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ABSTRACT 

Undernutrition and child food poverty constitute a critical public health problem, particularly in the context 
of climate change. However, evidence on the links between climate and nutrition outcomes is not 
sufficiently available. The objectives of this study were to (1) examine the impacts of climate change on 
undernutrition and child food poverty and (2) apply geostatistical models to produce maps of undernutrition 
and child food poverty prevalences in Burkina Faso to identify hotspots more accurately.  

The study utilized geostatistical modeling through data from the 2021 Burkina Faso Demographic and 
Health Survey, supplemented by remote-sensed information (covariates), to improve estimates of stunting, 
wasting, and child food poverty prevalences. Geostatistical models were developed at the cluster level 
considering all spatial and nonspatial covariates. Additionally, two models were developed for each 
individual covariate—one model assuming and the other not assuming the spatial locations of the clusters.  

Results showed that the enhanced vegetation index (EVI), which takes several climate variables into 
account, was very strongly associated with wasting and stunting but was not associated with child food 
poverty. Positive associations were found between stunting prevalence and both low maternal education 
and open defecation. Wasting prevalence was associated with open defecation, and child food poverty was 
associated with maternal education and richer wealth quintiles. The maps showed that certain locations in 
Sahel, Centre Nord, and Est regions were at greater risk of stunting and wasting than other locations, as the 
maps made it possible to visualize intercluster disparities. We also validated the model, showing 
correlations between observed and predicted prevalences. 

Through this study, we demonstrated the relationship between climate and undernutrition. This calls for the 
integration of climate considerations into nutrition commitments. We also demonstrated the value of 
applying geostatistical analyses to identify pockets of concentrated undernutrition and child food poverty 
to better guide intervention strategies. These methodologies present an opportunity for predicting the 
prevalences of stunting, wasting, and child food poverty in areas where access to traditional nutrition 
surveys is problematic. 

Key words: Burkina Faso, child food poverty, climate, geostatistical models, undernutrition 
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1 BACKGROUND 

Undernutrition and food insecurity constitute a serious public health problem. The Sustainable 
Development Goals and many national nutrition policies aim to reduce all forms of malnutrition, including 
the ambitious World Health Organization (WHO) target of a 40% reduction in stunting by 2025.1 However, 
major challenges remain in reaching this target, particularly in sub-Saharan African countries such as 
Burkina Faso, where limited resources are affected by security issues and the deleterious effects of climate 
change.  

According to the 2020 National Nutrition Survey, referred to as the standardized monitoring and assessment 
of relief and transitions (SMART) survey, 25% of children under 5 in Burkina Faso are stunted. This is 
considered high according to the 2017 WHO and United Nations Children’s Fund (UNICEF) public health 
prevalence thresholds, but is lower than the average for the Africa region (30.7%).2 The stunting prevalence 
has improved in Burkina Faso since 2003, when the prevalence nationwide was 43%.3 Wasting affects 9% 
of children under 5 in Burkina Faso, which is considered a “medium” prevalence according to the 
WHO/UNICEF thresholds and is higher than the average for the Africa region (6.0%).1,4 Poor infant and 
young child feeding practices are pervasive in Burkina Faso and are likely drivers of stunting and wasting 
in the country. Inadequate complementary feeding is also highly prevalent in Burkina Faso, as only 29% of 
children age 6–23 months receive a minimally acceptable diet.2  

The 2020 UNICEF Conceptual Framework on Maternal and Child Nutrition acknowledges the increasing 
triple burden of malnutrition—undernutrition, micronutrient deficiencies, and overweight status—and 
highlights the role of diets and care as immediate determinants of maternal and child nutrition.1 The 
underlying determinants are the food, practices, and services available to children and women in their 
households, communities, and environments that enable good nutrition.1   

