 𝜔𝑖 is modeled as a Gaussian process with a zero-mean and spatially structured 

covariance matrix ∑. The spatial covariance ∑ was modeled using a stationary and isotropic Matérn 

function.30 

The Bayesian geostatistical model analysis was implemented through a stochastic partial differential 

equations (SPDE) approach in the integrated nested Laplace approximation (INLA) algorithm as applied in 

the R-INLA package (Rue, Martino, and Chopin 2009).32 

2.3.5 Pixel-level model estimates 

The prediction surfaces generated from the submodels (described in Section 2.3.2) were used as input 

covariates in the geostatistical models implemented in INLA. The final estimates (and uncertainty) for each 

indicator were generated by taking 𝑘 = 1, … 1000 samples from the posterior predictive distribution. Pixel 

level estimates that covered the modeling country were produced at a high spatial resolution of 5 x 5 km. 

2.3.6 Population at risk estimates 

While the modeled surfaces depict the percentage of the population with access to improved sanitation 

facilities for each pixel, it is also important to consider how many individuals are affected in each pixel. In 

this report, we utilized the population count data from the survey year estimated at a 1 x 1 km resolution by 
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WorldPop (https://www.worldpop.org/). We resampled this raster layer to match the 5 x 5 km resolution of 

the modeled surfaces. Since policymakers are interested in reducing both the percentage and population 

count without access to an improved sanitation facility, we calculated the percentage without access to an 

improved sanitation facility for each pixel by subtracting the modeled estimate of the population percentage 

with access to an improved sanitation facility from 100%. We then multiply this value for each pixel by the 

population count residing in each pixel to compute the population count in each pixel without access to an 

improved sanitation facility. 

2.4 Multilevel Regression 

We used multilevel, multivariable logistic regression to evaluate the association between community-level 

improved sanitation coverage and childhood stunting, as well as the association between household access 

to improved sanitation and childhood stunting. We also conducted multilevel, multivariable regression for 

community-level improved sanitation coverage and childhood stunting by region in Nigeria and Zambia.  

2.4.1 Individual-level measures 

Outcome 

The outcome of interest was stunting among children under age 5. Stunting was defined by the World 

Health Organization (WHO) definition of having a height-for-age score two standard deviations below the 

mean on the WHO Child Growth Standards. 

Covariates of interest 

We evaluated the following covariates of interest that have been shown in the literature to be associated 

with childhood stunting.33 

Age of child. Child’s age was grouped into four categories: <6 months, 6–11 months, 12–23 months, and 

24–59 months. 

Sex of child. Child’s sex was grouped into two categories: male and female. 

Stature of child’s mother. The stature of the mother was grouped into two categories: short and not short. 

For adult mothers (age 20 or older), women with heights below 145cm were classified as short. For 

adolescent mothers (age 15 to 19), we calculated the height-for-age score. Adolescent mothers with a 

height-for-age score below two standard deviations of the mean were classified as short. The zanthro 

package in Stata was used for this calculation. 

Household wealth quintile. The DHS Program constructs a household wealth index that represents the 

relative household wealth based on household asset ownership and household characteristics. The de jure 

population is classified as belonging to a wealth quintile, which ranges from the lowest, or poorest, quintile, 

to the highest, or wealthiest, quintile. Further information on the wealth index construction can be found in 

previous DHS publications.34,35 

Household crowding. Household crowding was defined as when a household’s de jure population divided 

by the number of sleeping rooms was greater than or equal to three. 
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Improved source of drinking water. The status of the drinking water source of each household was 

classified as either improved or unimproved based on the definitions established by the WHO/United 

Nations Children’s Fund (UNICEF) Joint Monitoring Programme (JMP) for Water Supply and Sanitation.36 

2.4.2 Community-level measures 

We evaluated five covariates at the cluster-level, two of which were from The DHS Program’s Geospatial 

Covariates (GC) datasets, which are available through The DHS Program’s website and on the SDR 

(https://spatialdata.dhsprogram.com/covariates/).  

Community improved sanitation coverage. Community improved sanitation coverage was defined as the 

percentage of households within a cluster that have access to an improved sanitation facility, based on the 

classifications developed by the WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and 

Sanitation.36 Shared facilities were classified as improved facilities, which follows the JMP definition 

change in 2017. We divided the community improved sanitation coverage by 10 so the model odds ratios 

represent the percentage increase in odds for every 10 percentage point increase in community improved 

sanitation coverage 

Nightlights. The nightlights covariate measures the luminosity of an area during the nighttime hours as 

measured by the Visible Infrared Imaging Radiometer Suite (VIIRS). This indicator is used as a proxy for 

economic development. The value for each cluster represents the average nighttime luminosity of the area 

within a 2km (urban) or 10km (rural) buffer. Detailed information on the extraction process can be found 

in the second edition of The Geospatial Covariate Datasets Manual.37 Studies have observed associations 

between nightlights and childhood stunting.38-40 

Travel times. The value for each cluster represents the average time in minutes that are required to reach a 

settlement of 50,000 or more people from the area within a 2km (urban) or 10km (rural) buffer of the 

cluster’s displaced location based on 2015 data.37 Travel times represents the accessibility of each cluster 

to reach the opportunities and services that are available in urban centers. Studies have found associations 

between childhood stunting and travel times to urban centers as well as health facilities.38,41 

Residence. Each cluster is defined as primarily urban or rural based on the designation by the country’s 

statistical office at the time of the survey. 

Region. Each cluster belongs to a particular region of the country. The GPS coordinates of each cluster are 

validated to these regions, as well as lower subnational administrative levels. For Nigeria, we used the six 

geopolitical zones, which represent groups of states. For Zambia, we used the ten provinces. 

2.4.3 Regression analysis 

We evaluated the association between the covariates of interest and childhood stunting using multilevel, 

multivariable logistic regression, as has previously been done in AS82.42 The analysis was run separately 

for the Nigeria and the Zambia datasets. 