Studies have confirmed that mother's education, mother's work status, poor maternal nutrition, area of 
residence, wealth index, and lack of water and sanitation are associated with malnutrition in some parts of 
sub-Saharan Africa.5 Undernutrition and child food poverty remain a critical public health problem, 
particularly in the context of climate change. However, evidence on the links between climate and nutrition 
outcomes is not sufficiently available.6  

Spatial maps are important for evidence-based planning and decision-making, as they help identify 
populations in need of targeted interventions and can be used to monitor progress toward achieving 
Sustainable Development Goal targets. Additionally, in many countries, standard nutrition surveys, such as 
those using SMART or similar methodologies, are often hindered by limited access to certain localities. In 
such cases, geospatial models offer a valuable solution for overcoming these challenges. 

This study aimed to (1) investigate the impacts of climate change on undernutrition and child food poverty, 
and (2) apply geostatistical models to data from the most recent Burkina Faso Demographic and Health 
Survey to generate prevalence maps of undernutrition and child food poverty, enabling precise 
identification of hotspots. This research introduces a novel geostatistical approach for assessing the spatial 
heterogeneity of key nutritional outcomes, specifically stunting, wasting, and child food poverty. The 
resulting prevalence maps reveal significant spatial disparities in these outcomes across Burkina Faso, 
providing actionable insights to support evidence-based planning and targeted interventions.
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2 METHODS 

2.1 Survey Population and Design 

This study utilized data from the 2021 Burkina Faso Demographic and Health Survey (BFDHS) and 
accompanying geospatial data. In this BFDHS, a two-stage stratified cluster sampling design was 
implemented. In the first stage, clusters—defined as primary sampling units in the survey and enumeration 
areas in the population census—were selected with probability proportional to cluster size (number of 
households) within each of the stratum. In the second stage, households were systematically sampled within 
each cluster. Stratification was based on Burkina Faso’s administrative regions at the time of the survey and 
their urban-rural classification. Further details on the survey design are available in the 2021 BFDHS final 
report.2  

2.2 Data Sources  

The Demographic and Health Surveys (DHS) Program collects child anthropometric data, including age, 
sex, length/height, and weight, as well as other child nutrition and geospatial variables. Children born in 
the 5 years preceding a survey are eligible for collection of length/height and weight data. Since 2000, 
geographical coordinates of the sampled clusters have been collected through the global positioning system 
(GPS). However, the geographical coordinates are displaced by up to 5 km in rural settings and up to 2 km 
in urban settings to protect the identity of the participants in the DHS surveys.  

In this study, anthropometric information from the 2021 BFDHS was used to calculate child height-for-age, 
weight-for-age, and weight-for-height z scores using World Health Organization (WHO) child growth 
standards7 for Burkina Faso. Children were considered stunted if their height-for-age z scores were more 
than two standard deviations below the median of the relevant WHO reference population.8 In a similar 
way, children were considered wasted if their weight-for-height z scores were more than two standard 
deviations below the median of the WHO reference population. 

2.3 Outcomes Variables 

Analyses were carried out for three nutrition outcome variables: 

 Stunting: We determined the proportion of children under 5 who were stunted at the time of the survey.  
All children for whom valid height-for-age z scores were available constituted the total sample of 
children for this analysis.  

 Wasting: We determined the proportion of children aged 6–59 months who were wasted at the time of 
the survey. All children for whom valid weight-for-height z scores were available constituted the total 
sample of children.  

 Child food poverty: We determined the proportion of children age 6–23 months who had consumed 
foods and beverages from four or fewer of eight defined food groups during the previous day, based on 
the United Nations Children’s Fund (UNICEF) definition of food poverty for children under 5.9  Severe 
child food poverty referred to the percentage of children who had consumed foods and beverages from 
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zero, one, or two of the eight defined food groups, and moderate child food poverty referred to the 
percentage who had consumed foods and beverages from three or four of the eight groups. 

The BFDHS included 6,344 children from 600 sampled clusters. The locations of the sampled clusters were 
mapped to assess the spatial dispersion of the clusters (homogeneity or heterogeneity). To take the design 
of the survey into account while developing our geostatistical models, we used weighted numbers of stunted 
children and children observed in the survey, specific to each cluster, as was done previously by Chandra 
and colleagues.10  

We considered geographical coordinate displacement in extracting remote-sensed information (covariates) 
for the sampled clusters by using buffers to ensure that the correct cluster centroids were captured in model 
predictions. To achieve this, we created a 2-km buffer for urban clusters and a 5-km buffer for rural clusters 
following recommended approaches.11  

2.4 Covariates 

Both geospatial and non-geospatial covariates were examined (Table 1).2,5,13,14, The geospatial covariates 
included aridity, enhanced vegetation index (EVI), insecticide-treated net (ITN) coverage, mean annual 
precipitation, mean annual temperature, and mean travel time to the nearest health center. These variables 
served as environmental, climatic, and socioeconomic factors that may influence stunting prevalence.11,15 
During extraction of these covariates, displacement of the GPS coordinates for the sampled clusters was 
considered using the recommended 5-km buffer for rural settings and 2-km buffer for urban settings.16 The 
files of geospatial maps of these covariates for Burkina Faso were used. 

Aridity was calculated as the ratio of the mean monthly precipitation (mm) to the average monthly potential 
evapotranspiration (mm). Monthly gridded precipitation and potential evapotranspiration data were 
extracted at 0.5-degree resolution from the Center for Environmental Data Analysis (CEDA) Web 
Processing Service (WPS) (https://cedawps-ui.ceda.ac.uk/processes) by selecting the time period and 
spatial area of interest. The aridity index data was generated in R50.  

The EVI data were derived from the EVI band of the MOD13A1 image collection in Google Earth Engine. 
Images were masked for cloud and cloud shadow and subsetted to Burkina Faso. The EVI bands were 
exported as image files with 5-km resolution. ITN coverage data were downloaded from the Malaria Atlas 
Project (https://malariaatlas.org/data-directory/). ITNs help prevent malaria, which can cause fever that 
contributes to wasting.  

Annual precipitation (mm) was derived from monthly precipitation, downloaded from the CEDA WPS as 
described for aridity. Annual precipitation was calculated as the sum of the monthly precipitation rasters in 
R. Annual mean temperature (Celsius) was derived from monthly near-surface temperature data in the 
CEDA WPS, calculated as the mean of all monthly near-surface temperature values for the DHS year.  

Data on travel time were downloaded from the Malaria Atlas Project and cropped to Burkina Faso. The 
average time (minutes) required to reach a high-density urban center was calculated from the area within 
the 2-km (urban) or 10-km (rural) buffer surrounding the DHS survey cluster.17 
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The non-geospatial covariates of mother’s education, mother’s work status, access to improved water, open 
defecation, and wealth index were used in alignment with the 2020 UNICEF Conceptual Framework.15,18,19    

Table 1 Geospatial and non-geospatial covariates examined in this study 

Covariate  Description Source of derived dataset 
GEOSPATIAL 

Population under 5  The WorldPop average number of people under 5 
within the 2-km (urban) or 10-km (rural) buffer 
surrounding the DHS survey cluster location. 

WorldPop 
https://www.worldpop.org/  
  

EVI  Index derived from the EVI band of the MOD13A1 
image collection in Google Earth Engine. Images 
were masked for cloud and cloud shadow and 
subsetted to Burkina Faso. The EVI bands were 
exported as image files with 5-km resolution. EVI 
was a value between 0 (least vegetation) to 
10,000 (most vegetation). 

Vegetation Index and Phenology (VIP) Phenology 
EVI-2 Yearly Global 0.05Deg CMG V004  
https://lpdaac.usgs.gov/dataset_discovery/measur
es/measures_products_table/vipphen_evi2_v004/ 
  

ITN coverage  Proportion of the population protected by ITNs 
based on the average number of people within the 
2-km (urban) or 10-km (rural) buffer surrounding 
the DHS survey cluster location who slept under 
an ITN the night before the survey.  
ITN coverage data for Burkina Faso was 
downloaded from the Malaria Atlas Project. 