We used the melogit command in Stata with the cluster as the grouping structure and svyset multilevel 

weights. The multilevel models used cluster-level weights which were constructed with the methods 

recently developed to estimate level weights for complex surveys.43  

https://spatialdata.dhsprogram.com/covariates/
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We evaluated the association between each variable and the stunting outcome. We assessed the pairwise 

correlation between variables to assess any collinearity issues, and then added all indicators that did not 

exhibit high correlation with the multivariable model. 
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3 RESULTS 

3.1 Visualization 

3.1.1 Nigeria 

Figure 2a depicts the cluster estimates that represent the percentage of the population in each cluster with 

access to improved sanitation, overlaid on the regional estimates of the percentage of the de jure population 

with access to improved sanitation. There is considerable variation within regions, and the density of 

clusters in the southern part of the country makes it challenging to visualize all clusters. 

Figure 2b depicts a pie chart for each region that represents the proportion of clusters in each category of 

improved sanitation coverage, with the categories 0–20%, 21–40%, 41–60%, 61–80%, 81–99%, and 100%. 

The data used to produce this map are shown in Table 2. This symbology allows users to visualize how 

cluster estimates vary within a region, and how regions are performing in relation to other regions. Here, 

we see that the southern regions, in particular the South West region, have higher percentages of cluster 

with 100% improved sanitation coverage, as represented by the yellow color in the pie chart. From Table 

2, we see that 31% of clusters in South West (74 out of 238 clusters) have 100% improved sanitation 

coverage. North West has the lowest percentage of clusters with 100% improved sanitation coverage, with 

only 4% (10 out of 275 clusters). While South West has the highest percentage of cluster with 100% 

improved sanitation coverage, we also see that each region has a sizeable percentage of clusters with 0–

20% improved sanitation access, ranging from 19% in South West (46 out of 238 clusters) to 39% in North 

Central (99 out of 252 clusters). 

Table 2 Number of clusters in each region grouped by the percentage of the de jure population 
with access to improved sanitation, Nigeria 

Region 0–20% 21–40% 41–60% 61–80% 81–99% 100% Total 

North Central 99 30 29 19 30 45 252 

North East 61 29 37 22 35 33 217 

North West 100 44 48 46 27 10 275 

South East 38 23 14 16 50 45 186 

South South 57 24 21 29 55 35 221 

South West 46 16 17 32 53 74 238 

Grand Total 401 166 166 164 250 242 1,389 
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Figure 2 Maps that depict community sanitation coverage for Nigeria 2018 DHS: (a) cluster-level improved sanitation coverage estimates overlaid 
on the regional estimates that represent the percentage of the de jure population with access to improved sanitation facilities; and (b) the 
proportion of clusters in each region classified by their community improved sanitation coverage (0–20%, 21–40%, 41–60%, 61–80%, 81–
99%, and 100%) 

(a)          (b) 
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3.1.1 Zambia 

Figure 3a depicts the cluster estimates that represent the percentage of the population in each cluster with 

access to improved sanitation, overlaid on the regional estimates of the percentage of the de jure population 

with access to improved sanitation. Figure 3b depicts a pie chart for each region that represents the number 

of clusters belonging to each group of improved sanitation coverage, including the groups 0–20%, 21–40%, 

41–60%, 61–80%, 81–99%, and 100%. The data used to produce this map are shown in Table 3. 

Variation exists within the regions. For example, in the Northern Province, 19 of its 53 (36%) clusters had 

an improved sanitation coverage of 0–20%, while another 19 had 100% improved sanitation coverage. 

Other regions show less variation. In the Western Province, 44 of the 49 (90%) clusters were classified as 

having between 0–20% improved sanitation coverage. This can be visualized in Figure 3b. 

Table 3 Number of clusters in each region grouped by the percentage of the de jure population 
with access to improved sanitation, Zambia 

 Community improved sanitation coverage 

Total Region 0–20% 21–40% 41–60% 61–80% 81–99% 100% 

Central 20 8 7 7 9 4 55 

Copperbelt 4 9 7 8 18 15 61 

Eastern 22 9 6 7 12 6 62 

Luapula 2 16 22 10 4 0 54 

Lusaka 6 7 8 10 24 11 66 

Muchinga 6 10 7 16 5 1 45 

North Western 11 11 9 5 6 1 43 

Northern 19 6 1 0 8 19 53 

Southern 8 15 8 12 11 3 57 

Western 44 1 3 1 0 0 49 

Total 142 92 78 76 97 60 545 
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Figure 3 Maps that depict community sanitation coverage for Zambia 2018 DHS: (a) cluster-level improved sanitation coverage estimates overlaid 
on the regional estimates that represent the percentage of the de jure population with access to improved sanitation facilities; and (b) the 
proportion of clusters in each region classified by their community improved sanitation coverage (0–20%, 21–40%, 41–60%, 61–80%, 81–
99%, and 100%) 

                                                (a)                                                                                                                     (b) 
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3.2 Geospatial Modeling 

3.2.1 Nigeria 

The modeled estimates for the percentage of the de jure population using an improved sanitation facility at 

a 5 x 5 km resolution for Nigeria are presented in Figure 4a. Considerable variation is observed in each 

region. The green color represents high improved sanitation access, which is observed in the southern and 

eastern areas of the country, with additional smaller areas of high access throughout the country. The 

northern and western parts of the country appear to have very low access to improved sanitation, as shown 

by the red color. The uncertainty of these estimates, represented by the width of the 95% uncertainty interval 

(the difference between the upper bound and lower bound) is depicted in Figure 4b. 

The population count, classified into six classes to better visualize the variation, is shown in Figure 4c. The 

population at risk, which is computed by multiplying the population count raster layer (Fig. 4c) by (100 - 

the population estimate with access to improved sanitation), is presented in Figure 4d. The population at 

risk quantifies the number in each pixel without access to improved sanitation. This map varies from the 

prevalence estimates in Figure 4a. Here we see the highest number of individuals who lack access to 

improved sanitation facilities in small, concentrated areas of the south, west, and north of the country. 
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Figure 4 Modeled surfaces for (a) the percentage of the de jure population using an improved sanitation 
facility; (b) width of the 95% uncertainty interval; (c) the population count in 2018 obtained from WorldPop; 
and (d) the estimated population at risk 

     (a)                 (b)                                             

(c)                 (d) 

 

 

3.2.2 Zambia 

Figure 5a depicts the modeled estimates of the percentage of the de jure population using an improved 

sanitation facility at a 5 x 5 km resolution in Zambia. The estimates of this indicator vary from 0–100%, 

with low access to improved sanitation observed in the west and center of the country, and high access to 

improved sanitation observed in the northeast, along with other smaller areas throughout the country. The 

uncertainty of these estimates is shown in Figure 5b. Again, we see variation, with some areas having very 

little uncertainty, while other areas have high uncertainty in the modeled estimates. 
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The population count, classified into six classes, is shown in Figure 5c. Figure 5d shows the population at 

risk, representing the count in each pixel without access to an improved sanitation facility, which was 

computed by multiplying the population count raster layer (Fig. 5c) by (100 - the population estimate with 

access to improved sanitation). Again, we see the patterns in this map vary from the prevalence estimates 

in Figure 5a. 