Malaria Atlas Project ITN Coverage in Africa 
2000–2015  
https://malariaatlas.org/ data-directory/ 
 

Mean annual precipitation  
 
 

Annual precipitation (mm) derived from monthly 
precipitation, downloaded from CEDA WPS. 
Precipitation was measured within the 2-km 
(urban) or 10-km (rural) buffer surrounding the 
DHS survey cluster in a given year. 

CRU TS v. 4.01  
https://crudata.uea.ac.uk/cru/data/hrg/  

Mean annual temperature Calculated as the mean of all monthly near-
surface temperature values for the DHS year.  

CRU TS v. 4.01  
https://crudata.uea.ac.uk/cru/data/hrg/ 
 

Mean travel time Travel time data downloaded from the Malaria 
Atlas Project and cropped to Burkina Faso. The 
average time (minutes) required to reach a high-
density urban center was calculated, from the 
area within the 2-km (urban) or 10-km (rural) 
buffer surrounding the DHS survey cluster 
location, based on infrastructure data from 2015. 

Malaria Atlas Project Accessibility to Cities  
https://malariaatlas.org/ data-directory/ 
 

NON-GEOSPATIAL 

Unmet need for family 
planning 

Percentage of currently married or in-union 
women with an unmet need for family planning. 
Studies have shown a link with undernutrition, due 
to early cessation of breastfeeding. 

 

Measles vaccination 
received  

Percentage of children age 12–23 months who 
had received both doses of the measles 
vaccination. 
Measles outbreaks can contribute to 
undernutrition. 

 

Four or more ANC visits 
during pregnancy 
 

Percentage of women who had a live birth in the 5 
years preceding the survey who attended at least 
four ANC visits. 
ANC helps prevent low weight at birth. 

 

Population living in 
households using no toilet 
facility (practicing open 
defecation) 

Percentage of the de jure population living in 
households whose main type of toilet facility was 
no facility (open defecation). 

 

Continued… 

https://www.worldpop.org/
https://crudata.uea.ac.uk/cru/data/hrg/
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Table 1—Continued 

Covariate  Description Source of derived dataset 
Mother’s education 
 

Whether mother was educated 
• Uneducated  
• Educated 

https://www.dhsprogram.com/data/available-
datasets.cfm 

Access to improved water 
source 
 

Access to improved water 
• No  
• Yes  

https://www.dhsprogram.com/data/available-
datasets.cfm  

Wealth index 
 

Wealth index 
• Poorer wealth quintiles  
• Richer wealth quintiles 

https://www.dhsprogram.com/data/available-
datasets.cfm  

ANC = antenatal care; CEDA = Center for Environmental Data Analysis; DHS = Demographic and Health Surveys; EVI = enhanced 
vegetation index; ITN = insecticide-treated net; WPS = Web Processing Service 

 
2.5 Geostatistical Analysis 

We employed geostatistical modeling to investigate spatial risk factors for stunting, wasting, and child food 
poverty. In the model, yd represents the number of children stunted out of the total number of children (nd) 
sampled per geographical cluster. Conditional on the true prevalence P(xd) at location xd, the number of 
stunted children out of the total number of children sampled follows a binomial distribution: 

yd|P(xd) ∼ Binomial(nd, P(xd)) and logit(P(xd)) = α + d(xd)T_ + S(xd) (1) 

where α is the intercept parameter assigned a Gaussian prior with mean and precision of zero, d(.) is a vector 
of observed spatial covariates at location xd associated with the outcome value yd, and _ is a vector of 
spatial regression coefficients for the covariates assigned a Gaussian prior with mean zero and precision 
0.001. The spatially structured random effect, S(.), follows a zero-mean Gaussian process with variance σ2 
and a given correlation function: 