Figure 5 Modeled surfaces for (a) the percentage of the de jure population using an improved sanitation 
facility; (b) width of the 95% uncertainty interval; (c) the population count in 2018 obtained from WorldPop; 
and (d) the estimated population at risk 

                               (a)                 (b) 

      (c)                 (d) 
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3.3 Multilevel Regression 

3.3.1 Nigeria 

The associations between community-level improved sanitation coverage and childhood stunting is 

presented in Table 4. Increased, community-level improved sanitation coverage was associated with 

reduced odds of childhood stunting in the unadjusted model (OR = 0.87; 95% CI: [0.85, 0.89]). This 

association remained significant in the adjusted model (aOR = 0.97; 95% CI: [0.95, 0.99]), although the 

adjusted odds ratio was less protective after adjusting for other important determinants of stunting, such as 

the age and sex of the child, the stature of the mother, household wealth, and the region of residence. The 

adjusted model suggests that for every 10% increase in community-level improved sanitation coverage, the 

odds of stunting decreases by 3%. 

Female children had reduced odds of stunting compared to male children (aOR = 0.74; 95% CI: [0.65, 

0.83]. Children with mothers who were considered to be of short stature had significantly higher odds of 

stunting compared to children whose mothers were not considered short (aOR=2.56; 95% CI: [1.63, 4.01]). 

A clear gradient was observed among the age groups, with children in higher age groups being increasingly 

more likely to be stunted when compared to children younger than 6 months. A similar gradient was 

observed between household wealth and stunting; the OR and AOR were progressively smaller moving 

from the second wealth quintile to the highest wealth quintile when compared to the lowest quintile. The 

difference between the second wealth quintile and the lowest quintile was no longer significant in the 

adjusted model, although children in the higher three quintiles had significantly lower odds of stunting 

when compared to children in the lowest wealth quintile. 

The association between household access to improved sanitation and childhood stunting is shown in 

Appendix Table 1. While improved household sanitation was significantly associated with childhood 

stunting in the unadjusted model (OR = 0.74; 95% CI: [0.64, 0.85]), improved household sanitation was no 

longer significant in the multivariable model. 

The results of the multilevel regression models conducted for each region in Nigeria are presented in 

Appendix Table 3. Of note, community-level improved sanitation coverage was significantly associated 

with reduced odds of childhood stunting in the multivariable models in two of the six regions: North West 

and South West. In the other four regions, community-level sanitation coverage was not significantly 

associated with reduced odds of stunting. In three of the regions, the aOR was less than 1, while in the 

South South Region, the aOR between community-level improved sanitation coverage and childhood 

stunting was 1.00. 
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Table 4 Association of community-improved sanitation coverage and childhood stunting using 
multilevel logistic regression, Nigeria 

Individual-level covariates Unadjusted OR [95% CI] Adjusted OR [95% CI] 

Child’s age     

<6 months Ref. -- Ref. -- 

6–11 months 1.42* [1.06, 1.90] 1.37* [1.02, 1.84] 

12–23 months 3.87** [2.99, 5.00] 3.83** [2.95, 4.97] 

24–59 months 4.36** [3.41, 5.58] 4.31** [3.36, 5.52] 

Child’s sex     

Male Ref. -- Ref. -- 

Female 0.74** [0.66, 0.83] 0.74** [0.65, 0.83] 

Mother’s stature     

Not short Ref. -- Ref. -- 

Short 2.57** [1.65, 4.02] 2.56** 1.63, 4.01 

Household wealth quintile     

Lowest quintile Ref. -- Ref. -- 

Second quintile 0.75** [0.64, 0.89] 0.90 [0.75, 1.08] 

Middle quintile 0.52** [0.43, 0.62] 0.79* [0.64, 0.97] 

Fourth quintile 0.32** [0.26, 0.39] 0.57** [0.44, 0.73] 

Highest quintile 0.17** [0.14, 0.22] 0.35** [0.25, 0.48] 

Household crowding     

Not crowded Ref. -- Ref. -- 

Crowded 1.09 [0.98, 1.22] 1.05 [0.94, 1.18] 

Household water source     

Unimproved Ref. -- Ref. -- 

Improved 0.60** [0.52, 0.69] 0.92 [0.79, 1.06] 

Cluster-level covariates     

Nightlights 0.94** [0.92, 0.96] 0.99 [0.97, 1.01] 

Travel time to city 1.01** [1.01, 1.01] 1.00 [1.00, 1.00] 

Community improved 
sanitation coverage 0.87** [0.85, 0.89] 0.97* [0.95, 0.99] 

Residence     

Urban Ref. -- Ref. -- 

Rural 2.46** [2.15, 2.82] 1.03 [0.87, 1.22] 

Region     

North Central Ref. -- Ref. -- 

North East 2.75** [2.24, 3.38] 2.55** [2.04, 3.21] 

North West 4.28** [3.53, 5.18] 4.14** [3.41, 5.02] 

South East 0.57** [0.45, 0.73] 0.75* [0.59, 0.96] 

South South 0.63** [0.50, 0.81] 0.84 [0.64, 1.08] 

South West 0.76* [0.60, 0.96] 1.23 [0.96, 1.57] 

Observations  11,364 

Number of groups  1,378 

* Significant at p < .05; ** significant at p < .01; OR = odds ratio; CI = confidence interval 

 

3.3.2 Zambia 

For Zambia, the results of the multilevel regression are presented in Table 5. Community-level improved 

sanitation coverage was not significantly associated with reduced odds of childhood stunting in the 

unadjusted (OR = 0.98; 95% CI: [0.96, 1.00]) or adjusted models (aOR = 1.00; 95% CI: [0.98, 1.03]). 

Significant determinants of childhood stunting in the adjusted model included the age and sex of the child, 
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household wealth, the region of residence, and the community-level variable that measured accessibility, 

which included travel times to cities. 

Female children had reduced odds of stunting compared to male children (aOR = 0.67; 95% CI: [0.60, 

0.76]). Similar to the Nigeria results, clear gradients were observed between both age and stunting, and 

household wealth and stunting. For age, children in higher age groups had increasingly higher odds of 

stunting when compared to children younger than 6 months of age. For household wealth, the higher the 

wealth quintile, the lower the odds of stunting, when compared to the reference group of the lowest wealth 

quintile. Like Nigeria, the comparison between the second quintile and the lowest quintile was not 

significant in the adjusted model, although children belonging to the highest three wealth quintiles had 

significantly lower odds of stunting in the adjusted model. 

The association between household access to improved sanitation and childhood stunting are shown in 

Appendix Table 2. While improved household sanitation was significantly associated with childhood 

stunting in the unadjusted model (OR = 0.83; 95% CI: [0.71, 0.97]), improved household sanitation was no 

longer significant in the multivariable model. 

Similar to the national model, community-level improved sanitation coverage was not significantly 

associated with childhood stunting in any of the subnational models (Appendix Table 4). 
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Table 5 Association of community improved sanitation coverage and childhood stunting using 
multilevel logistic regression, Zambia 

Individual-level covariates Unadjusted OR [95% CI] Adjusted OR [95% CI] 

Child’s age     

<6 months Ref. -- Ref. -- 

6–11 months 1.42* [1.06, 1.91] 1.39* [1.04, 1.87] 

12–23 months 3.33** [2.55, 4.35] 3.38** [2.57, 4.45] 

24–59 months 2.78** [2.22, 3.48] 2.83** [2.24, 3.57] 

Child’s sex     

Male Ref. -- Ref. -- 

Female 0.68** [0.61, 0.77] 0.67** [0.60, 0.76] 

Household wealth quintile     

Lowest quintile Ref. -- Ref. -- 

Second quintile 0.88 [0.74, 1.04] 0.87 [0.73, 1.03] 

Middle quintile 0.67** [0.55, 0.81] 0.62** [0.50, 0.75] 

Fourth quintile 0.61** [0.49, 0.76] 0.49** [0.37, 0.65] 

Highest quintile 0.36** [0.28, 0.47] 0.28** [0.19, 0.40] 

Household crowding     

Not crowded Ref. -- Ref. -- 

Crowded 1.10 [0.95, 1.28] 1.03 [0.88, 1.20] 

Household water source     

Unimproved Ref. -- Ref. -- 

Improved 0.90 [0.77, 1.05] 1.02 [0.87, 1.21] 

Cluster-level covariates     

Nightlights 1.00 [0.99, 1.00] 1.01 [1.00, 1.02] 

Travel time to city 1.00 [1.00, 1.00] 1.00** [1.00, 1.00] 

Community improved 
sanitation coverage 0.98 [0.96, 1.00] 1.00 [0.98, 1.03] 

Residence     

Urban Ref. -- Ref. -- 

Rural 1.29** [1.13, 1.48] 0.86 [0.68, 1.09] 

Region     

Central Ref. -- Ref. -- 

Copperbelt 0.85 [0.65, 1.11] 0.94 [0.72, 1.23] 

Eastern 1.03 [0.81, 1.32] 0.86 [0.67, 1.11] 

Luapula 1.69** [1.30, 2.21] 1.47** [1.13, 1.93] 

Lusaka 1.12 [0.87, 1.45] 1.26 [0.94, 1.71] 

Muchinga 1.03 [0.77, 1.39] 0.89 [0.66, 1.21] 

Northern 1.84** [1.41, 2.41] 1.56** [1.18, 2.07] 

North Western 1.02 [0.74, 1.41] 1.00 [0.73, 1.37] 

Southern 0.80 [0.56, 1.14] 0.90 [0.62, 1.32] 

Western 0.82 [0.62, 1.08] 0.77 [0.56, 1.04] 

Observations  7,854 

Number of groups  497 

* Significant at p < .05; ** significant at p < .01; OR = odds ratio; CI = confidence interval 
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4 DISCUSSION AND CONCLUSIONS 

In this report, we presented two ways to visualize community-level improved sanitation coverage using the 

DHS cluster-level data. We then used the cluster-level data to produce modeled surfaces of community-

level improved sanitation coverage for both Nigeria and Zambia. We found that community-level improved 

sanitation coverage was a significant predictor of childhood stunting for the Nigeria 2018 DHS, but this 

indicator was not significant for the Zambia 2018 DHS dataset. Access to improved household sanitation 

was significantly associated with childhood stunting in the unadjusted models, but was not a significant 

predictor in the adjusted models. 

4.1 Visualization 

In this report, we demonstrated two ways to visualize community improved sanitation coverage. The first 

map overlaid the raw cluster-level estimates on the regional estimates. This map is useful in showing the 

variation that exists between clusters, and highlighting that in some regions, the cluster-level data 

underlying the regional estimates are highly variable. This variation would not be apparent from the 

regional estimates alone. Better understanding of the geographic variation in estimates of demographic and 

health indicators is a major factor in the efforts to produce estimates of DHS indicators at lower subnational 

levels using geospatial modeling.44,45 

Using clusters as the unit of measurement, the second map grouped clusters based on their community 

improved sanitation coverage, and showed the proportion of clusters in each group. In this map, we used 

the groups 0–20%, 21–40%, 41–60%, 61–80%, 81–99%, and 100%, although these groups could vary to 

reflect programmatic targets. To sustainably improve health outcomes, achieving complete sanitation 

coverage is an important target.46 The maps that use the pie chart symbology allow users to quickly compare 

how regions are performing in terms of achieving complete, improved sanitation coverage. The goal would 

be for all pie charts to be filled in yellow, which would mean that every cluster in that particular region had 

an improved sanitation coverage of 100%. This map also more easily summarizes the variation in cluster-

level estimates, which is difficult to see in the cluster-level maps (Figs 2a and 3a), particularly in urban 

areas where many of the clusters overlap due to the map scale. 