ρ(u) = correlation(S(xd), s(xd′)) (2) 

where u is the Euclidean distance between locations xd and xd′. We set the priors for our precision 
parameters of the scaled models as Gamma (1, 0 ·00005). In deciding on our priors, we followed the 
noninformative approach due to lack of reliable existing information about our model parameters—an 
approach also used in the R-INLA package.21 

Noninformative priors do not unnecessarily influence the model parameters and are more objective because 
they allow the data to have a greater influence on the posterior distribution. There are various parametric 
families for ρ(u), as previously outlined.22 In the current analysis, we used the Matérn class of covariance 
function:12  

cov(S(xd), s(xd′ )) = (3)σ22υ−1Ŵ(υ) (k||xd − xd′ ||)υKυ (k||xd − xd′ |) 

where σ2 represents the variance and Kυ (.) is the modified Bessel function of the second kind and order υ 
> 0. The shape parameter υ determines the smoothness of S(x), in the sense that S(x) is (υ − 1)-times mean-
square differentiable and k > 0 is related to the practical range ρ = sqrt(8υ k), which is the distance at which 
the spatial correlation is close to 0.1. 

https://www.dhsprogram.com/data/available-datasets.cfm
https://www.dhsprogram.com/data/available-datasets.cfm
https://www.dhsprogram.com/data/available-datasets.cfm
https://www.dhsprogram.com/data/available-datasets.cfm


 

7 

The model was implemented in R under the integrated nested Laplace approximation (INLA) approach20 
with the stochastic partial differential equation (SPDE) strategy.13 As our data were point data without 
explicit neighbors, unlike areal data, a mesh for the SPDE strategy was needed. How we created the mesh, 
SPDE, and projector matrices, as well as the other procedures implemented, have been described in detail 
previously.23 

We developed both nonspatial and spatial models for estimating stunting, wasting, and child food poverty 
prevalences. The nonspatial models were created by ignoring the spatial locations of the clusters, and the 
spatial models were created by considering them. The performance of the developed models was assessed 
through the Watanabe-Akaike information criterion,24,25 which is asymptotically equivalent to leave-one-
out cross-validation information criteria.23  

The 95% confidence intervals of the model-based estimates for stunting, wasting, and child food poverty 
prevalences were calculated to quantify uncertainties around the estimates. Based on the best geostatistical 
model, we estimated exceedance probabilities (that is, probabilities that estimated outcome prevalences at 
given locations exceeded certain thresholds, such as 25%) across each cluster, which helped to identify 
hotspots that were behind in meeting Sustainable Development Goal 2 for stunting, wasting, and child food 
poverty. The geostatistical modeling was undertaken in R-INLA.26,27  

Figure 1 Integrated nested Laplace approximation mesh triangulation 
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3 RESULTS 

3.1 Prevalences of Stunting, Wasting, and Child Food Poverty  

According to data from the 2021 Burka Faso Demographic and Health Survey (BFDHS), 22.6% of children 
under 5 were stunted and 10.6% were wasted at the national level. However, we observed substantial 
localized geographical variation in both stunting (Figure 2) and wasting (Figure 3), with no data available 
in some parts of the Sahel and Eastern regions due to insecurity/conflicts.  

At the national level, among children age 6–23 months, 31.6% of the children had severe child food poverty 
(consumed fewer than three of the eight food groups) and 80% had child food poverty (severe and/or 
moderate food poverty). As with stunting and wasting, levels of global food poverty varied subnationally 
(Figure 4), with some parts of the Sahel and Eastern regions lacking data due to insecurity/conflicts. 

Figure 2 Observed stunting prevalences among children under 5 in Burkina Faso, 2021 BFDHS  

 
Note: Each circle represents a study location. 
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Figure 3 Observed wasting prevalences among children under 5 in Burkina Faso, 2021 BFDHS 

 
Note: Each circle represents a study location. 