From the maps, policymakers can visualize if regions are homogenous or have substantial variation in the 

cluster-level estimates, which may inform policy responses. In regions with substantial variation, 

policymakers may want to explore if any geographic patterns exist to help determine if targeting a particular 

geographic area within a region is necessary. In addition, in cases where there are areas of low improved 

sanitation crossing borders, national policymakers may find it more cost-effective to target geographic areas 

rather than administrative areas. Policymakers can also use the modeled surfaces and subnational 

administrative level 2 estimates as additional decision-making tools. Users interested in replicating these 

maps can find the shapefiles with the survey boundaries on the Survey Boundaries page of the SDR, the 

shapefiles with the regional estimates on the Indicator Data page of the SDR, and can register for access to 

obtain the GPS coordinates of the survey clusters. 
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4.2 Geospatial Modeling 

The modeled surfaces produced through geospatial modeling of the cluster-level improved sanitation data 

estimate the percentage of the population with access to an improved sanitation facility in locations that 

were not surveyed (Figures 4a and 5a). The modeled surfaces for both Nigeria and Zambia reveal 

considerable variation that is concealed when exploring only the regional estimates. 

In this report, we combined the modeled surfaces with the estimated population count raster in 2018 from 

WorldPop (Figures 4c and 5c) to estimate the population at risk in every 5 x 5 km pixel (Figures 4d and 

5d). Here, the population at risk represents the count of individuals without access to improved sanitation 

for every 5 x 5 km pixel in the country. The population at risk estimates provide an additional decision-

making tool for policymakers. Policymakers may reach more of the population at risk in certain areas by 

targeting urban areas with higher access to improved sanitation than targeting rural areas with relatively 

lower access to improved sanitation. However, the modeled surface of the population at risk is limited by 

estimating for every 5 x 5 km pixel, which may not be a policy-relevant area. Aggregating these estimates 

to more policy-relevant boundaries may be useful to better understand the total population at risk for 

different communities or local administrative divisions. This is a major driver underlying The DHS 

Program’s recent focus on producing modeled estimates at subnational administrative level 2, referred to 

as admin 2 estimates.44,45 

4.3 Multilevel Regression 

In this report, we found that while household access to improved sanitation was significant in the unadjusted 

models for Nigeria and Zambia, this variable was not significant in the adjusted models for both countries. 

These findings are not surprising given the inconsistent findings in the literature, although a recent meta-

analysis suggested that 72% of studies found an association between household sanitation and childhood 

stunting.8 

Although the biological mechanisms between sanitation and stunting are established,5 stunting is 

multifactorial.33 Other determinants, such as child’s age, child’s sex, and mother’s stature may be more 

important drivers of childhood stunting.47 In addition, the impact of household sanitation on childhood 

stunting may be reduced when children are exposed to fecal contamination in other locations, or in their 

own home by fecal pathogens brought in from humans, animals, and flies.11 

This study found that community-level improved sanitation coverage was significant associated with 

stunting for Nigeria in the adjusted model (AOR=0.97; 95% CI [0.95, 0.99]), although not for Zambia. 

While many studies consider household sanitation, fewer studies have explored the association between 

stunting and community sanitation. Most of these studies have explored any sanitation access, unlike this 

study that evaluated improved access to sanitation. A meta-analysis of DHS and MICS data conducted by 

Larsen and colleagues found that access to community-level sanitation (either improved or unimproved) 

significantly reduced the odds of stunting and anemia in children.48 Other studies have also found that 

community-level open defecation rates are important. One study found that community-level open 

defecation rates were inversely associated with child HAZ z scores in three of the four age groups studied 

for boys, and two of the four age groups studied for girls.49 Another study found that children living in 

communities without open defecation are less likely to be stunted than children living in communities where 

all households practice open defecation.50 
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Our finding that community improved sanitation coverage was significantly associated with childhood 

stunting in Nigeria, but household improved sanitation access was not, suggests that in Nigeria, community-

level improved sanitation coverage is a more important predictor than access to household improved 

sanitation in this context. Of the few studies that have evaluated both household and community sanitation, 

other studies have found that community sanitation coverage was a more important predictor than 

household sanitation access.13,14 However, we only found that community improved sanitation coverage 

was significant associated with stunting in two of the six regions in Nigeria, which suggests that there may 

be regional variations in this pattern. However, since the adjusted odds ratios and confidence intervals were 

relatively similar, regional variation in these estimates may not be particularly strong (Appendix Table 3). 

One limitation of this study which may explain the mixed results is that DHS data is only georeferenced to 

one location per cluster. Thus, the individual household coordinates are not available. Therefore, there is 

no information available on proximity to households that lack access to improved sanitation facilities. 

Studies have found that sanitation coverage of nearby households is important, and that the distance to 

households without sanitation may moderate the effect. One study conducted in rural Ecuador found that 

improved sanitation coverage in surrounding households was significantly associated with stunting, and 

that children with 100% improved sanitation coverage nearby were significantly less likely to be stunted 

than children with 0% sanitation coverage nearby.13 Another study from rural Mali found that increased 

sanitation coverage within a 200 mile radius was associated with significant reductions in HAZ z scores.14 

A longitudinal study conducted in rural Bangladesh found that 100% sanitation coverage in all neighboring 

households within 50 miles was marginally associated with reduced diarrheal disease and acute respiratory 

infection prevalence, and that the effects were attenuated when evaluating neighboring households within 

100 miles.11 While proximity to households that practice open defecation may affect the association 

between community sanitation coverage and health outcomes related to poor sanitation, this study and 

others suggest that evaluating community sanitation coverage from survey data may still show an effect. 

Another factor that may explain the inconsistent results in this study is our use of DHS cluster-level data as 

a proxy for community-level sanitation. All households are not surveyed in a cluster, and clusters may not 

always approximate communities. For an indicator like community sanitation coverage, in which few 

individuals without sanitation access can continue to contaminate the shared environment and maintain 

disease transmission,52 ideally all households within specific distances would be surveyed. However, given 

that studies using DHS data have found that community sanitation was associated with poor health 

outcomes, including childhood stunting, anemia,48 and several maternal health outcomes,51 DHS data may 

still be useful in approximating community-level sanitation. 

Additional analyses using this approach may help to better elucidate the association between community 

sanitation and health outcomes using DHS data. While this study focused on improved sanitation, there are 

more nuanced sanitation classifications that should be explored. The current sanitation classification ladder 

used by the JMP comprises five service levels, ranging from open defecation to safely managed sanitation 

services. Improved sanitation is split into three categories: limited, basic, and safely managed.1 Additional 

analyses evaluating the association between community open defecation, as well as community basic 

sanitation coverage, and childhood stunting may be useful in understanding how the different sanitation 

levels affect childhood stunting. Additionally, evaluating the association between community sanitation 

and other health outcomes like diarrhea and anemia would help to better understand the interplay between 

sanitation and health outcomes in DHS surveys. Additionally, we only evaluated a single DHS survey from 
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two countries in this study, while many additional survey countries and survey years are available. One 

study evaluating the impact of various indicators on nutritional changes over multiple rounds of DHS 

surveys found that sanitation improvements explained nutritional improvements in South Asian countries, 

but not in the African countries evaluated.53 

4.4 Conclusions 

While The DHS Program has long provided reliable estimates of demographic and health estimates at the 

national and subnational levels, DHS data has been further extended with geospatial modeling of cluster-

level data, including the routine production of modeled surfaces at a 5 x 5km resolution starting in 2016 to 

the more recent production of subnational administrative level 2 estimates. This report demonstrates the 

value of considering cluster-level estimates of DHS data through the multilevel regression analysis of 

improved sanitation coverage and provides examples of how the geospatial modeled surfaces that estimate 

community-level prevalence can be used in practice. The maps and modeled surfaces presented in this 

report, along with the already available modeled surfaces on the SDR and any future subnational 

administrative level 2 estimates in DHS reports or on the SDR, can be used as decision-making tools to 

better understand how indicators vary geographically. 

The users of DHS datasets who are interested in analyzing a health topic related to sanitation should 

consider exploring both household-level sanitation and community-level sanitation in their analyses. As 

demonstrated in this report, users can compute the community improved sanitation coverage by collapsing 

the data for each cluster and calculating the percentage of households or the percentage of the de jure 

population that is using an improved sanitation facility in each cluster. Although DHS surveys do not survey 

every household in a community and there is no information on household locations which make distance 

analyses or thresholds unavailable, the findings from this study and other studies that use DHS data,48,51 

suggest that DHS is still valuable in approximating community improved sanitation coverage. 

Researchers who are analyzing communities where DHS surveys were not conducted may consider using 

estimates extracted from The DHS Program modeled surfaces, which are available on the SDR. The 

sanitation variable currently available as a standard indicator on the modeled surfaces page is the percentage 

of the de jure population that is practicing open defecation. Multiple reports have found an association 

between open defecation rates in a community and health outcomes linked to poor,48-51 which suggests that 

this may be an important indicator of interest. Users of the modeled surfaces should be aware of the 

uncertainty that accompanies many of these modeled estimates. As seen in Figures 4b and 5b, the 

uncertainty in these modeled surfaces varies considerably, with some pixels having very little uncertainty 

and other pixels with very high uncertainty. Users should refer to Spatial Analysis Report 14 for additional 

guidance on the use of the modeled surfaces geospatial data.54 
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APPENDIX 

Appendix Table 1 Association of household access to improved sanitation and childhood 
stunting using multilevel logistic regression, Nigeria 

Individual-level covariates Unadjusted OR [95% CI] Adjusted OR [95% CI] 

Child’s age     

<6 months   Ref. -- 

6–11 months   1.36* [1.01, 1.83] 

12–23 months   3.83** [2.95, 4.97] 

24–59 months   4.31** [3.36, 5.52] 

Child’s sex     

Male   Ref. -- 

Female   0.73** [0.65, 0.82] 

Household wealth quintile     

Lowest quintile   Ref. -- 

Second Quintile   0.86 [0.72, 1.03] 

Middle quintile   0.72** [0.58, 0.89] 

Fourth Quintile   0.50** [0.39, 0.64] 

Highest quintile   0.29** [0.21, 0.41] 

Household crowding     

Not crowded   Ref. -- 

Crowded   1.05 [0.94, 1.17] 

Household water source     

Unimproved   Ref. -- 

Improved   0.90 [0.78, 1.04] 

Household sanitation     

Unimproved Ref. -- Ref. -- 

Improved 0.74** [0.64, 0.85] 1.09 [0.94, 1.26] 

Cluster-level covariates     

Nightlights   0.99 [0.97, 1.01] 

Travel time to city   1.00 [1.00, 1.00] 

Residence     

Urban   Ref. -- 

Rural   1.06 [0.90, 1.25] 

Region     

North Central   Ref. -- 

North East   2.55** [2.04, 3.21] 

North West   4.14** [3.41, 5.02] 

South East   0.75* [0.59, 0.96] 

South South   0.84 [0.64, 1.08] 

South West   1.23 [0.96, 1.57] 

Observations   11,023 

Number of groups   1,348 
 

* Significant at p < .05; ** significant at p < .01; OR = odds ratio; CI = confidence interval 
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Appendix Table 2 Association of household access to improved sanitation and childhood 
stunting using multilevel logistic regression, Zambia 

Individual-level covariates Unadjusted OR [95% CI] Adjusted OR [95% CI] 

Child’s age     

<6 months   Ref. -- 

6–11 months   1.40* [1.04, 1.88] 

12–23 months   3.38** [2.57, 4.45] 

24–59 months   2.83** [2.24, 3.57] 

Child’s sex     

Male   Ref. -- 

Female   0.67** [0.60, 0.76] 

Household wealth quintile     

Lowest quintile   Ref. -- 

Second quintile   0.87 [0.73, 1.04] 

Middle quintile   0.62** [0.51, 0.76] 

Fourth quintile   0.50** [0.37, 0.67] 