Figure 2 Observed child food poverty prevalences among children age 6–23 months in Burkina Faso, 
2021 BFDHS 

 
Note: Each circle represents a study location. 
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3.2 Geostatistical Models  

Geostatistical models that considered all covariates were developed at the cluster level. The predicted 
stunting prevalence at the cluster level ranged from 0–20% to 40–50%. Considerably higher predicted 
stunting prevalences were observed mainly in certain locations in the Sahel and East regions (Figure 5a). 
The estimated standard errors (SEs) of the predicted stunting prevalences were small, and regions with very 
high prevalences had larger SEs (Figure 5b). Figure 5c shows variability in predicted stunting prevalences 
at the provincial (admin 2) level. 

Figure 5 Predicted stunting prevalences (and standard errors) among children under 5 in Burkina Faso 
(a) Predicted stunting prevalences 
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(b) Standard errors of predicted stunting prevalences 

 

(c) Predicted stunting prevalences among children under 5 at the provincial (admin 2) level in 
Burkina Faso 
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The overall predicted wasting prevalence at the cluster level ranged from 0–5% to 20–40%. Considerably 
higher predicted wasting prevalences were observed mainly in certain locations in the Sahel, Centre Nord, 
and Est regions (Figure 6a). The estimated SEs of the predicted wasting prevalences were small, and regions 
with very high prevalences had larger SEs (Figure 6b). Figure 6c shows variability in predicted wasting 
prevalences at the provincial (admin 2) level. 

Figure 6 Predicted wasting prevalences (and standard errors) among children under 5 in Burkina Faso 
(a) Predicted wasting prevalences 
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(b) Standard errors of predicted wasting prevalences  

 

 
(c) Predicted wasting prevalences among children under 5 at the provincial (admin 2) level in Burkina Faso 
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The overall predicted child food poverty prevalence at the cluster level ranged from 0–60% to 90–100%. 
Considerably higher predicted child food poverty prevalences were observed mainly in certain locations in 
the Boucle du Mouhoun, Nord, Sahel, Centre Nord, and Est regions (Figure 7a). The estimated SEs of the 
predicted wasting prevalences were small, and regions with very high child food poverty prevalences had 
smaller SEs (Figure 7b). Figure 7c shows variability in predicted child food poverty prevalences at the 
provincial (admin 2) level. 

Figure 7 Predicted child food poverty prevalences (and standard errors) among children age 6–23 
months in Burkina Faso 

(a) Predicted child food poverty prevalences 
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(b) Standard errors of predicted child food poverty prevalences 

 
(c) Predicted child food poverty prevalences among children under 5 at the provincial (admin 2) level in Burkina Faso 

 

Two separate models were also developed for each covariate—one model that assumed the spatial location 
of the clusters and one that did not. Table 2 shows the associations of each covariate with stunting, wasting, 
and child food poverty in the two models. 
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The variables significantly associated with stunting were mother’s education, the richer wealth quintiles, at 
least four antenatal care visits, open defecation, and climate variables incorporated into the enhanced 
vegetation index (EVI). Two of these—open defecation and climate variables incorporated into the EVI—
were also significantly associated with wasting. For child food poverty, we found significant associations 
with mother’s education, wealth index, unmet need family planning, and insecticide-treated net coverage. 

Table 2 Predictors of stunting, wasting, and child food poverty in non-geospatial and geospatial 
Bayesian models among children in Burkina Faso 