Highest quintile   0.29** [0.20, 0.41] 

Household crowding     

Not crowded   Ref. -- 

Crowded   1.03 [0.88, 1.20] 

Household water source     

Unimproved   Ref. -- 

Improved   1.03 [0.87, 1.21] 

Household sanitation     

Unimproved Ref. -- Ref. -- 

Improved 0.83* [0.71, 0.97] 0.94 [0.79, 1.12] 

Cluster-level covariates     

Nightlights   1.01 [1.00, 1.02] 

Travel time to city   1.00** [1.00, 1.00] 

Residence     

Urban   Ref. -- 

Rural   0.85 [0.67, 1.08] 

Region     

Central   Ref. -- 

Copperbelt   0.96 [0.73, 1.24] 

Eastern   0.87 [0.68, 1.12] 

Luapula   1.50** [1.15, 1.96] 

Lusaka   1.28 [0.95, 1.73] 

Muchinga   0.91 [0.68, 1.23] 

Northern   1.61** [1.22, 2.12] 

North Western   1.01 [0.74, 1.38] 

Southern   0.92 [0.63, 1.35] 

Western   0.75 [0.56, 1.01] 

Observations   7,854 

Number of groups   497 
 

* Significant at p < .05; ** significant at p < .01; OR = odds ratio; CI = confidence interval 
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Appendix Table 3 Association of community improved sanitation coverage and childhood stunting using multilevel logistic regression by 
region, Nigeria 

 North Central North East North West South East South South South West 

 aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] 

Child’s age             

<6 months Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

6–11 months 1.01 [0.55, 1.86] 2.25** [1.26, 4.04] 1.71* [1.09, 2.66] 1.30 [0.52, 3.25] 0.58 [0.24, 1.42] 0.77 [0.30, 1.95] 

12–23 months 1.80* [1.05, 3.06] 6.48** [3.62, 11.63] 5.85** [3.83, 8.92] 2.37* [1.13, 4.97] 1.16 [0.56, 2.43] 2.37* [1.17, 4.80] 

24–59 months 2.43** [1.48, 3.98] 6.84** [3.94, 11.88] 8.16** [5.62, 11.85] 2.03* [1.02, 4.05] 1.17 [0.61, 2.26] 1.97 [0.99, 3.94] 

Child’s sex             

Male Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Female 0.71** [0.57, 0.89] 0.91 [0.69, 1.19] 0.67** [0.54, 0.82] 0.72* [0.54, 0.97] 0.83 [0.57, 1.21] 0.72 [0.48, 1.09] 

Mother’s stature             

Not short Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Short 3.40* [1.09, 10.61] 1.01 [0.41, 2.49] 6.04** [2.82, 12.94] 6.15* [1.47, 25.72] 0.85 [0.19, 3.72]   

Wealth quintile             

Lowest quintile Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Second quintile 0.77 [0.50, 1.18] 0.93 [0.65, 1.35] 0.97 [0.72, 1.29] 0.48 [0.20, 1.14] 0.73 [0.25, 2.18] 1.30 [0.67, 2.52] 

Middle quintile 0.77 [0.48, 1.25] 0.59* [0.37, 0.96] 0.82 [0.58, 1.15] 0.77 [0.29, 2.08] 0.74 [0.23, 2.41] 1.07 [0.50, 2.28] 

Fourth quintile 0.43** [0.24, 0.78] 0.63 [0.34, 1.16] 0.65 [0.41, 1.02] 0.50 [0.19, 1.32] 0.48 [0.15, 1.52] 0.72 [0.30, 1.70] 

Highest quintile 0.36* [0.16, 0.85] 0.36** [0.17, 0.78] 0.39* [0.19, 0.80] 0.34* [0.12, 0.97] 0.25* [0.07, 0.94] 0.42 [0.17, 1.04] 

Household crowding             

Not crowded Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Crowded 0.80 [0.62, 1.04] 1.00 [0.75, 1.34] 1.20 [0.98, 1.47] 1.27 [0.94, 1.71] 0.89 [0.62, 1.27] 1.09 [0.78, 1.52] 

Household water source             

Unimproved Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Improved 0.73 [0.50, 1.06] 1.21 [0.91, 1.60] 0.84 [0.65, 1.09] 0.73 [0.49, 1.09] 0.86 [0.55, 1.37] 1.50 [0.81, 2.75] 

Residence             

Urban Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Rural 0.72 [0.41, 1.27] 1.32 [0.73, 2.38] 1.27 [0.93, 1.72] 0.88 [0.62, 1.26] 1.24 [0.77, 2.01] 0.86 [0.53, 1.41] 

Cluster-level covariates             

Nightlights 0.97 [0.87, 1.09] 1.02 [0.97, 1.08] 0.98 [0.95, 1.02] 1.01 [0.90, 1.13] 1.01 [0.96, 1.06] 0.99 [0.96, 1.03] 

Travel time to city 1.00 [0.99, 1.01] 1.00 [1.00, 1.00] 1.00 [0.99, 1.00] 1.01 [0.99, 1.03] 1.00 [1.00, 1.00] 1.00 [1.00, 1.01] 

Improved sanitation 
coverage 0.98 [0.92, 1.05] 0.97 [0.92, 1.03] 0.95* [0.90, 1.00] 0.98 [0.91, 1.05] 1.00 [0.94, 1.06] 0.94* [0.88, 1.00] 

Observations 1,976 1,800 2,695 1,643 1,265 1,639 

Number of groups 247 194  275 183 214 235 
 

* Significant at p < .05; ** significant at p < .01; aOR = adjusted odds ratio; CI = confidence interval 
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Appendix Table 4 Association of community improved sanitation coverage and childhood stunting using multilevel logistic regression by 
region, Zambia  

 
Central Copperbelt Eastern Luapula Lusaka 

 aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] 

Child’s age           

<6 months Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

6–11 months 1.47 [0.69, 3.12] 1.62 [0.54, 4.85] 1.91 [0.83, 4.37] 2.99* [1.31, 6.86] 0.67 [0.27, 1.65] 

12–23 months 3.75** [1.78, 7.86] 4.33** [1.79, 10.47] 4.56** [1.93, 10.78] 5.13** [2.35, 11.22] 1.93 [0.84, 4.42] 

24–59 months 2.02** [1.21, 3.39] 2.39* [1.16, 4.90] 3.60** [1.59, 8.13] 4.31** [2.21, 8.38] 2.09* [1.11, 3.92] 

Child’s sex           

Male Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Female 0.74 [0.52, 1.06] 0.72* [0.53, 0.98] 0.76 [0.55, 1.06] 0.79 [0.57, 1.10] 0.54** [0.37, 0.79] 

Wealth quintile           

Lowest quintile Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Second quintile 0.89 [0.62, 1.29] 0.43 [0.15, 1.25] 1.00 [0.65, 1.53] 0.95 [0.58, 1.55] 1.77 [0.70, 4.49] 

Middle quintile 0.98 [0.56, 1.69] 0.47 [0.16, 1.37] 0.63* [0.41, 0.97] 0.42* [0.21, 0.86] 0.66 [0.28, 1.57] 

Fourth quintile 0.57 [0.30, 1.07] 0.29* [0.09, 0.95] 0.44 [0.19, 1.03] 0.37* [0.16, 0.82] 0.70 [0.24, 2.01] 

Highest quintile 0.33* [0.12, 0.86] 0.20* [0.06, 0.71] 0.23** [0.09, 0.59] 0.44 [0.12, 1.56] 0.41 [0.13, 1.29] 

Household crowding           

Not crowded Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Crowded 0.90 [0.55, 1.48] 1.40 [0.68, 2.88] 1.15 [0.82, 1.61] 0.78 [0.57, 1.08] 1.13 [0.79, 1.63] 

Household water source           

Unimproved Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Improved 0.68 [0.41, 1.13] 0.95 [0.59, 1.53] 1.34 [0.80, 2.22] 1.24 [0.81, 1.91] 1.50 [0.50, 4.52] 

Residence           

Urban Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Rural 0.41* [0.20, 0.84] 1.56 [0.80, 3.03] 0.50 [0.23, 1.10] 0.64 [0.30, 1.36] 1.14 [0.60, 2.17] 

Cluster-level covariates           

Nightlights 1.01 [0.95, 1.07] 1.00 [0.96, 1.05] 1.02 [0.95, 1.08] 1.04 [0.87, 1.24] 1.00 [0.99, 1.02] 

Travel time to city 1.00 [1.00, 1.00] 0.99** [0.98, 1.00] 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 [0.99, 1.00] 

Improved sanitation coverage 0.95 [0.85, 1.06] 0.98 [0.88, 1.09] 1.01 [0.96, 1.06] 0.86 [0.72, 1.03] 1.04 [0.95, 1.15] 

Observations 782 815 1,042 974 884 

Number of groups 51 60 62 53 63 

Continued... 
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Appendix Table 4—Continued 
 

Muchinga Northern North Western Southern Western 

 aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] aOR [95% CI] 

Child’s age 

 

         

<6 months Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

6–11 months 0.95 [0.36, 2.55] 1.23 [0.57, 2.65] 1.40 [0.63, 3.14] 1.75 [0.13, 23.40] 0.98 [0.43, 2.23] 

12–23 months 1.95 [0.96, 3.94] 3.47** [1.86, 6.45] 2.42 [0.97, 6.02] 7.24 [0.57, 91.15] 2.91* [1.26, 6.74] 

24–59 months 3.02** [1.56, 5.82] 3.61** [1.97, 6.61] 2.28* [1.05, 4.95] 7.19 [0.90, 57.17] 2.09* [1.04, 4.21] 

Child’s sex           

Male Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Female 0.55* [0.35, 0.87] 0.62* [0.42, 0.90] 0.68 [0.43, 1.08] 0.50* [0.25, 0.99] 0.75 [0.55, 1.02] 

Wealth quintile 
 

         

Lowest quintile Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Second quintile 0.94 [0.56, 1.58] 0.78 [0.47, 1.30] 0.71 [0.39, 1.30]   0.59* [0.39, 0.90] 

Middle quintile 0.99 [0.54, 1.82] 0.49** [0.29, 0.83] 0.36** [0.19, 0.70] 2.83 [0.52, 15.35] 0.40** [0.22, 0.70] 

Fourth quintile 0.92 [0.33, 2.58] 0.61 [0.20, 1.87] 0.38 [0.12, 1.22] 2.20 [0.62, 7.81] 0.36 [0.11, 1.24] 

Highest quintile 0.13** [0.03, 0.50] 0.36 [0.12, 1.13] 0.09** [0.03, 0.34]   0.08** [0.02, 0.32] 

Household crowding 
 

         

Not crowded Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Crowded 1.10 [0.64, 1.88] 0.91 [0.56, 1.48] 0.73 [0.53, 1.01] 1.16 [0.44, 3.09] 1.07 [0.71, 1.60] 

Household water source 
 

         

Unimproved Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Improved 1.93* [1.16, 3.22] 0.81 [0.55, 1.21] 0.92 [0.55, 1.55] 1.52 [0.12, 18.69] 0.68 [0.42, 1.11] 

Residence 
 

         

Urban Ref. -- Ref. -- Ref. -- Ref. -- Ref. -- 

Rural 3.17 [0.79, 12.74] 0.84 [0.46, 1.54] 0.83 [0.27, 2.57]   0.96 [0.34, 2.76] 

Cluster-level covariates           

Nightlights 1.20* [1.02, 1.41] 0.80 [0.59, 1.07] 1.01 [0.86, 1.17] 0.99 [0.90, 1.09] 0.98 [0.81, 1.19] 

Travel time to city 1.00 [0.99, 1.00] 1.00 [1.00, 1.00] 1.00** [0.99, 1.00] 1.01 [0.99, 1.02] 1.00 [1.00, 1.00] 

Improved sanitation 
coverage 0.93 [0.84, 1.04] 1.03 [0.98, 1.08] 1.05 [0.91, 1.22] 1.05 [0.82, 1.34] 1.39 [0.89, 2.16] 

Observations 796 871 731 217 741 

Number of groups 45 52 43 19 49 
 

* Significant at p < .05; ** significant at p < .01; aOR = adjusted odds ratio; CI = confidence interval 
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