Parameter Mean log odds [95% confidence interval] Deviance information criterion  

Country Stunting Wasting Child food poverty Stunting Wasting 
Child food 

poverty 
Full nonspatial model 1,861 1,475 983.26 

Intercept  2.466 [-1.306, 6.238] -2.959 [-0.832, 2.400] -4.726 [-12.797, 3.450]    
Population under 5 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] -0.1365 [-0.275, 0.003]    
Mother’s education 0.041 [0.026, 0.057] -0.013 [-0.036, 0.010] -0.038 [-0.068, -0.007]    
Richer wealth quintiles 0.003 [0.012, 0.018] 0.026 [0.026, 0.047] 0.058 [0.024, 0.091]    
4+ ANC visits -1.028 [-1.847, -0.210] 0.159 [-0.970, 1.287] 1.103 [-0.785, 2.991]    
Measle vaccinated -0.014 [-0.863, 0.835] -0.839 [-2.037, 0.359] -1.661 [-3.393, 0.070]    
Access water -0.011 [0.009, -0.005] 0.002 [-0.021, 0.020] 0.012 [-0.022, 0.046]    
Open defecation 0.617 [0.226, 1.008] 1.038 [0.500, 1.577] 0.026 [-0.814, 0.866]    
Unmet need family planning 1.366 [-0.537, 3.269] -1.096 [-3.708, 1.516] -5.219 [-9.208, -1.231]    
ITN 0.494 [0.438, 1.352] -0.672 [-1.885, 0.541] 3.562 [1.912, 5.213]    
Precipitation 0.007 [-0.001, 0.020] 0.026 [0.007, 0.045] -0.014 [-0.037 ,0.010]    
EVI -4.481 [-7.736, -1.225] -7.695 [-12.248, -3.141] 2.298 [-3.870, 8.467]    
Temperature -0.100 [-0.190, -0.009] 0.030 [-0.098, 0.158] 0.175 [-0.013, 0.364]    
Travel time 0.000 [-0.002, 0.002] -0.004 [-0.006, -0.001] 0.003 [-0.001, 0.007]    

 
Full spatial model 

 
1,790 1,422 957.62 

Intercept 3.288 [-1.930, 8.528] -2.623 [-9.804, 4.499] -1.692 [-11.692, 8.510]    
Population under 5 0.000 [0.000, 0.000) -0.047 [-0.178, 0.084] -0.110 [-0.289, 0.070]    
Mother’s education 0.043 [0.023, 0.630] -0.005 [-0.031, 0.021] -0.029 [-0.062, 0.004]    
Richer wealth quintiles 0.002 [-0.018, 0.023] 0.022 [-0.005, 0.049] 0.058 [0.021, 0.096]    
4+ ANC visits -1.158 [-2.321, 0.007] 0.024 [-1.655, 1.678] 1.222 [-1.196, 3.633]    
Measle vaccinated 0.104 [-0.030, 0.009] -0.775 [-2.397, 0.847] -1.445 [-3.786, 0.904]    
Access water -0.011 [-0.026, 0.057] -0.014 [-0.040, 0.012] -0.007 [-.0.022, 0.046]    
Open defecation 0.562 [0.049, 1.073] 0.856 [0.162, 1.545] 0.026 [-0.814, 8.666]    
Unmet need family planning 1.729 [-1.001, 4.454] -1.382 [-5.303, 2.522] -5.219 [-9.208, -1.231]    
ITN 0.377 [-0.837, 1.590] -0.504 [-2.488, 1.631] 3.562 [1.912, 5.213]    
Precipitation 0.006 [-0.014, 0.025] 0.012 [-0.016, 0.040] -0.014 [-0.037, 0.010]    
EVI -4.686 [-9.103, -0.025] -4.064 [-10.022, -4.087] 2.298 [-3.870, 8.462]    
Temperature -0.118 [-0.240, 0.003] 0.036 [-0.130, 0.035] 0.175 [-0.013, 0.364]    
Travel time 0.001 [-0.002, 0.003] -0.003 [-0.006, 0.000] 0.003 [-0.001, 0.007]    

ANC = antenatal care; EVI = enhanced vegetation index; ITN = insecticide-treated net 
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3.3 Validity of the Geostatistical Models  

When we compared the predicted prevalences of stunting, wasting, and child food poverty from the 
geostatistical models with the observed prevalences from the 2021 BDHS, the correlation coefficients were 
significant for all three outcome variables. However, the correlation between models was much stronger 
for stunting (R = 0.722, p < 2.2e-16) than for either wasting (R = 0.486, p = .001) or child food poverty (R 
= 0.480, p =.001) (Figure 8). 

Figure 8 Validation plots of observed and predicted stunting, wasting, and child food poverty 

(a) Stunting among children under 5 (b) Wasting among children under 5 

R = 0.72167, p = <2.2e-16 

 
Predicted stunting prevalence 
 

(c) Child food poverty among children age 6–23 months  

R = 0.4869537, p = .001 

 
                      Predicted wasting prevalence 

R = 0.480194, p = 0.001 

 
                 Predicted child food poverty prevalence 
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4 DISCUSSION 

4.1  Model Validity 

The results of this study demonstrate the validity of using geostatistical models to predict the prevalences 
of stunting, wasting, and child food poverty in Burkina Faso. However, the correlation between the models 
and data from the 2021 Burkina Faso Demographic and Health Survey was strongest for stunting (R = 
0.72), indicating the best predictive value from our final models. 

A negative association was observed between stunting and the enhanced vegetation index (EVI), suggesting 
higher stunting prevalence in areas with sparse vegetation. This finding shows the role of climate-related 
variables in influencing stunting. Positive associations of stunting prevalence with low maternal education 
and open defecation were also observed. These results are consistent with existing literatures,8,12,19 
suggesting that literate mothers have greater access to sources of information, means of prevention, and 
services than illiterate mothers. Furthermore, the geostatistical models predicted high stunting prevalences 
in the Sahel, Eastern, and Cascade regions. These results corroborate the findings observed in the 2021 
national standardized monitoring and assessment of relief and transitions (SMART) nutrition survey.2 
However, the results of the present study provide prevalences at smaller cluster levels. They make it possible 
to visualize intercluster disparities and to understand pockets of undernutrition.5,13,14,28 

Our study also found that wasting prevalence was positively associated with open defecation and negatively 
associated with EVI. Although EVI is known to be associated with stunting, it is even more widely 
associated with wasting.8 This result suggests a higher prevalence of wasting in areas with less dense 
vegetation and demonstrates the link between wasting and EVI, which takes several climate variables into 
account. 

For child food poverty, the analysis revealed associations with maternal education, wealth index, unmet 
need for family planning, and insecticide-treated net (ITN) coverage. Notably, no significant association 
was found between EVI and child food poverty, suggesting that unlike stunting and wasting, child food 
poverty is not directly influenced by climate variables in this context. 

4.2 Limitations of the Study 

Certain determinants of undernutrition, particularly those related to the provision and quality of health and 
nutrition services, were not included in the 2021 BFDHS dataset, limiting the scope of our analysis. Despite 
these constraints, this study represents the first geostatistical analysis of undernutrition in Burkina Faso. 

4.3 Policy and Program Implications 

Geostatistical modeling is a good tool for analyzing links between nutrition outcomes and climate, enabling 
additions to the existing scientific literature on the relationship between climate change and nutrition. This 
geostatistical tool can also be used to make predictions in the context of insecurity. It is therefore an 
alternative for estimating nutritional prevalences in areas with high security challenges where a classic 
SMART nutrition survey cannot be carried out because of access issues. Our results show that prevalence 
is high in these hard-to-reach areas, and that preventive and curative measures to combat undernutrition 
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need to be stepped up. Considerations should include disseminating this method at the country level, and 
possibly using it to analyze additional indicators of malnutrition. 

4.4 Conclusion 

The results of this study showed the relationship between climate and undernutrition. This calls for the 
integration of climate considerations into nutrition commitments. The study also demonstrated the value of 
applying geostatistical analyses to identify pockets of concentrated undernutrition and child food poverty 
to better guide intervention strategies. These methodologies present an opportunity for predicting the 
prevalences of stunting, wasting, and child food poverty in areas where access to traditional SMART or 
other nutrition surveys is problematic. 
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